首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Home-field advantage (HFA) hypothesis regarding litter decomposition states that litter is decomposed more rapidly in the habitat from which it is derived (i.e., home) than in other habitat (i.e., away) due to local adaptation of soil decomposers. We tested the HFA hypothesis regarding decomposition of leaf litter, insect frass, and their mixtures, using laboratory incubation of leaf litter from an evergreen (Pinus densiflora) and a deciduous (Quercus acutissima) tree species, frass excreted by two insect herbivores (Dendrolimus spectabilis and Lymantria dispar) fed on one of the two trees, and soil collected underneath the two trees. We found evidence that decomposers in each soil were specialized to decompose the litter derived from the tree species above them, indicating that the HFA occurred in litter decomposition. In contrast, the HFA was not detected in the decomposition of insect frass or litter-frass mixtures. Mixing with D. spectabilis frass non-additively decelerated, while mixing with L. dispar frass non-additively accelerated, decomposition of the mixtures, independent of soil and litter types. These indicate that the presence of insect herbivores may make it difficult to form and maintain a decomposer community specialized to a certain leaf litter, and that it may consequently cancel or weaken HFA in litter decomposition.  相似文献   

2.
We tested the hypothesis that selective feeding by insect herbivores in an old‐field plant community induces a shift of community structure towards less palatable plant species with lower leaf and litter tissue quality and may therefore affect nutrient cycling. Leaf palatability of 20 herbaceous plant species which are common during the early successional stages of an old‐field plant community was assayed using the generalist herbivores Deroceras reticulatum (Mollusca: Agriolomacidae) and Acheta domesticus (Ensifera: Gryllidae). Palatability was positively correlated with nitrogen content, specific leaf area and water content of leaves and negatively correlated with leaf carbon content and leaf C/N‐ratio. Specific decomposition rates were assessed in a litter bag experiment. Decomposition was positively correlated with nitrogen content of litter, specific leaf area and water content of living leaves and negatively correlated with leaf C/N‐ratio. When using phylogentically independent contrasts the correlations between palatability and decomposition versus leaf and litter traits remained significant (except for specific leaf area) and may therefore reflect functional relationships. As palatability and decomposition show similar correlations to leaf and litter traits, the correlation between leaf palatability and litter decomposition rate was also significant, and this held even in a phylogenetically controlled analysis. This correlation highlights the possible effects of invertebrate herbivory on resource dynamics. In a two‐year experiment we reduced the density of above‐ground and below‐ground insect herbivores in an early successional old‐field community in a two‐factorial design by insecticide application. The palatability ranking of plants showed no relationship with the specific change of cover abundance of plants due to the reduction of above‐ or below‐ground herbivory. Thus, changes in the dominance structure as well as potentially associated changes in the resource dynamics are not the result of differences in palatability between plant species. This highlights fundamental differences between the effects of insect herbivory on ecosystems and published results from vertebrate‐grazing systems.  相似文献   

3.
Although leaf‐cutter ants have been recognized as the dominant herbivore in many Neotropical ecosystems, their role in nutrient cycling remains poorly understood. Here we evaluated the relationship between plant palatability to leaf‐cutter ants and litter decomposability. Our rationale was that if preference and decomposability are related, and if ant consumption changes the abundance of litter with different quality, then ant herbivory could affect litter decomposition by affecting the quality of litter entering the soil. The study was conducted in a woodland savanna (cerrado denso) area in Minas Gerais, Brazil. We compared the decomposition rate of litter produced by trees whose fresh leaves have different degrees of palatability to the leaf‐cutter ant Atta laevigata. Our experiments did not indicate the existence of a significant relationship between leaf palatability to A. laevigata and leaf‐litter decomposability. Although the litter mixture composed of highly palatable plant species showed, initially, a faster decay rate than the mixture of poorly palatable species, this difference was no longer visible after about 6 months. Results were consistent regardless of whether litter invertebrates were excluded or not from litter bags. Similarly, experiments comparing the decomposition rate of litter from pairs of related plant species also showed no association between plant palatability and decomposition. Decomposition rate of the more palatable species was faster, slower or similar to that of the less palatable species depending upon the particular pair of species being compared. We suggest that the traits that mostly influence the decomposition rate of litter produced by cerrado trees may not be the same as those that influence plant palatability to leaf‐cutter ants. Atta laevigata select leaves of different species based – at least in part – on their nitrogen content, but N content was a poor predictor of the decomposition rates of the species we studied.  相似文献   

4.
Synthesis This study compared the decomposability of leaf, twig and wood litter from 27 co‐occurring temperate rainforest tree species in New Zealand. We found that interspecific variation in decomposition was not coordinated across the three litter types. Analysis of the relationships between functional traits and decomposition revealed that traits predictive of wood decomposition varied among the species independently from traits predictive of the decomposition of leaf and twig litter. We conclude that efforts to understand how tree species influence C, N and P dynamics in forested ecosystems through the decomposition pathway need to consider the functional traits of multiple plant structures. Plant functional traits are increasingly used to evaluate changes in ecological and ecosystem processes. However our understanding of how functional traits coordinate across different plant structures, and the implications for trait‐driven processes such as litter decomposition, remains limited. We compared the functional traits of green leaves and leaf, twig and wood litter among 27 co‐occurring tree species from New Zealand, and quantified the loss of mass, N and P from the three litter types during decomposition. We hypothesised that: a) the functional traits of green leaves, and leaf, twig and wood litter are co‐ordinated so that species which produce high quality leaves and leaf litter will also produce high quality twig and wood litter, and b) the decomposability of leaf, twig and wood litter is coordinated because breakdown of all three litter types is driven by similar combinations of traits. Trait variation across species was co‐ordinated between leaves, twigs and wood when angiosperm and gymnosperm species were considered in combination, or when angiosperms were considered separately, but trait coordination was poor for gymnosperms. There was little coordination among the three litter types in their decomposability, especially when angiosperms and gymnosperms were considered separately; this was caused by the decomposability of each of the three litter types, at least partially, being driven by different functional traits or trait combinations. Our findings indicate that although interspecific variation in the functional traits of trees can be coordinated among leaves, twigs and wood, different or unrelated traits predict the decomposition of these different structures. Furthermore, leaf‐level analyses of functional traits are not satisfactory proxies for function of whole trees and related ecological processes. As such, efforts to understand how tree species influence C, N and P dynamics in forested ecosystems through the decomposition pathway need to consider functional traits of other plant structures.  相似文献   

5.
We investigated the linkages between leaf litter quality and decomposability in a savanna plant community dominated by palatable-spinescent tree species. We measured: (1) leaf litter decomposability across five woody species that differ in leaf chemistry; (2) mass decomposition, nitrogen (N); and carbon (C) dynamics in leaf litter of a staple browse species (Acacia nigrescens) as well as (3) variation in litter composition across six sites that experienced very different histories of attack from large herbivores. All decomposition trials included litter bags filled with chopped straw to control for variation in site effects. We found a positive relationship between litter quality and decomposability, but we also found that Acacia and straw litter mass remaining did not significantly vary between heavily and lightly browsed sites. This is despite the fact that both the quality and composition of litter returned to the soil were significantly different across sites. We observed greater N resorption from senescing Acacia leaves at heavily browsed sites, which in turn contributed to increase the C:N ratio of leaf litter and caused greater litter N immobilization over time. This, together with the significantly lower tree- and herb-leaf litter mass beneath heavily browsed trees, should negatively affect decomposition rates. However, estimated dung and urine N deposition from both browsers and grazers was significantly greater at high- than at low-herbivory sites. We hypothesize that N inputs from dung and urine boost litter N mineralization and decomposition (especially following seasonal rainfall events), and thereby offset the effects of poor leaf litter quality at chronically browsed sites. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
Swan CM  Palmer MA 《Oecologia》2006,149(1):107-114
Forest soils and streams receive substantial inputs of detritus from deciduous vegetation. Decay of this material is a critical ecosystem process, recycling nutrients and supporting detrital-based food webs, and has been attributed, in part, to leaf litter species composition. However, research on why speciose leaf litter should degrade differently has relied on a bottom-up approach, embracing interspecific variation in litter chemistry. We hypothesized that preferential feeding by an aquatic detritivore interacts with species-specific leaf palatability and slows decay of speciose leaf litter. We addressed this by offering four single- and mixed-species leaf resources to field densities of a leaf-shredding consumer. Mixing leaf species resulted in slower total leaf decomposition. Decreases in mixed-species decomposition was partly explained by preferential feeding by the consumers in one case, but the lack of preferential feeding in other mixtures suggested an interactive effect of feeding and microbial degradation. Loss of riparian tree biodiversity may have implications for in-stream consumer-resource interactions.  相似文献   

7.
Although there is a growing body of evidence that herbivorous insects have a significant impact on decomposition and soil nutrient dynamics through frass excretion, how mixtures of leaf litter and insect frass influence such ecosystem processes remains poorly understood. We examined the effects of mixing of leaf litter and insect frass on decomposition and soil nutrient availability, using a study system consisting of a willow, Salix gilgiana Seemen, and a herbivorous insect, Parasa consocia Walker. The chemical characteristics of insect frass differed from those of leaf litter. In particular, frass had a 42-fold higher level of ammonium–nitrogen (NH4 +–N) than litter. Incubation experiments showed that the frass was decomposed and immobilized with respect to N more rapidly than the litter. Furthermore, litter and frass mixtures showed non-additive enhancement of decomposition and reduction of NH4 +–N, depending on the litter–frass mixing ratio. These indicate that, while insect frass generally accelerated decomposition, the effect of frass on soil nutrient availability was dependent largely on the relative amounts of litter and frass.  相似文献   

8.
刘文丹  陶建平  张腾达  钱凤  柴捷  刘宏伟 《生态学报》2014,34(17):4850-4858
植物因资源条件的差异形成不同的生态对策以获取养分进行代谢,具有不同的植物功能性状,从而可把植物凋落物分解特性与生态对策联系起来。为探究中亚热带地区木本植物凋落物分解特性与生态对策的关系,选取两种生态系统中的植物物种的地上、地下各器官凋落物(包括细根、粗根、细枝和叶片),采用分解袋法在两种土壤基质中(砂岩与石灰岩)进行为期2a(凋落叶片为1a)的分解实验,同时进行交叉实验。分解1a及2a的各器官凋落物间分解常数的关系采取Pearson相关性分析,并用SMA进行线性回归,结果表明植物各器官凋落物间的分解具有正相关关系,且分解1a后的细根与粗根、细根与细枝及分解2a后的细根与粗根呈现出显著正相关;而比较常绿植物及落叶植物凋落物在两种土壤基质和两种物种来源分解1a后的差异,除枝条外落叶植物凋落物的分解常数都大于常绿植物,在0.05置信水平上呈现出显著差异性。植物各器官凋落物间的分解具有一致性,不同生活型植物的各器官间的分解速率在不同物种来源或不同土壤基质中都表现出相似的差异。  相似文献   

9.
We hypothesised that the decomposition rates of leaf litter will increase along a gradient of decreasing fraction of the European beech (Fagus sylvatica) and increasing tree species diversity in the generally beech-dominated Central European temperate deciduous forests due to an increase in litter quality. We studied the decomposition of leaf litter including its lignin fraction in monospecific (pure beech) stands and in stands with up to five tree genera (Acer spp., Carpinus betulus, Fagus sylvatica, Fraxinus excelsior, Tilia spp.) using a litterbag approach. Litter and lignin decomposition was more rapid in stand-representative litter from multispecific stands than in litter from pure beech stands. Except for beech litter, the decomposition rates of species-specific tree litter did not differ significantly among the stand types, but were most rapid in Fraxinus excelsior and slowest in beech in an interspecific comparison. Pairwise comparisons of the decomposition of beech litter with litter of the other tree species (except for Acer platanoides) revealed a “home field advantage” of up to 20% (more rapid litter decomposition in stands with a high fraction of its own species than in stands with a different tree species composition). Decomposition of stand-representative litter mixtures displayed additive characteristics, not significantly more rapid than predicted by the decomposition of litter from the individual tree species. Leaf litter decomposition rates were positively correlated with the initial N and Ca concentrations of the litter, and negatively with the initial C:N, C:P and lignin:N ratios. The results support our hypothesis that the overall decomposition rates are mainly influenced by the chemical composition of the individual litter species. Thus, the fraction of individual tree species in the species composition seems to be more important for the litter decomposition rates than tree species diversity itself.  相似文献   

10.
Individual plants may vary in their suitability as hosts for insect herbivores. The adaptive deme formation hypothesis predicts that this variability will lead to the fine-scale adaptation of herbivorous insects to host individuals. We studied individual and temporal variation in the quality of leaves of the tree species ash, lime, common oak, and sycamore in the field as food for herbivores. We determined herbivore attack and leaf consumption and performance of the generalist caterpillars of Spodoptera littoralis in the laboratory. We further assessed the concentrations of carbon, nitrogen and water in the leaves.All measures of leaf tissue quality varied among and within individuals for all tree species. The level of herbivory differed among the tree individuals in lime, oak and sycamore, but not in ash. Within host individuals, differences in herbivory between the upper and lower crown layer varied in direction and magnitude depending on tree species. In feeding experiments, herbivore performance also varied among and within tree individuals. However, variation in palatability was not consistently related to the leaf traits measured or to herbivory levels in the field. The ranking of individuals with respect to the quality of leaf tissue for herbivorous insects varied between years in lime and oak. Thus, trees of both species might present moving targets for herbivores which prevents fine-scale adaptations. In contrast, among individuals of ash and sycamore the pattern of insect performance remained constant over 2 years. These species may be more suitable hosts for the formation of adapted demes in herbivores.  相似文献   

11.
Host plant defences and voltinism in European butterflies   总被引:1,自引:0,他引:1  
Abstract.  1. With respect to seasonal availability for herbivores, plants defended by synthesising qualitative compounds differ from those protected by accumulation of quantitative macromolecules, leaf toughness, and low water and/or nutrient content. While the palatability of the former plants remains relatively constant during the season, the palatability of the latter group decreases with leaf age.
2. It was hypothesised that in seasonal temperate environments, quantitative plant defences should restrict the annual numbers of insect generations. To test this hypothesis, European butterflies were used as a model, both non-corrected regressions and tests controlling for phylogeny were carried out, and potentially confounding factors such as body size or occurrence in short-season environments were treated as covariables.
3. Non-phylogenetically controlled regressions corroborated that butterflies feeding on quantitatively protected hosts (woody plants + grasses) form fewer generations than species feeding on qualitatively protected forbs. Plant defences fitted voltinism better than butterfly size, and remained significant even after controlling for short seasons. Using independent contrasts, feeding on woody plants plus grasses, and feeding on woody plants only, predicted fewer generations. These patterns, however, applied exclusively for foliage-feeding species.
4. The association between plant defences and voltinism represents a hitherto overlooked pattern in the ecology of temperate herbivores. It may explain why large insects tend to form fewer generations and feed on structurally complex hosts, and why some species remain monovoltine although they are not restricted by short season.  相似文献   

12.
叶和细根(2mm)是森林生态系统的分解主体,二者是否协同分解,将极大影响所属植物在生态系统碳(C)循环中的物种效应。已有研究显示,叶和细根的分解关系具有极大的不确定性,认为很大程度上归因于细根内部具有高度的异质性,导致叶和细根在功能上不相似。为此,使用末梢1级根和细根根枝作为研究对象,它们在功能上同叶类似,称为吸收根。通过分解包法,分别在黑龙江帽儿山和广东鹤山,研究了2个阔叶树种和2个针叶树种(共8个树种)的叶和吸收根持续2a多的分解。结果发现,分解速率k(a~(-1),负指数模型)在8个树种整体分析时具有正相关关系(P0.05),在相同气候带或植物生活型水平上是否相关,受叶的分解环境及吸收根类型的影响;N剩余量整体上并不相关,亚热带树种的叶和细根根枝的N剩余量在分解1a后高度显著正相关,温带树种的叶和1级根的N剩余量在分解2a后显著高度正相关。本研究中,根-叶分解过程是否受控于相同或相关的凋落物性质是决定根-叶分解是否相关的重要原因,其中分解速率与酸溶组分正相关、与酸不溶组分负相关。比较已有研究,总结发现,根-叶分解关系受物种影响较大,暗示气候变化导致物种组成的改变将极大影响地上-地下关系,也因此影响生态系统C循环。  相似文献   

13.
The leaf litter decomposition of 12 tree species was examined for three years in a subtropical forest in Japan to follow the pattern of changes in organic chemical constituents and nitrogen (N) and the relationship between these components. The remaining mass of the leaf litter reached 7–53% of the original mass at the end of the field incubation, and the decomposition constants (k) ranged from 0.37 to 2.39 year?1. The decomposition constant was significantly negatively correlated with the initial content of acid-unhydrolyzable residue (AUR) for all 12 tree species. A net increase of AUR that lasted for the first 3 to 6 months was noted for leaf litter of four tree species. The absolute amount of total N increased initially and then decreased thereafter in leaf litter of five tree species, whereas total N mass decreased throughout the study period in leaf litter of the other species. Contents of AUR and total N in leaf litter generally increased linearly with the accumulated mass loss of litter during decomposition, resulting in positive slopes of linear regressions. Lignocellulose index and AUR to N ratio of the litter showed convergent trends for 12 tree species as the decomposition progressed. When compared with datasets for an Asian climatic gradient, the decomposition rates in the subtropical forest was intermediate between the rates in tropical and temperate forests, and AUR and N contents in decomposing litter were consistently lower than those in temperate forests, indicating faster loss of AUR and N.  相似文献   

14.
Leaf litter decomposability is an important effect trait for ecosystem functioning. However, it is unknown how this effect trait evolved through plant history as a leaf ‘afterlife’ integrator of the evolution of multiple underlying traits upon which adaptive selection must have acted. Did decomposability evolve in a Brownian fashion without any constraints? Was evolution rapid at first and then slowed? Or was there an underlying mean-reverting process that makes the evolution of extreme trait values unlikely? Here, we test the hypothesis that the evolution of decomposability has undergone certain mean-reverting forces due to strong constraints and trade-offs in the leaf traits that have afterlife effects on litter quality to decomposers. In order to test this, we examined the leaf litter decomposability and seven key leaf traits of 48 tree species in the temperate area of China and fitted them to three evolutionary models: Brownian motion model (BM), Early burst model (EB), and Ornstein-Uhlenbeck model (OU). The OU model, which does not allow unlimited trait divergence through time, was the best fit model for leaf litter decomposability and all seven leaf traits. These results support the hypothesis that neither decomposability nor the underlying traits has been able to diverge toward progressively extreme values through evolutionary time. These results have reinforced our understanding of the relationships between leaf litter decomposability and leaf traits in an evolutionary perspective and may be a helpful step toward reconstructing deep-time carbon cycling based on taxonomic composition with more confidence.  相似文献   

15.
Defoliation‐induced changes in plant foliage are ubiquitous, though factors mediating induction and the extent of their influence on ecosystem processes such as leaf litter decomposition are poorly understood. Soil nitrogen (N) availability, which can be affected by insect herbivore frass (feces), influences phytochemical induction. We conducted experiments to test the hypotheses that insect frass deposition would (1) reduce phytochemical induction following herbivory and (2) increase the decomposition and nutrient release of the subsequent leaf litter. During the 2002 growing season, 80 Quercus rubra saplings were subjected to a factorial experiment with herbivore and frass manipulations. Leaf samples were collected throughout the growing season to measure the effects of frass deposition on phytochemical induction. In live foliage, herbivore damage increased tannin concentrations early, reduced foliar N concentrations throughout the growing season, and lowered lignin concentrations in the late season. Frass deposition apparently reduced leaf lignin concentrations, but otherwise did not influence leaf chemistry. Following natural senescence, litter samples from the treatment groups were decomposed in replicated litterbags for 18 months at the Coweeta Hydrologic Laboratory, NC. In the dead litter samples, initial tannin concentrations were lower in the herbivore damage group and higher in the frass addition group relative to their respective controls. Tannin and N release rates in the first nine months of decomposition were also affected by both damage and frass. However, decomposition rates did not differ among treatment groups. Thus, nutrient dynamics important for some ecosystem processes may be independent from the physical loss of litter mass. Overall, while lingering effects of damage and even frass deposition can therefore carry over and affect ecosystem processes during decomposition, their effects appear short lived relative to abiotic forces that tend to homogenize the decomposition process.  相似文献   

16.
It is increasingly recognized that understanding the functional consequences of landscape change requires knowledge of aboveground and belowground processes and their interactions. For this reason, we provide novel information addressing insect herbivory and edge effects on litter quality and decomposition in fragmented subtropical dry forests in central Argentina. Using litter from Croton lachnostachyus (a common shrub species in the region) in a decomposition bed experiment, we evaluated whether litter quality (carbon and nitrogen content; carbon: nitrogen ratio) and decomposability (percentage of remaining dry weight) differ between litter from forest interiors or edges (origin) and with or without herbivory (damaged/undamaged leaves). We found that edge/interior origin had a strong effect on leaf litter quality (mainly on carbon content), while herbivory was associated with a smaller increase in nitrogen content. Herbivore damage increased leaf litter decomposability, but this effect was related to origin during the initial period of litter incubation. Overall, undamaged leaf litter from the forest edge showed the lowest decomposability, whereas damaged leaf litter decomposed at rates similar to those observed in litter from the forest interior. The interacting edge and herbivory effects on leaf litter quality and decomposability shown in our study are important because of the increasing dominance of forest edges in human-modified landscapes and the profound effect of leaf litter decomposition on nutrient cycling.  相似文献   

17.
M. Uriarte 《Oecologia》2000,122(4):521-528
Consumers can mediate the composition of plant communities and alter ecosystem processes. Although herbivores usually increase N availability in the short term, they might decrease it in the long term. I investigated the long-term effect of insect herbivores on leaf tissue quality and soil N availability in goldenrod (Solidago altissima) fields using two approaches: (1) I compared plots from which herbivores had been excluded for 17 years with adjacent plots that had experienced normal levels of herbivory, and (2) I examined a chronosequence of nine goldenrod fields representing three successional stages: early, middle, and late. These parallel approaches showed that, in the long term, herbivores decrease the quality of leaf litter and soil N availability in goldenrod fields. These long-term effects appear to compensate for various short-term effects that increase N availability in the soil (e.g., added frass, increased light penetration). Furthermore, herbivores decrease leaf litter quality and N availability by reducing the quality of leaf tissue within the same species. This pattern may result from insect herbivores preferentially grazing on plants with a high N content thereby increasing the amount of recalcitrant litter over the course of succession. Received: 4 May 1999 / Accepted: 24 September 1999  相似文献   

18.

Background and Aims

The rate of plant decomposition depends on both the decomposition environment and the functional traits of the individual species (e.g. leaf and litter quality), but their relative importance in determining interspecific differences in litter decomposition remains unclear. The aims of this study were to: (a) determine if species from different successional stages grown on soils with low and high nitrogen levels produce leaf and litter traits that decompose differently under identical conditions; and (b) assess which trait of living leaves best relates to litter quality and litter decomposability

Methods

The study was conducted on 17 herbaceous species representative of three stages of a Mediterranean successional sere of Southern France. Plants were grown in monocultures in a common garden under two nitrogen levels. To elucidate how different leaf traits affected litter decomposition a microcosm experiment was conducted to determine decomposability under standard conditions. Tests were also carried out to determine how successional stage and nitrogen supply affected functional traits of living leaves and how these traits then modified litter quality and subsequent litter decomposability.

Key Results

The results demonstrated that leaf traits and litter decomposability varied according to species and successional stage. It was also demonstrated that while nitrogen addition affected leaf and litter traits, it had no effect on decomposition rates. Finally, leaf dry matter content stood out as the leaf trait best related to litter quality and litter decomposability

Conclusions

In this study, species litter decomposability was affected by some leaf and litter traits but not by soil nitrogen supply. The results demonstrated the strength of a trait-based approach to predict changes in ecosystem processes as a result of species shifts in ecosystems.Key words: Leaf traits, litter quality, litter decomposability, nitrogen addition, secondary succession  相似文献   

19.
Cornelissen  J.H.C.  Pérez-Harguindeguy  N.  Gwynn-Jones  D.  Díaz  S.  Callaghan  T.V.  Aerts  R. 《Plant and Soil》2000,225(1-2):33-38
We tested the hypothesis that there is a causal connection between autumn colour, nutrient concentration and decomposibility of fresh leaf litter. Samples from patches of different autumn colours within the leaves of the deciduous tree sycamore (Acer pseudoplatanus) were sealed into litter bags and incubated for one winter in an outdoor leaf mould bed. Green leaf patches were decomposed faster than yellow or brown patches and this corresponded with the higher N and P concentrations in the former. Black patches, indicating colonisation by the tar spot fungus Rhytisma acerinum, were particularly high in P, but were decomposed very slowly, owing probably to resource immobilisation by the fungus. The results supported the hypothesis and were consistent with a previous study reporting an interspecific link between autumn coloration and decomposition rate. Autumn leaf colour of deciduous woody plants may serve as a useful predictor of litter decomposibility in ecosystem or biome scale studies where extensive direct measurements of litter chemistry and decomposition are not feasible. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
Elucidating the function of and patterns among plant traits above ground has been a major research focus, while the patterns and functioning of belowground traits remain less well understood. Even less well known is whether species differences in leaf traits and their associated biogeochemical effects are mirrored by differences in root traits and their effects. We studied fine root decomposition and N dynamics in a common garden study of 11 temperate European and North American tree species (Abies alba, Acer platanoides, Acer pseudoplatanus, Carpinus betulus, Fagus sylvatica, Larix decidua, Picea abies, Pseudotsuga menziesii, Quercus robur, Quercus rubra and Tilia cordata) to determine whether leaf litter and fine root decomposition rates are correlated across species as well as which species traits influence microbial decomposition above versus below ground. Decomposition and N immobilization rates of fine roots were unrelated to those of leaf litter across species. The lack of correspondence of above- and belowground processes arose partly because the tissue traits that influenced decomposition and detritus N dynamics different for roots versus leaves, and partly because influential traits were unrelated between roots and leaves across species. For example, while high hemicellulose concentrations and thinner roots were associated with more rapid decomposition below ground, low lignin and high Ca concentrations were associated with rapid aboveground leaf decomposition. Our study suggests that among these temperate trees, species effects on C and N dynamics in decomposing fine roots and leaf litter may not reinforce each other. Thus, species differences in rates of microbially mediated decomposition may not be as large as they would be if above- and belowground processes were working in similar directions (i.e., if faster decomposition above ground corresponded to faster decomposition below ground). Our results imply that studies that focus solely on aboveground traits may obscure some of the important mechanisms by which plant species influence ecosystem processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号