首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Pyrgomatid barnacles are a family of balanomorphs uniquely adapted to symbiosis on corals. The evolution of the coral‐dwelling barnacles is explored using a multi‐gene phylogeny (COI, 16S, 12S, 18S, and H3) and phenotypic trait‐mapping. We found that the hydrocoral associate Wanella should be excluded, while some archaeobalanids in the genus Armatobalanus should be included in the Pyrgomatidae. Three well supported clades were recovered: clade I is the largest group and is exclusively Indo‐West Pacific, clade II contains two plesiomorphic Indo‐West Pacific genera, while clade III is comprised of East and West Atlantic taxa. Some genera did not form reciprocally monophyletic groups, while the genus Trevathana was found to be paraphyletic and to include members of three other apomorphic genera/tribes. The highly unusual coral‐parasitic hoekiines appear to be of recent origin and rapidly evolving from Trevathana sensu lato. Pyrgomatids include six‐, four‐, and one‐plated forms, and exhibit convergent evolutionary tendencies towards skeletal reduction and fusion, loss of cirral armature, and increased host specificity. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 162–179.  相似文献   

2.
Aim Our aims were: (1) to reconstruct a molecular phylogeny of the cephalaspidean opisthobranch genus Bulla, an inhabitant of shallow sedimentary environments; (2) to test if divergence times are consistent with Miocene and later vicariance among the four tropical marine biogeographical provinces; (3) to examine the phylogenetic status of possible Tethyan relict species; and (4) to infer the timing and causes of speciation events. Location Tropical and warm‐temperate regions of the Atlantic, Indo‐West Pacific, Australasia and eastern Pacific. Methods Ten of the 12 nominal species of Bulla were sampled, in a total sample of 65 individuals, together with cephalaspidean outgroups. Phylogenetic relationships were inferred by Bayesian analysis of partial sequences of the mitochondrial cytochrome c oxidase I (COI) and 16S rRNA and nuclear 28S rRNA genes. Divergence times and rates of evolution were estimated using uncorrelated relaxed‐clock Bayesian methods with fossil calibrations (based on literature review and examination of fossil specimens), implemented in beast . The geographical pattern of speciation was assessed by estimating the degree of overlap between sister lineages. Results Four clades were supported: Indo‐West Pacific (four species), Australasia (one species), Atlantic plus eastern Pacific (three species) and Atlantic (two species), with estimated mean ages of 35–46 Ma. Nominal species were monophyletic, but deep divergences were found within one Indo‐West Pacific and one West Atlantic species. Species‐level divergences occurred in the Miocene or earlier. The age of a sister relationship across the Isthmus of Panama was estimated at 7.9–32.1 Ma, and the divergence of a pair of sister species on either side of the Atlantic Ocean occurred 20.4–27.2 Ma. Main conclusions Fossils suggest that Bulla originated in the Tethys realm during the Middle Eocene. Average ages of the four main clades fall in the Eocene, and far pre‐date the 18–19 Ma closure of the Tethys Seaway. This discrepancy could indicate earlier vicariant events, selective extinction or errors of calibration. Similarly, the transisthmian divergence estimate far pre‐dates the uplift of the Panamanian Isthmus at about 3 Ma. Speciation events occurred in the Miocene, consistent with tectonic events in the central Indo‐West Pacific, isolation of the Arabian Sea by upwelling and westward trans‐Atlantic dispersal. Differences in habitat between sister species suggest that ecological speciation may also have played a role. The basal position of the Australasian species supports its interpretation as a Tethyan relict.  相似文献   

3.
The aeolid Pteraeolidia ianthina (Angas, 1864) is a strikingly‐coloured aeolid nudibranch, informally known as the ‘Blue Dragon’. It is recognised as an unusually widespread Indo‐Pacific species, with variation in colouration and morphology, and biogeographic differences in zooxanthellae (dinoflagellate symbionts of the genus Symbiodinium). This variation hints at possible cryptic species, which was tested here using phylogenetic analyses of mitochondrial DNA data (COI, 16S). Our results showed multiple well‐supported clades with slight but consistent differences in radular morphology and colouration, and thus we clarify one of the three available names. A temperate NSW clade showed a more elongate and pointed central radular tooth and lacked white body colouration, in comparison to a more variable tropical clade, which had a shorter and more blunt central tooth. The type locality of Pteraeolidia ianthina is Sydney Harbour, New South Wales (NSW), Australia, and according to our study, does not occur outside NSW. Pteraeolidia semperi (Bergh, 1870) and P. scolopendrella (Risbec, 1928) are removed from synonymy with P. ianthina. Wider phylogeographic sampling is required before resolving the availability of the two remaining names, and subclades within the tropical clade, but there is evidence to suggest multiple cryptic species exist. The biogeographic differences in symbionts, and the importance of their role in life history, suggests that changes in symbiosis may have helped drive divergence via local adaptation in the host nudibranchs. © 2015 The Linnean Society of London  相似文献   

4.
The phylogeographical structure of coral‐associated reef fishes may have been severely affected, more than species from deeper habitats, by habitat loss during periods of low sea level. The humbug damselfish, Dascyllus aruanus, is widely distributed across the Indo‐West Pacific, and exclusively inhabits branching corals. We used mitochondrial cytochrome b sequence and seven microsatellite loci on D. aruanus samples (260 individuals) from 13 locations across the Indo‐West Pacific to investigate its phylogeographical structure distribution‐wide. A major genetic partition was found between the Indian and Pacific Ocean populations, which we interpret as the result of geographical isolation on either side of the Indo‐Pacific barrier during glacial periods. The peripheral populations of the Red Sea and the Society Islands exhibited lower genetic diversity, and substantial genetic differences with the other populations, suggesting relative isolation. Thus, vicariance on either side of the Indo‐Pacific barrier and peripheral differentiation are considered to be the main drivers that have shaped the phylogeographical patterns presently observed in D. aruanus. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 931–942.  相似文献   

5.
Phylogeographic forces driving evolution of sea‐dispersed plants are often influenced by regional and species characteristics, although not yet deciphered at a large spatial scale for many taxa like the mangrove species Heritiera littoralis. This study aimed to assess geographic distribution of genetic variation of this widespread mangrove in the Indo‐West Pacific region and identify the phylogeographic factors influencing its present‐day distribution. Analysis of five chloroplast DNA fragments’ sequences from 37 populations revealed low genetic diversity at the population level and strong genetic structure of H. littoralis in this region. The estimated divergence times between the major genetic lineages indicated that glacial level changes during the Pleistocene epoch induced strong genetic differentiation across the Indian and Pacific Oceans. In comparison to the strong genetic break imposed by the Sunda Shelf toward splitting the lineages of the Indian and Pacific Oceans, the genetic differentiation between Indo‐Malesia and Australasia was not so prominent. Long‐distance dispersal ability of H. littoralis propagules helped the species to attain transoceanic distribution not only across South East Asia and Australia, but also across the Indian Ocean to East Africa. However, oceanic circulation pattern in the South China Sea was found to act as a barrier creating further intraoceanic genetic differentiation. Overall, phylogeographic analysis in this study revealed that glacial vicariance had profound influence on population differentiation in H. littoralis and caused low genetic diversity except for the refugia populations near the equator which might have persisted through glacial maxima. With increasing loss of suitable habitats due to anthropogenic activities, these findings therefore emphasize the urgent need for conservation actions for all populations throughout the distribution range of H. littoralis.  相似文献   

6.
Aim To identify connectivity patterns among coral reefs of the Indo‐West Pacific. Projecting connectivity forward in time provides a framework for studying long‐term source–sink dynamics in the region, and makes it possible to evaluate the manner in which migration shapes population genetic structure at regional scales. This information is essential for addressing critical gaps in knowledge for conservation planning efforts in one of the most biologically diverse regions on earth. Location Coral reefs of the Indo‐West Pacific, ranging from 15° S to 30° N and 95° E to 140° E. Methods Individual‐based biophysical dispersal models were used in conjunction with matrix projection to identify the expected patterns of exchange between coral reefs over time. Results Present‐day oceanographic conditions lead to the transport of larvae from the South China Sea into the Coral Triangle region via the Sulu Sea, and from northern Papua New Guinea and the Solomon Islands via Halmahera. The directionality of the system leads to the expected accumulation of organisms from outlying areas into the Coral Triangle region over time, particularly in the vicinity of the Maluku Islands and eastern Sulawesi. Coral reefs in Papua New Guinea, the Sulu Archipelago and areas within the Philippines are expected to be areas of high diversity as well. Main conclusions Biophysical dispersal models, used in conjunction with matrix projection, provide an effective means of simulating connectivity structure across the Indo‐West Pacific and thereby evaluating the directionality of genetic diversity. Migration appears to have a significant influence on population genetic structure in the region. Based on present‐day ocean currents, coral reefs in the South China Sea, northern Papua New Guinea and the Solomon Islands are contributing to high levels of diversity in the Coral Triangle.  相似文献   

7.
Aim This study aims to initially explore the mode of speciation in Indo‐West Pacific Conus. Location The Indo‐West Pacific island arc, Indian and Pacific Oceans. Methods Relating evolutionary divergence in a molecular phylogeny [T.F. Duda & S.R. Palumbi (1999) Proceedings of the National Academy of Science USA, 96 , 10272] using node height with modern range extents as a possible measure of allopatric or sympatric speciation following that of T.G. Barraclough, A.P. Vogler & P.H. Harvey [(1999) Evolution of Biological Diversity. Oxford University Press, Oxford] models of sympatric and allopatric speciation. Results The analysis seems to indicate that the relationship of sympatry with node height is not informative. Species that have diverged quite recently show 100% sympatry with the sister species. A clearer signal of recent allopatric speciation is observed in species whose distribution is at the edge of the Indian and Pacific Ocean basins. In the widely distributed Conus ebraeus clade, the relationships of node heights and range extents of the member species support a key prediction of sympatric speciation. In highly ecologically specialized species, there is a smaller degree of sympatry than those species that are less specialized. Main conclusions The modes of speciation models presented in this study are not informative. This suggests that there had been large and possibly rapid changes in range size after speciation in the various clades. This could have been due to the fact that the wide dispersal life‐history strategy in the genus had been largely conserved in Conus evolution. There is evidence of sympatric and parapatric speciation in one Conus clade. Overall, the patterns of phylogeny and range distribution when related to the timing of speciation lend circumstantial support to a Neogene centre of origin hypothesis but not to speciation on the Pacific Plate. Speciation is likely to have been associated with the Tethys Sea closure event, with rapid speciation occurring after closure.  相似文献   

8.
The Indo‐Australian archipelago (IAA) supports the world's highest diversity of marine fish, invertebrates and reptiles. Many of the marine fish and invertebrates show congruent phylogeographic patterns, supporting a view that the region's complex geo‐climatic history has played an important role in generating its exceptional biodiversity. Here, we examine population genetic structure of the viviparous sea snake, Hydrophis curtus, to assess how past and present barriers to gene flow in the IAA have contributed to genetic and species diversity in a fully marine reptile. Mitochondrial and anonymous nuclear sequences and ten microsatellite loci were used to identify patterns of historical genetic structure and population expansion, reconstruct dated genealogies and assess levels of recent gene flow. These markers revealed strong concordant geographic structure within H. curtus with a prominent genetic break between populations broadly distributed in the Indian Ocean and the West Pacific. These populations were estimated to have diverged in the late Pliocene or early Pleistocene, and microsatellite admixture analyses suggested limited recent gene flow between them despite the current lack of barriers to dispersal, indicating possible cryptic species. Subsequent divergence in the mid–late Pleistocene was detected within the West Pacific clade among the populations in the Phuket‐Thailand region, South‐East Asia and Australia, and two of these populations also showed genetic signals of recent range expansions. Our results show that climatic fluctuations during the Plio‐Pleistocene generated high levels of cryptic genetic diversity in H. curtus, and add to similar findings for diverse other marine groups in the IAA.  相似文献   

9.
This study investigates the genetic structure and phylogeography of a broadcast spawning bivalve mollusc, Pinctada maxima, throughout the Indo‐West Pacific and northern Australia. DNA sequence variation of the mitochondrial cytochrome oxidase subunit I (COI) gene was analysed in 367 individuals sampled from nine populations across the Indo‐West Pacific. Hierarchical AMOVA indicated strong genetic structuring amongst populations (ΦST = 0.372, P < 0.001); however, sequence divergence between the 47 haplotypes detected was low (maximum 1.8% difference) and no deep phylogenetic divergence was observed. Results suggest the presence of genetic barriers isolating populations of the South China Sea and central Indonesian regions, which, in turn, show patterns of historical separation from northern Australian regions. In P. maxima, historical vicariance during Pleistocene low sea levels is likely to have restricted planktonic larval transport, causing genetic differentiation amongst populations. However, low genetic differentiation is observed where strong ocean currents are present and is most likely due to contemporary larval transport along these pathways. Geographical association with haplotype distributions may indicate signs of early lineage sorting arising from historical population separations, yet an absence of divergent phylogenetic clades related to geography could be the consequence of periodic pulses of high genetic exchange. We compare our results with previous microsatellite DNA analysis of these P. maxima populations, and discuss implications for future conservation management of this species. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 107 , 632–646.  相似文献   

10.
Historical isolation during Pleistocene low sea level periods is thought to have contributed to divergence among marine basin populations across the Coral Triangle. In the Philippine archipelago, populations in the South China Sea, Sulu Sea–inland seas, and Philippine Sea‐Celebes Sea basins might have been partially isolated. Meanwhile, present‐day broadscale oceanographic circulation patterns suggest connectivity between these basins. To evaluate hypotheses regarding the influence of historical and contemporary factors on genetic structure, phylogeographic patterns based on mitochondrial control region sequences for a reef‐associated fish, Siganus fuscescens, were analysed. Three distinct lineages were recovered. One lineage was identified as the morphologically similar species Siganus canaliculatus, while two lineages are monophyletic with S. fuscescens. Clade divergence and demographic expansion in S. fuscescens occurred during the Pleistocene. A strong signal of latitudinal structure was detected (ΦCT = 0.188), driven by marked differences in clade distribution: one clade is widely distributed (clade A), while a second clade (clade B) has a restricted northern distribution. Regional structure of clade A is consistent with the basin isolation hypothesis (ΦCT = 0.040) and suggests isolation of the South China Sea (ΦCT = 0.091). Fine‐scale structure was observed in the South China Sea and south Philippine Sea, while Sulu Sea and inland seas were unstructured. Genetic structure across multiple spatial scales (archipelagic, regional, and fine‐scale within basins) suggests the influence of vicariant barriers and contemporary limits to gene flow in S. fuscescens that may be influenced by oceanographic circulation, geographical distance between available habitats, and latitudinal temperature differences.  相似文献   

11.
Living fossils are survivors of previously more diverse lineages that originated millions of years ago and persisted with little morphological change. Therefore, living fossils are model organisms to study both long‐term and ongoing adaptation and speciation processes. However, many aspects of living fossil evolution and their persistence in the modern world remain unclear. Here, we investigate three major aspects of the evolutionary history of living fossils: cryptic speciation, population genetics and effective population sizes, using members of the genera Nautilus and Allonautilus as classic examples of true living fossils. For this, we analysed genomewide ddRAD‐Seq data for all six currently recognized nautiloid species throughout their distribution range. Our analyses identified three major allopatric Nautilus clades: a South Pacific clade, subdivided into three subclades with no signs of admixture between them; a Coral Sea clade, consisting of two genetically distinct populations with significant admixture; and a widespread Indo‐Pacific clade, devoid of significant genetic substructure. Within these major clades, we detected five Nautilus groups, which likely correspond to five distinct species. With the exception of Nautilus macromphalus, all previously described species are at odds with genomewide data, testifying to the prevalence of cryptic species among living fossils. Detailed FST analyses further revealed significant genome‐wide and locus‐specific signatures of selection between species and differentiated populations, which is demonstrated here for the first time in a living fossil. Finally, approximate Bayesian computation (ABC) simulations suggest large effective population sizes, which may explain the low levels of population differentiation commonly observed in living fossils.  相似文献   

12.
Recent molecular phylogenies conflict with traditional scleractinian classification at ranks ranging from suborder to genus, challenging morphologists to discover new characters that better agree with molecular data. Such characters are essential for including fossils in analyses and tracing evolutionary patterns through geologic time. We examine the skeletal morphology of 36 species belonging to the traditional families Faviidae, Merulinidae, Pectiniidae, and Trachyphylliidae (3 Atlantic, 14 Indo‐Pacific, 2 cosmopolitan genera) at the macromorphological, micromorphological, and microstructural levels. Molecular analyses indicate that the families are not monophyletic groups, but consist of six family‐level clades, four of which are examined [clade XV = Diploastrea heliopora; clade XVI = Montastraea cavernosa; clade XVII (“Pacific faviids”) = Pacific faviids (part) + merulinids (part) + pectiniids (part) + M. annularis complex; clade XXI (“Atlantic faviids”) = Atlantic faviids (part) + Atlantic mussids]. Comparisons among molecular clades indicate that micromorphological and microstructural characters (singly and in combination) are clade diagnostic, but with two exceptions, macromorphologic characters are not. The septal teeth of “Atlantic faviids” are paddle‐shaped (strong secondary calcification axes) or blocky, whereas the septal teeth of “Pacific faviids” are spine‐shaped or multidirectional. Corallite walls in “Atlantic faviids” are usually septothecal, with occasional trabeculothecal elements; whereas corallite walls in “Pacific faviids” are usually trabeculothecal or parathecal or they contain abortive septa. Exceptions include subclades of “Pacific faviids” consisting of a) Caulastraea and Oulophyllia (strong secondary axes) and b) Cyphastrea (septothecal walls). Diploastrea has a diagnostic synapticulothecal wall and thick triangular teeth; Montastraea cavernosa is also distinct, possessing both “Pacific faviid” (abortive septa) and “Atlantic faviid” (paddle‐shaped teeth) attributes. The development of secondary axes is similar in traditional Atlantic faviids and mussids, supporting molecular results placing them in the same clade. Subclades of “Pacific faviids” reveal differences in wall structure and the arrangement and distinctiveness of centers of rapid accretion. J. Morphol. 272:66–88, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

13.
Scyllaeidae represents a small clade of dendronotoid nudibranchs. Notobryon wardi Odhner, 1936, has been reported to occur in tropical oceans from the Indo‐Pacific and eastern Pacific to temperate South Africa. The systematics of Notobryon has not been reviewed using modern systematic tools. Here, specimens of Notobryon were examined from the eastern Pacific, the Indo‐Pacific, and from temperate South Africa. Additionally, representatives of Scyllaea and Crosslandia were studied. Scyllaeidae was found to be monophyletic. Notobryon was also found to be monophyletic and is the sister group to Crosslandia plus Scyllaea. The molecular data also clearly indicate that within Notobryon, at least three distinct species are present, two of which are here described. Genetic distance data indicate that eastern Pacific and South African exemplars are 10–23% divergent from Indo‐Pacific exemplars of Notobryon wardi. Scyllaea pelagica has been regarded as a single, circumtropical species. Our molecular studies clearly indicate that the Atlantic and Indo‐Pacific populations are distinct and we resurrect Scyllaea fulva Quoy & Gaimard, 1824 for the Indo‐Pacific species. Our morphological studies clearly corroborate our molecular findings and differences in morphology distinguish closely related species. Different species clearly have distinct penial morphology. These studies clearly reinforce the view that eastern Pacific, Indo‐Pacific, and temperate biotas consist largely of distinct faunas, with only a minor degree of faunal overlap. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 165 , 311–336.  相似文献   

14.
Aim Cuckoo‐shrikes and allies (Campephagidae) form a radiation of birds widely distributed in the Indo‐Pacific and Africa. Recent studies on the group have been hampered by poor taxon sampling, causing inferences about systematics and biogeography to be rather speculative. With improved taxon sampling and analyses within an explicit spatiotemporal framework, we elucidate biogeographical patterns of dispersal and diversification within this diverse clade of passerine birds. Location Africa, Asia, Australo‐Papua, the Pacific, the Philippines and Wallacea. Methods We use model‐based phylogenetic methods (Mr Bayes and garli ) to construct a phylogenetic hypothesis of the core Campephagidae (Campephagidae with the exclusion of Pericrocotus). The phylogeny is used to assess the biogeographical history of the group with a newly developed Bayesian approach to dispersal–vicariance analysis (Bayes‐diva) . We also made use of a partitioned beast analysis, with several calibration points taken from island ages, passerine mitochondrial substitution rates and secondary calibration points for passerine birds, to assess the timing of diversification and dispersal. Results We present a robust molecular phylogeny that includes all genera and 84% of the species within the core Campephagidae. Furthermore, we estimate divergence dates and ancestral area relationships. We demonstrate that Campephagidae originated in Australo‐Papua with a single lineage (Pericrocotus) dispersing to Asia early. Later, there was further extensive transoceanic dispersal from Australo‐Papua to Africa involving lineages within the core Campephagidae radiation. Main conclusions The phylogenetic relationships, along with the results of the ancestral area analysis and the timing of dispersal events, support a transoceanic dispersal scenario from Australo‐Papua to Africa by the core Campephagidae. The sister group to core Campephagidae, Pericrocotus, dispersed to mainland Asia in the late Oligocene. Asia remained uncolonized by the core Campephagidae until the Pliocene. Transoceanic dispersal is by no means an unknown phenomenon, but our results represent a convincing case of colonization over a significant water gap of thousands of kilometres from Australo‐Papua to Africa.  相似文献   

15.
Aim The objective of this study was to reveal the present population structure and infer the gene‐flow history of the Indo‐Pacific tropical eel Anguilla bicolor. Location The Indo‐Pacific region. Methods The entire mitochondrial control region sequence and the genotypes at six microsatellite loci were analysed for 234 specimens collected from eight representative localities where two subspecies have been historically designated. In order to infer the population structure, genetic differentiation estimates, analysis of molecular variance and gene‐tree reconstruction were performed. The history of migration events and population growth was assessed using neutrality tests based on allelic frequency spectrum, coalescent‐based estimation of gene flow and Bayesian demographic analysis using control region sequences. Results Population structure analysis showed genetic divergence between eels from the Indian and Pacific oceans (FST = 0.0174–0.0251, P < 0.05 for microsatellites; ΦST = 0.706, P < 0.001 for control region), while no significant variation was observed within each ocean. Two mitochondrial sublineages that do not coincide with geographical regions were found in the Indian Ocean clade of a gene tree. However, these two sublineages were not differentiated at the microsatellite markers. The estimation of mitochondrial gene‐flow history suggested allopatric isolation between the Indian and Pacific oceans, and a possible secondary contact within the Indian Ocean after an initial population splitting. Bayesian demographic history reconstruction and neutrality tests indicated population growth in each ocean after the Indo‐Pacific divergence. Main conclusions Anguilla bicolor has diverged between the Indian and Pacific oceans, which is consistent with the classical subspecies designation, but is apparently genetically homogeneous in the Indian Ocean. The analysis of gene‐flow and demographic history indicated that the two mitochondrial sublineages observed in the Indian Ocean probably represent the haplotype groups of relict ancestral populations. A comparison with a sympatric congener suggested that absolute physical barriers to gene flow may not be necessary for population divergence in eels.  相似文献   

16.
Here, multi‐locus sequence data are coupled with observations of live colouration to recognize a new species, Eviota punyit from the Coral Triangle, Indian Ocean and Red Sea. Relaxed molecular clock divergence time estimation indicates a Pliocene origin for the new species, and the current distribution of the new species and its sister species Eviota sebreei supports a scenario of vicariance across the Indo‐Pacific Barrier, followed by subsequent range expansion and overlap in the Coral Triangle. These results are consistent with the ‘centre of overlap’ hypothesis, which states that the increased diversity in the Coral Triangle is due in part to the overlapping ranges of Indian Ocean and Pacific Ocean faunas. These findings are discussed in the context of other geminate pairs of coral reef fishes separated by the Indo‐Pacific Barrier.  相似文献   

17.
Sawfishes are among the most endangered of all elasmobranch species, a factor fostering considerable worldwide interest in the conservation of these animals. However, conservation efforts have been hampered by the confusing taxonomy of the group and the poor state of knowledge about the family's geographical population structure. Based on historical taxonomy, external morphology, and mitochondrial DNA sequences (NADH‐2), we show here that, globally, the sawfish comprise five species in two genera: Pristis pristis (circumtropical), Pristis clavata (east Indo‐West Pacific), Pristis pectinata (Atlantic), Pristis zijsron (Indo‐West Pacific), and Anoxypristis cuspidata (Indo‐West Pacific, except for East Africa and the Red Sea). This improved understanding will have implications for the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES), International Union for Conservation of Nature (IUCN) Red List assessments, and endangered species laws and regulations in several countries. Furthermore, based on both or either of NADH‐2 and the number of rostral teeth per side, we show that populations of P. pristis, P. pectinata, P. zijsron, and A. cuspidata exhibit significant geographic structuring across their respective ranges, meaning that regional‐level conservation will be required. Finally, the NADH‐2 gene may serve as a marker for the identification of rostra and fins involved in illegal trade. © 2012 The Linnean Society of London  相似文献   

18.
Aim This study aims to elucidate the phylogeography of the murid rodent Lemniscomys striatus and to evaluate the relative roles of ecological change, habitat patchiness, rivers and geological barriers in structuring patterns of diversity. Location Sub‐Saharan Africa. Methods The extent of phylogeographic patterns and molecular genetic diversity (cytochrome b gene) were addressed in a survey of 128 individuals of L. striatus from 42 localities. Using maximum parsimony, maximum likelihood, Bayesian, network and genetic structure analyses, we inferred intraspecific relationships and tested hypotheses for historical patterns of gene flow within L. striatus. Results Our results identified four major geographical clades within L. striatus: a West African clade, a Benin‐Nigeria clade, a Central African clade, and an East African clade. Several subclades were identified within these four major clades. Restricted gene flow with isolation by distance was recorded, which is congruent with the low dispersal ability of such a small murid rodent. No clear signal of population expansion was detected within clades or subclades. Main conclusions The western rift system and the Volta and Niger rivers may have acted as long‐term extrinsic barriers to gene flow, resulting in the emergence of the four main clades of L. striatus. The observed pattern of mitochondrial variation observed within each clade probably results from late Pleistocene climatic and vegetation changes: during adverse conditions (forest expansion), L. striatus may have survived only in refugia, and then experienced range expansion under favourable conditions (savanna expansion).  相似文献   

19.
Ocean currents are an important driver of evolution for sea‐dispersed plants, enabling them to maintain reciprocal gene flow via sea‐dispersed diaspores and obtain wide distribution ranges. Although geographic barriers are known to be the primary factors shaping present genetic structure of sea‐dispersed plants, cryptic barriers which form clear genetic structure within oceanic regions are poorly understood. To test the presence of a cryptic barrier, we conducted a phylogeographic study together with past demographic inference for a widespread sea‐dispersed plant, Vigna marina, using 308 individuals collected from the entire Indo‐West Pacific (IWP) region. Chloroplast DNA variation showed strong genetic structure that separated populations into three groups: North Pacific (NP), South Pacific (SP) and Indian Ocean (IN) (FCT among groups = 0.954–1.000). According to the Approximate Bayesian computation inference, splitting time between NP and SP was approximately 20,200 years (95%HPD, 4,530–95,400) before present. Moreover, a signal of recent population expansion was detected in the NP group. This study clearly showed the presence of a cryptic barrier in the West Pacific region of the distributional range of V. marina. The locations of the cryptic barrier observed in V. marina corresponded to the genetic breaks found in other plants, suggesting the presence of a common cryptic barrier for sea‐dispersed plants. Demographic inference suggested that genetic structure related to this cryptic barrier has been present since the last glacial maximum and may reflect patterns of past population expansion from refugia.  相似文献   

20.
Hu ZM  Uwai S  Yu SH  Komatsu T  Ajisaka T  Duan DL 《Molecular ecology》2011,20(18):3894-3909
Pleistocene glacial oscillations and associated tectonic processes are believed to have influenced the historical abundances and distribution of organisms in the Asia Northwest Pacific (ANP). Accumulating evidence indicates that factors shaping tempospatial population dynamics and distribution patterns of marine taxa vary with biogeographical latitude, pelagic behaviour and oceanographic regimes. To detect what kinds of historical and contemporary factors affected genetic connectivity, phylogeographic profiles of littoral macroalga Sargassum horneri in the ANP were analysed based on mitochondrial (Cox3) and chloroplast (rbcL) data sets. Five distinct clades were recovered. A strong signature of biogeographical structure was revealed (Φ(CT) = 0.487, P < 0.0001) derived from remarkable differentiation in clade distribution, as clade I is restricted to Chinese marginal seas (Yellow-Bohai Sea, East China Sea and South China Sea), whereas clades II-V are discontinuously scattered around the main Islands of Japan. Furthermore, two secondary contact regions were identified along the south Japan-Pacific coastline. This significant differentiation between the two basins may reflect historical glacial isolation in the northwestern Pacific, which is congruent with the estimates of clade divergence and demographic expansion during the late Quaternary low sea levels. Analysis of molecular variance and the population-pair statistic F(ST) also revealed significant genetic structural differences between Chinese marginal seas and the Japanese basin. This exceptional phylogeographic architecture in S. horneri, initially shaped by historical geographic isolation during the late Pleistocene ice age and physical biogeographical barriers, can be complicated by oceanographic regimes (ocean surface currents) and relocating behaviour such as oceanic drifting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号