首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Reintroductions are a common approach for preserving intraspecific biodiversity in fragmented landscapes. However, they may exacerbate the reduction in genetic diversity initially caused by population fragmentation because the effective population size of reintroduced populations is often smaller and reintroduced populations also tend to be more geographically isolated than native populations. Mixing genetically divergent sources for reintroduction purposes is a practice intended to increase genetic diversity. We documented the outcome of reintroductions from three mixed sources on the ancestral composition and genetic variation of a North American fish, the slimy sculpin (Cottus cognatus). We used microsatellite markers to evaluate allelic richness and heterozygosity in the reintroduced populations relative to computer simulated expectations. Sculpins in reintroduced populations exhibited higher levels of heterozygosity and allelic richness than any single source, but only slightly higher than the single most genetically diverse source population. Simulations intended to mimic an ideal scenario for maximizing genetic variation in the reintroduced populations also predicted increases, but they were only moderately greater than the most variable source population. We found that a single source contributed more than the other two sources at most reintroduction sites. We urge caution when choosing whether to mix source populations in reintroduction programs. Genetic characteristics of candidate source populations should be evaluated prior to reintroduction if feasible. When combined with knowledge of the degree of genetic distinction among sources, simulations may allow the genetic diversity benefits of mixing populations to be weighed against the risks of outbreeding depression in reintroduced and nearby populations.  相似文献   

2.
Captive breeding and the reintroduction of Mexican and red wolves   总被引:2,自引:0,他引:2  
Mexican and red wolves were both faced with extinction in the wild until captive populations were established more than two decades ago. These captive populations have been successfully managed genetically to minimize mean kinship and retain genetic variation. Descendants of these animals were subsequently used to start reintroduced populations, which now number about 40-50 Mexican wolves in Arizona and New Mexico and about 100 red wolves in North Carolina. The original captive Mexican wolf population was descended from three founders. Merging this lineage with two other captive lineages, each with two founders, has been successfully carried out in the captive population and is in progress in the reintroduced population. This effort has resulted in increased fitness of cross-lineage wolves, or genetic rescue, in both the captive and reintroduced populations. A number of coyote-red wolf hybrid litters were observed in the late 1990s in the reintroduced red wolf population. Intensive identification and management efforts appear to have resulted in the elimination of this threat. However, population reintroductions of both Mexican and red wolves appear to have reached numbers well below the generally recommended number for recovery and there is no current effort to re-establish other populations.  相似文献   

3.
Genetic Diversity and the Reintroduction of Meadow Species   总被引:2,自引:0,他引:2  
Abstract: Restoration of formerly nutrient‐poor and species‐rich grasslands generally leads to an increase in species diversity. However, species without a persistent seed bank and with poor dispersal ability often do not re‐establish spontaneously. Here, reintroduction is an option. If existing populations are comparable in their genetic composition, any population will do. This is not the case if populations have local adaptations. Unfortunately, whether populations are adapted locally is not easily determined, in contrast to assessing differentiation using neutral genetic markers. We used AFLP to study genetic diversity of Cirsium dissectum and Succisa pratensis within and among several Junco‐Molinion plant communities in the Netherlands (up to 200 km apart) that were potential source populations, and followed the reintroduction using seeds from these populations. Also, vegetative growth phase characteristics of three populations of C. dissectum were analyzed under controlled conditions. Most of the genetic variation in these cross‐fertilizing species was found within populations. Small but significant genetic differences in band frequencies were found among populations (Fst 0.100 ‐ 0.135). The first generation of reintroduced plants contained less polymorphic bands than the source populations. The genetic differences caused by reintroduction using a limited number of seeds (founder effects) were significant in all except one case (Fst 0.012 ‐ 0.101 between source and corresponding reintroduced population), but the magnitude was smaller than the source population differentiation. In assignment tests, reintroduced populations resembled their source population more than any other population, but all populations contained sizeable proportions of plants that were assigned to most similar plants from other populations, indicating that the populations are only marginally distinct. Calculations show that reintroduction from more than one source population introduces significantly more polymorphic bands into the new population, capitalizing on the existence of band frequency differences among populations.  相似文献   

4.
To counter losses of genetic diversity in reintroduced populations, species sometimes are reintroduced into networks of populations with the potential to exchange individuals. In reintroduced populations connected by gene flow, patterns of genetic structure initiated by the founding event may become obscured, and populations may eventually follow an isolation-by-distance model of genetic differentiation. Taking advantage of well-documented reintroduction histories of wild turkey populations in Indiana, we assessed the degree to which gene flow among reintroduced populations has obscured genetic signatures left by the founding events. Using a suite of nuclear microsatellite loci and sequence data from the mitochondrial control region, we characterized the level of genetic diversity and degree of genetic structure within and among: (1) reintroduced populations in isolated northern Indiana Fish and Wildlife Areas, (2) reintroduced populations in southern Indiana Fish and Wildlife Areas, where the distribution of populations is more continuous, and (3) source populations used for these reintroductions. We also utilized individual-based assignment tests to determine the relative contribution of source populations to the current distribution of alleles in reintroduced populations. Our results indicate that wild turkey reintroductions in Indiana have left distinct genetic signatures on populations that are detectable even after several decades. Although we found some case-specific evidence for gene flow, particularly in regions where populations are in close proximity, our data indicate on overall paucity of gene flow at a regional scale. Such post-reintroduction genetic monitoring has immediate implications for the design of optimal strategies to reintroduce wildlife for conservation and management.  相似文献   

5.
Reduced genetic diversity can result in short-term decreases in fitness and reduced adaptive potential, which may lead to an increased extinction risk. Therefore, maintaining genetic variation is important for the short- and long-term success of reintroduced populations. Here, we evaluate how founder group size and variance in male reproductive success influence the long-term maintenance of genetic diversity after reintroduction. We used microsatellite data to quantify the loss of heterozygosity and allelic diversity in the founder groups from three reintroductions of tuatara ( Sphenodon ), the sole living representatives of the reptilian order Rhynchocephalia. We then estimated the maintenance of genetic diversity over 400 years (∼10 generations) using population viability analyses. Reproduction of tuatara is highly skewed, with as few as 30% of males mating across years. Predicted losses of heterozygosity over 10 generations were low (1–14%), and populations founded with more animals retained a greater proportion of the heterozygosity and allelic diversity of their source populations and founder groups. Greater male reproductive skew led to greater predicted losses of genetic diversity over 10 generations, but only accelerated the loss of genetic diversity at small population size (<250 animals). A reduction in reproductive skew at low density may facilitate the maintenance of genetic diversity in small reintroduced populations. If reproductive skew is high and density-independent, larger founder groups could be released to achieve genetic goals for management.  相似文献   

6.
The genetic diversity of germplasm used in reintroduction and restoration efforts can influence how resulting populations establish, reproduce, and evolve over time, particularly in disturbed and changing conditions. Regional admixture provenancing, mixing seeds derived from multiple populations within the same region as the target site, has been suggested to produce genetically diverse germplasm. Yet little empirical evidence shows how genetic diversity in germplasm resulting from this approach compares to source populations, or how it varies in restored populations. Here, we use neutral molecular markers to follow genetic diversity through production and use of germplasm when mixing multiple source populations in nursery production beds. Castilleja levisecta is a rare species experiencing inbreeding depression in remaining populations, with a federal recovery plan requiring the re‐establishment of populations in areas where it has been extirpated. Specifically, we track diversity from wild‐collected source populations through different production approaches and reintroductions using two propagule types. We show that measures of genetic diversity, inbreeding, and relatedness change during the production and use of material produced with a regional admixture provenancing approach, with the step at which source populations are mixed and germplasm type used influencing whether all source populations are equally represented. While genetic diversity increased throughout the process, inbreeding and relatedness increased in nursery production beds but decreased in reintroductions, with the lowest inbreeding and relatedness in populations restored using seeds rather than plugs. The results highlight the importance of taking an integrated approach informed by research when planning and implementing reintroductions with mixed‐source germplasm.  相似文献   

7.
Modelling post‐release survival probabilities of reintroduced birds can help inform ‘soft‐release’ strategies for avian reintroductions that use captive‐bred individuals. We used post‐release radiotelemetry data to estimate the survival probabilities of reintroduced captive‐bred Red‐billed Curassow Crax blumenbachii, a globally threatened Cracid endemic to the Brazilian Atlantic Rainforest. Between August 2006 and December 2008, 46 radiotagged Curassows from the Crax Brazil breeding centre were reintroduced to the Guapiaçu Ecological Reserve (REGUA), Rio de Janeiro state, Brazil, in seven different cohorts. Reintroduced birds were most vulnerable during the first 12 months post‐release from natural predation, domestic dogs and hunting. Annual post‐release survival probability was high (75%) compared with published estimates for other Galliform species. However, when considering survival in all birds transported to REGUA (some birds died before release or were retained in captivity) and not only post‐release survival, ? in this study was closer to estimates for other species (60%). The duration of the pre‐release acclimatization period within the soft‐release enclosure and the size of the released cohorts both positively influenced post‐release survival of reintroduced Curassows. Our results are relevant to future Cracid reintroductions and highlight the importance of utilizing post‐release monitoring data for evidence‐based improvements to soft‐release strategies that can significantly enhance the post‐release survival of captive‐bred birds.  相似文献   

8.
Natural populations of the endangered western barred bandicoot (Perameles bougainville) now exist on only two islands in Shark Bay, Western Australia. Our aim was to investigate genetic diversity in natural, reintroduced, and captive populations of the bandicoots and to assess the extent of divergence between the populations. The contemporary isolation of the natural populations has resulted in heterogeneity of allele frequency between the islands, which has acted to maintain a higher combined diversity than would be expected from either population on its own. These findings highlight how remnant island populations can act as genetic reservoirs to maximize diversity for reintroductions into a species former range. Although diversity is high between island populations, diversity within populations, based on six microsatellite loci, are amongst the lowest ever recorded for populations of marsupials. The mtDNA sequence data indicate that the two remaining natural populations show only minor divergence from each other, with the five haplotypes separated by just single base pairs. The reintroduced population and captive colonies show evidence for the loss of diversity related to genetic drift operating on small isolated populations.  相似文献   

9.
Although species reintroduction attempts are now common, monitoring of reintroduction attempts rarely extends beyond initial population establishment. This short timespan likely fails to document long‐term population stability, subtle changes in behavior, and the potentially larger effects that some reintroduced species may have on other species. The Red‐cockaded Woodpecker (RCW; Dryobates borealis) is an important habitat specialist and ecosystem engineer that excavates cavities in living trees. Excavation of natural RCW cavities can take years to complete, but they also persist for many years and are used by many other species. We quantified characteristics of cavity trees excavated by RCWs (n = 44) in two populations that were reintroduced to unoccupied areas more than 10 years earlier. We measured features associated with heartwood rot and used generalized linear mixed effects regression to determine whether these features differed for trees selected for cavity excavation compared with random neighboring trees. We also assessed population trends for cavity‐nesting species that commonly used RCW cavities on one of the sites. Height of first live limb was the only factor distinguishing natural RCW cavity trees from control trees. Four of six cavity‐nesting species monitored increased significantly following RCW establishment. The increases may relate to the many natural and artificial cavities created during the reintroduction effort. Future reintroductions of the RCW should lead to successful natural cavity excavation if sufficiently large trees with smaller live crowns are present. Future efforts may also benefit the broader community of cavity‐nesting birds.  相似文献   

10.
Sea otters, Enhydra lutris, were once abundant along the nearshore areas of the North Pacific. The international maritime fur trade that ended in 1911 left 13 small remnant populations with low genetic diversity. Subsequent translocations into previously occupied habitat resulted in several reintroduced populations along the coast of North America. We sampled sea otters between 2008 and 2011 throughout much of their current range and used 19 nuclear microsatellite markers to evaluate genetic diversity, population structure, and connectivity between remnant and reintroduced populations. Average genetic diversity within populations was similar: observed heterozygosity 0.55 and 0.53, expected heterozygosity 0.56 and 0.52, unbiased expected heterozygosity 0.57 and 0.52, for reintroduced and remnant populations, respectively. Sea otter population structure was greatest between the Northern and Southern sea otters with further structuring in Northern sea otters into Western, Central, and Southeast populations (including the reintroduced populations). Migrant analyses suggest the successful reintroductions and growth of remnant groups have enhanced connectivity and gene flow between populations throughout many of the sampled Northern populations. We recommend that future management actions for the Southern sea otter focus on future reintroductions to fill the gap between the California and Washington populations ultimately restoring gene flow to the isolated California population.  相似文献   

11.
Reintroduced populations of threatened species are often founded by a small number of individuals, but maximising genetic diversity is often a criterion for founder selection. Reintroduction of pregnant females has been proposed as a means of maximising productivity and genetic diversity, but it is unclear whether the release of pregnant females increases the effective number of founders. Ten male and 20 gravid female egg-laying skinks (Oligosoma suteri) were reintroduced to Korapuki Island from Green Island, New Zealand in 1992. We sampled the populations on both Green and Korapuki Islands to examine the effect of reintroduction on the genetic structure and fitness of egg-laying skinks following release. The population on Korapuki Island showed multiple genetic signatures of a bottleneck that were not detected in the population on Green Island. At the individual level, juveniles on Korapuki Island were more homozygous than adults on Korapuki and Green Islands. However, we did not find evidence of inbreeding depression using two performance-based surrogates of fitness. Further, the population on Korapuki Island had a significantly larger effective population size than would have been expected by reintroduction of 30 skinks, based on 10,000 simulated populations. The reintroduction of gravid females aided in increasing the effective number of founders, and may be a viable option for maximizing genetic diversity in reintroduced populations, particularly for long-lived species. However, the continued loss of genetic variation in reintroduced populations may have more insidious long-term consequences, such as the loss of adaptive potential, which cannot be assessed in the short-term.  相似文献   

12.
Genotypic characterization of Citrus tristeza virus (CTV) strains has progressed significantly, but their phenotypic expression is poorly established as CTV naturally occurs as mixed‐strain populations. A screening system for the analysis of mixed‐strain populations is required for population studies and the correlation with symptom expression. In this study, a published CTV strain‐specific detection assay was expanded and improved to facilitate detection of currently known CTV strains. Supplementary RT‐PCR assays were developed for two variant groups of the RB strain and the HA16‐5 strain, and assays for the T36 strain and generic CTV detection were improved. The value of the strain‐specific assays was shown by the ability to identify the strain components of two CTV cross‐protecting sources, GFMS35 and LMS6, used in the South African budwood certification scheme and to demonstrate the segregation of strains in budwood source trees.  相似文献   

13.
The keystone species concept was introduced in 1969 in reference to top‐down regulation of communities by predators, but has expanded to include myriad species at different trophic levels. Keystone species play disproportionately large, important roles in their ecosystems, but human‐wildlife conflicts often drive population declines. Population declines have resulted in the necessity of keystone species reintroduction; however, studies of such reintroductions are rare. We conducted a literature review and found only 30 peer‐reviewed journal articles that assessed reintroduced populations of keystone species, and only 11 of these assessed ecosystem‐level effects following reintroduction. Nine of 11 publications assessing ecosystem‐level effects found evidence of resumption of keystone roles; however, these publications focus on a narrow range of species. We highlight the deficit of peer‐reviewed literature on keystone species reintroductions, and draw attention to the need for assessment of ecosystem‐level effects so that the presence, extent, and rate of ecosystem restoration driven by keystone species can be better understood.  相似文献   

14.
Wildlife restoration often involves translocation efforts to reintroduce species and supplement small, fragmented populations. We examined the genomic consequences of bighorn sheep (Ovis canadensis) translocations and population isolation to enhance understanding of evolutionary processes that affect population genetics and inform future restoration strategies. We conducted a population genomic analysis of 511 bighorn sheep from 17 areas, including native and reintroduced populations that received 0–10 translocations. Using the Illumina High Density Ovine array, we generated datasets of 6,155 to 33,289 single nucleotide polymorphisms and completed clustering, population tree, and kinship analyses. Our analyses determined that natural gene flow did not occur between most populations, including two pairs of native herds that had past connectivity. We synthesized genomic evidence across analyses to evaluate 24 different translocation events and detected eight successful reintroductions (i.e., lack of signal for recolonization from nearby populations) and five successful augmentations (i.e., reproductive success of translocated individuals) based on genetic similarity with the source populations. A single native population founded six of the reintroduced herds, suggesting that environmental conditions did not need to match for populations to persist following reintroduction. Augmentations consisting of 18–57 animals including males and females succeeded, whereas augmentations of two males did not result in a detectable genetic signature. Our results provide insight on genomic distinctiveness of native and reintroduced herds, information on the relative success of reintroduction and augmentation efforts and their associated attributes, and guidance to enhance genetic contribution of augmentations and reintroductions to aid in bighorn sheep restoration.  相似文献   

15.
We tested mutation accumulation hypothesis for the evolution of senescence using short‐lived and long‐lived populations of the seed‐feeding beetle, Acanthoscelides obtectus (Say), obtained by selection on early‐ and late‐life for many generations. The expected consequence of the mutation accumulation hypothesis is that in short‐lived populations, where the force of natural selection is the strongest early in life, the late‐life fitness traits should decline due to genetic drift which increases the frequency of mutations with deleterious effects in later adult stages. Since it is unlikely that identical deleterious mutations will increase in several independent populations, hybrid vigor for late‐life fitness is expected in offspring obtained in crosses among populations selected for early‐life fitness traits. We tested longevity of both sexes, female fecundity and male reproductive behavior for hybrid vigor by comparing hybrid and nonhybrid short‐lived populations. Hybrid vigor was confirmed for male virility, mating speed and copulation duration, and longevity of both sexes at late ages. In contrast to males, the results on female fecundity in short‐lived populations did not support mutation accumulation as a genetic mechanism for the evolution of this trait. Contrary to the prediction of this hypothesis, male mating ability indices and female fecundity in long‐lived populations exhibited hybrid vigor at all assayed age classes. We demonstrate that nonhybrid long‐lived populations diverged randomly regarding female and male reproductive fitness, indicating that sexually antagonistic selection, when accompanied with genetic drift for female fecundity and male virility, might be responsible for overriding natural selection in the independently evolving long‐lived populations.  相似文献   

16.
Widespread extirpation of native fish populations has led to a rise in species reintroduction efforts worldwide. Most efforts have relied on demographic data alone to guide project design and evaluate success. However, the genetic characteristics of many imperiled fish populations including low diversity, local adaptation, and hatchery introgression emphasize the importance of genetic data in the design and monitoring of reintroduction efforts. Focusing on a case study of brook trout (Salvelinus fontinalis) in North Carolina, we show how the combined use of genetic and demographic data can support reintroduction efforts by improving source population selection and providing opportunities to evaluate genetic viability and adaptive potential in restored populations. Using this combined approach, we reintroduced brook trout into a restored stream from two source populations and monitored changes in genetic diversity and population size in source and recipient populations. Three years after the initial translocation, the reintroduced population had comparable density, but higher genetic diversity, than either source population. This study demonstrates the utility of genetic and demographic data for reintroduction efforts, particularly when extant populations are genetically depauperate and maintaining adaptive potential is a primary restoration goal. However, we emphasize the value of continued monitoring at longer temporal and spatial scales to determine the effects of stochastic process on the long-term adaptive capacity and persistence of reintroduced populations. Overall, inclusion of genetic data in reintroduction efforts offers increased ability to meet project goals while simultaneously conserving critical sources of adaptive variation that exist across the landscape.  相似文献   

17.
Bighorn sheep (Ovis canadensis) populations in the western United States have undergone widespread declines and extirpations since the late nineteenth century as a consequence of introduced diseases, competition with livestock, and unregulated hunting. Washington, Idaho, USA, and British Columbia, Canada were historically thought to be occupied by 2 bighorn lineages or subspecies: Rocky Mountain (O. c. canadensis) and California (O. c. californiana). The putative California lineage was completely extirpated in the United States, and reintroductions to reestablish populations were sourced directly or indirectly from a single region in southern British Columbia. Restoration efforts have attempted to maintain the diversity and divergence of these 2 lineages, sometimes referred to as subspecies although taxonomic classifications have changed over time. In this study we describe genetic variation in a subset of native and reintroduced herds of California and Rocky Mountain bighorn sheep. We examined genetic diversity and divergence between bighorn sheep herds using 15 microsatellite loci, including 4 loci linked to genes involved in immune function. We analyzed 504 samples from reintroduced herds in Washington (n = 10 California herds, n = 4 Rocky Mountain herds) and Idaho (n = 5 California), and source herds in Oregon (n = 1 Rocky Mountain) and British Columbia (n = 5 California, 1 Rocky Mountain). Genetic structure reflected known reintroduction history, and geographic proximity also was associated with decreased genetic divergence. Herds in Washington and Idaho sourced from California bighorn sheep were less genetically diverse than those sourced from Rocky Mountain herds. Also, levels of relatedness within and across California herds were higher than in Rocky Mountain herds and similar to what would be expected for full and half siblings. Lower diversity and higher relatedness among California herds is a concern for long-term fitness and likely related to past population bottlenecks, fewer source populations, and management history, such as entirely sourcing California herds from British Columbia. Genetic divergence of neutral loci between California and Rocky Mountain herds was greater than that of adaptive loci, potentially indicating that balancing selection has maintained similar genetic diversity across lineages in loci associated with immune and other adaptive functions. Thus, we recommend future reintroductions and augmentations should continue to use source populations from the appropriate California or Rocky Mountain lineage to avoid potential outbreeding depression and maintain possible adaptive differences. This could be accomplished by obtaining sheep from ≥1 source within the genetic lineage, while avoiding sourcing from admixed herds. Future work encompassing a broader geographic sampling of populations and a greater portion of the genome is necessary to better evaluate the degree to which contemporary divergence between lineages is associated with recent founder effects and genetic isolation or evolutionary adaptation. © 2021 The Wildlife Society  相似文献   

18.
The current spatial distribution of genetic lineages across a region should reflect the complex interplay of both historical and contemporary processes. Postglacial expansion and recolonization in the distant past, in combination with more recent events with anthropogenic effects such as habitat fragmentation and overexploitation, can help shape the pattern of genetic structure observed in contemporary populations. In this study, we characterize the spatial distribution of mtDNA lineages for fisher (Martes pennanti) in north‐eastern North America. The history of fishers in this region is well understood and thus provides an opportunity to interpret patterns of genetic structure in the light of known historical (e.g. recolonization from glacial refugia) and contemporary events (e.g. reintroductions, fragmentation and natural recolonization). Our results indicate that fishers likely recolonized north‐eastern North America from a single Pleistocene refugium. Three genetically distinct remnant populations persisted through the population declines of the 1800s and served as sources for multiple reintroductions and natural recolonizations that have restored the fisher throughout north‐eastern North America. However, the spatial genetic structure of genetic lineages across the region still reflects the three remnant populations.  相似文献   

19.
Many threatened species in Europe have been expanding their distributions during recent decades owing to protection measures that overcome historical human activity that has limited their distributions. Range expansion has come about via two processes, natural expansion from existing range and reintroductions to new ranges. Reintroductions may prove to be a better way to establish populations because individuals are less subject to competitive relationships lowering breeding success than individuals expanding from existing populations. Whether this is true, however, remains uncertain. We compared success of breeding pairs of an expanding and a reintroduced population of spanish imperial eagles monitored for over 15 years in the south of Spain. We found significant differences in productivity between breeding pairs of each population. Newly established territories in reintroduction areas were almost three times more productive than new territories established as individuals expanded out from an existing population. We conclude that among these eagle populations reintroduced to new areas may fare as well or better than individuals expanding out form existing populations.  相似文献   

20.
Since being declared extinct in the wild in 1972, the Arabian oryx has been the subject of intense and sustained effort to maintain a healthy captive population and to reintroduce the species to its ancestral range. Previous reintroductions and associated genetic assessments focused on the release of closely managed zoo animals into Oman and included observations of inbreeding and outbreeding depression. Here we describe the use of multiple unmanaged herds as source populations for a new reintroduction project in the United Arab Emirates, allowing a comparison between studbook management and uncontrolled semi-captive breeding approaches to the conservation of genetic diversity. Results of mitochondrial control region sequencing and 13-locus microsatellite profiling highlight a severe lack of diversity within individual source populations, but a level of differentiation among populations that supports the formation of a mixed founder herd. The combined release group contained a similar level of diversity to each of the intensively managed captive populations. The research includes the first genetic data for animals held on Sir Bani Yas Island, a former private reserve which until recently held over 50% of the world’s Arabian and scimitar-horned oryx and is recognized as having huge potential for re-establishing endangered antelope species in the wild. The genetic assessment provides the first stage of an ongoing genetic monitoring programme to support future supplemental releases, translocations and genetic management of reintroduced populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号