首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aims: To establish the fate of Escherichia coli O157:H7 and Salmonella Typhimurium in manure and manure‐amended agricultural soils under tropical conditions in Sub‐Saharan Africa. Methods and Results: Survival of nonvirulent Ecoli O157:H7 and Salm. Typhimurium at 4 and 7 log CFU g?1 in manure and manure‐amended soil maintained at ≥80% r.h. or exposed to exclusive field or screen house conditions was determined in the Central Agro‐Ecological Zone of Uganda. Maintaining the matrices at high moisture level promoted the persistence of high‐density inocula and enhanced the decline of low‐density inocula in the screen house, but moisture condition did not affect survival in the field. The large majority of the survival kinetics displayed complex patterns corresponding to the Double Weibull model. The two enteric bacteria survived longer in manure‐amended soil than in manure. The 7 log CFU g?1Ecoli O157:H7 and Salm. Typhimurium survived for 49–84 and 63–98 days, while at 4 log CFU g?1, persistence was 21–28 and 35–42 days, respectively. Conclusions: Under tropical conditions, Ecoli O157:H7 and Salm. Typhimurium persisted for 4 and 6 weeks at low inoculum density and for 12 and 14 weeks at high inoculum density, respectively. Significance and Impact of the Study: Persistence in the tropics was (i) mostly shorter than previously observed in temperate regions thus suggesting that biophysical conditions in the tropics might be more detrimental to enteric bacteria than in temperate environments; (ii) inconsistent with published data isothermally determined previously hence indicating the irrelevance of single point isothermal data to estimate survival under dynamic temperature conditions.  相似文献   

2.
Aims:  Zero‐valent iron (ZVI) filters may provide an efficient method to mitigate the contamination of produce crops through irrigation water. Methods:  A field‐scale system was utilized to evaluate the effectiveness of a biosand filter (S), a biosand filter with ZVI incorporated (ZVI) and a control (C, no treatment) in decontaminating irrigation water. An inoculum of c. 8·5 log CFU 100 ml?1 of Escherichia coli O157:H12 was introduced to all three column treatments in 20‐l doses. Filtered waters were subsequently overhead irrigated to ‘Tyee’ spinach plants. Water, spinach plant and soil samples were obtained on days 0, 1, 4, 6, 8, 10, 13 and 15 and analysed for E. coli O157:H12 populations. Results:  ZVI filters inactivated c. 6 log CFU 100 ml?1E. coli O157:H12 during filtration on day 0, significantly (P < 0·05) more than S filter (0·49 CFU 100 ml?1) when compared to control on day 0 (8·3 log CFU 100 ml?1). On day 0, spinach plants irrigated with ZVI‐filtered water had significantly lower E. coli O157 counts (0·13 log CFU g?1) than spinach irrigated with either S‐filtered (4·37 log CFU g?1) or control (5·23 log CFU g?1) water. Soils irrigated with ZVI‐filtered water contained E. coli O157:H12 populations below the detection limit (2 log CFU g?1), while those irrigated with S‐filtered water (3·56 log CFU g?1) were significantly lower than those irrigated with control (4·64 log CFU g?1). Conclusions:  ZVI biosand filters were more effective in reducing E. coli O157:H12 populations in irrigation water than sand filters. Significance and Impact of the Study:  Zero‐valent ion treatment may be a cost‐effective mitigation step to help small farmers reduce risk of foodborne E. coli infections associated with contamination of leafy greens.  相似文献   

3.
Aims: Greenhouse and field trials were conducted under different agronomic practices and inoculum doses of environmental Escherichia coli and attenuated E. coli O157:H7, to comparatively determine whether these factors influence their survival on leaves and within the rhizosphere. Methods and Results: Hydroponic conditions: E. coli spray‐inoculated at log 4 CFU ml?1 was recovered from leaf surfaces at a mean population of 1·6 log CFU g?1 at 15 days. E. coli O157:H7 sprayed at log 2 or 4 CFU ml?1 levelled off on spinach leaf surfaces at a mean average population of 1·4 log CFU g?1 after 14 days, regardless of initial dose. Quantitative recovery was inconsistent across leaf developmental age. Field conditions: Average populations of E. coli O157:H7 spray‐inoculated at log 1·45 or 3·4 CFU m?2 levelled off at log 1·2 CFU g?1 over a 14‐day period. Pathogen recovery from leaves was inconsistent when compared to regularly positive detection on basal shoot tissue. Pathogen recovery from soil was inconsistent among sampling locations. Moisture content varied up to 40% DW and was associated with 50% (P < 0·05) decrease in positive locations for E. coli O157:H7 but not for E. coli. Conclusions: Overall, similar populations of environmental E. coli and E. coli O157:H7 were recovered from plants despite differences in inoculum dose and agronomic conditions. Strain source had a significant impact on the quantitative level and duration of survival on leaves and in soil. Water availability appeared to be the determinant factor in survival of E. coli and E. coli O157:H7; however, E. coli showed greater environmental fitness. Significance and Impact of the Study: Persistence of surrogate, indicator E. coli and E. coli O157:H7, irrespective of variable growing conditions in spinach is predominantly limited by water availability, strain source and localization within the plant. These findings are anticipated to ultimately be adopted into routine and investigative pathogen testing protocols and mechanical harvest practices of spinach.  相似文献   

4.
Aim: The pathogen growth in dairy compost was studied in a greenhouse setting under different seasons. Methods and Results: The five‐strain mixtures of each Escherichia coli O157:H7, Salmonella spp. and Listeria monocytogenes were inoculated separately into dry compost to yield c. 1 log CFU g?1. After acclimation at room temperature, the inoculated compost was initially adjusted to moisture levels of 10–50% and then kept in a greenhouse under different seasons. The populations of all three pathogens increased by 2·1–3·9 log CFU g?1 within 3 days in autoclaved compost with initial moisture content of at least 40%. Listeria monocytogenes multiplied up to 2·4 log CFU g?1 in compost with initial moisture content of 30% and was detected up to 28 days for all seasons, whereas populations of both E. coli O157:H7 and Salmonella increased by c. 1 log in compost with initial moisture content of 30% during winter months only. No pathogen growth in nonautoclaved compost was detected. Conclusion: Bacterial species, temperature, light intensity and moisture content affected the growth potential and survival of pathogens in compost when the population of background microflora was low. Significance and Impact of the Study: Keeping compost as dry as possible and maintaining certain levels of background microflora may be critical to prevent the growth of pathogens.  相似文献   

5.
Aims: We investigated the antimicrobial effectiveness of lemongrass essential oil on organic leafy greens, romaine and iceberg lettuces and mature and baby spinach, inoculated with Salmonella Newport. The influences of exposure times and abuse temperatures on bacterial survival were also investigated. Methods and Results: Leaf samples were washed, inoculated with Salm. Newport (6‐log CFU ml?1) and dried. Inoculated leaves were immersed in solutions containing 0·1, 0·3 or 0·5% lemongrass oil in phosphate‐buffered saline for 1 or 2 min and then individually incubated at 4 or 8°C. Samples were taken at day 0, 1 and 3 for the enumeration of survivors. Compared to the PBS control, romaine and iceberg lettuces, and mature and baby spinach samples showed between 0·6–1·5‐log, 0·5–4·3‐log, 0·5–2·5‐log and 0·5–2·2‐log CFU g?1 reductions in Salm. Newport by day 3, respectively. Conclusions: The antimicrobial activity of lemongrass oil against Salm. Newport was concentration and time dependent. The antimicrobial activity increased with exposure time; iceberg samples treated for 2 min generally showed greater reductions (P < 0·05) than those treated for 1 min (c. 1‐log reduction difference for 0·3 and 0·5% treatments). Few samples showed a difference between refrigeration and abuse temperatures. Significance and Impact of the Study: This study demonstrates the potential of lemongrass oil solutions to inactivate Salm. Newport on organic leafy greens.  相似文献   

6.
Aims: To develop a quick and accurate PCR‐based method to evaluate viable Bifidobacterium breve strain Yakult (BbrY) in human faeces. Methods and Results: The number of BbrY in faeces was detected by using strain‐specific quantitative real‐time PCR (qPCR) derived from a randomly amplified polymorphic DNA analysis. And using propidium monoazide (PMA) treatment, which combined a DNA‐intercalating dye for covalently linking DNA in dead cells and photoactivation, only viable BbrY in the faeces highly and significantly correlated with the number of viable BbrY added to faecal samples within the range of 105–109 cells per g of faeces was enumerated. After 11 healthy subjects ingested 10·7 log CFU of BbrY daily for 10 days, 6·9 (±1·5) log CFU g?1 [mean (±SD)] of BbrY was detected in faeces by using strain‐specific transgalactosylated oligosaccharide–carbenicillin (T‐CBPC) selective agar medium. Viable BbrY detected by qPCR with PMA treatment was 7·5 (±1·0) log cells per g and the total number (viable and dead) of BbrY detected by qPCR without PMA treatment was 8·1 (±0·8) log cells per g. Conclusions: Strain‐specific qPCR with PMA treatment evaluated viable BbrY in faeces quickly and accurately. Significance and Impact of the Study: Combination of strain‐specific qPCR and PMA treatment is useful for evaluating viable probiotics and its availability in humans.  相似文献   

7.
Aims: This study evaluated the applicability of standard faecal indicator bacteria (SFIB) for alpine mountainous water resources monitoring. Methods and Results: Escherichia coli, enterococci (ENTC) and Clostridium perfringens were investigated by standard or frequently applied phenotypic and genotypic methods in a broad range of animal and human faecal sources in a large alpine mountainous area. Clostridium perfringens occurred only in human, livestock and carnivorous source groups in relevant average concentrations (log 4·7–7·0 CFU g?1) but not in herbivorous wildlife sources. Escherichia coli proved to be distributed in all faecal source groups with remarkably balanced average concentrations (log 7·0–8·4 CFU g?1). Except for single faecal samples from the cattle source group, prevalence rates for ENTC source groups were generally >87% with average concentrations of log 5·3–7·7 CFU g?1. To test the faecal indication capacity in the environment, faecal prevalence data were comparatively analysed with results from the concurrently performed multi‐parametric microbial source tracking effort on karst spring water quality from the investigated alpine mountainous catchment ( Reischer et al. 2008 ; Environ Microbiol 10:2598–2608). Conclusion: Escherichia coli and enterococci are reliable faecal indicators for alpine mountainous water resources monitoring, although E. coli is the more sensitive one. Clostridium perfringens did not prove to be an indicator of general faecal pollution but is suggested a conservative microbial source tracking marker for anthropogenic faecal influence. Significance and Impact of the Study: Applicability of SFIB is currently hotly debated. This is the first study providing comprehensive information on the applicability of SFIB at alpine mountainous habitats.  相似文献   

8.
Aims: To identify ascomycetous yeasts recovered from sound and damaged grapes by the presence of honeydew or sour rot. Methods and Results: In sound grapes, the mean yeast counts ranged from 3·20 ± 1·04 log CFU g?1 to 5·87 ± 0·64 log CFU g?1. In honeydew grapes, the mean counts ranged from 3·88 ± 0·80 log CFU g?1 to 6·64 ± 0·77 log CFU g?1. In sour rot grapes counts varied between 6·34 ± 1·03 and 7·68 ± 0·38 logCFU g?1. Hanseniaspora uvarum was the most frequent species from sound samples. In both types of damage, the most frequent species were Candida vanderwaltii, H. uvarum and Zygoascus hellenicus. The latter species was recovered in high frequency because of the utilization of the selective medium DBDM (Dekkera/Brettanomyces differential medium). The scarce isolation frequency of the wine spoilage species Zygosaccharomyces bailii (in sour rotten grapes) and Zygosaccharomyces bisporus (in honeydew affected grapes) could only be demonstrated by the use of the selective medium ZDM (Zygosaccharomyces differential medium). Conclusions: The isolation of several species only from damaged grapes indicates that damage constituted the main factor determining yeast diversity. The utilization of selective media is required for eliciting the recovery of potentially wine spoilage species. Significance and Impact of the Study: The impact of damaged grapes in the yeast ecology of grapes has been underestimated.  相似文献   

9.
Aims: The aim is to evaluate the dynamic of Bacteroides–Prevotella and Bacillus–Streptococcus–Lactobacillus populations originating from pig manure and the persistence of pig‐associated markers belonging to these groups according to temperature and oxygen. Methods and Results:  River water was inoculated with pig manure and incubated under microaerophilic and aerobic conditions, at 4 and 20°C over 43 days. The diversity of bacterial populations was analysed by capillary electrophoresis‐single‐strand conformation polymorphism. The persistence of the pig‐associated markers was measured by real‐time PCR and compared with the survival of Escherichia coli and enterococci. Decay was characterized by the estimation of the time needed to produce a 1‐log reduction (T90). The greatest changes were observed at 20°C under aerobic conditions, leading to a reduction in the diversity of the bacterial populations and in the concentrations of the Pig‐1‐Bac, Pig‐2‐Bac and Lactobacillus amylovorus markers with a T90 of 10·5, 8·1 and 17·2 days, respectively. Conclusions: Oxygen and temperature were found to have a combined effect on the persistence of the pig‐associated markers in river waters. Significance and Impact of the Study: The persistence profiles of the Pig‐1‐Bac, Pig‐2‐Bac and Lact. amylovorus markers in addition to their high specificity and sensitivity support their use as relevant markers to identify pig faecal contamination in river waters.  相似文献   

10.
Aims: To assess the effectiveness of sequential treatments of radish seeds with aqueous chlorine dioxide (ClO2) and dry heat in reducing the number of Escherichia coli O157:H7. Methods and Results: Radish seeds containing E. coli O157:H7 at 5·5 log CFU g?1 were treated with 500 μg ml?1 ClO2 for 5 min and subsequently heated at 60°C and 23% relative humidity for up to 48 h. Escherichia coli O157:H7 decreased by more than 4·8 log CFU g?1 after 12 h dry‐heat treatment. The pathogen was inactivated after 48 h dry‐heat treatment, but the germination rate of treated seeds was substantially reduced from 91·2 ± 5·0% to 68·7 ± 12·3%. Conclusions: Escherichia coli O157:H7 on radish seeds can be effectively reduced by sequential treatments with ClO2 and dry heat. To eliminate E. coli O157:H7 on radish seeds without decreasing the germination rate, partial drying of seeds at ambient temperature before dry‐heat treatment should be investigated, and conditions for drying and dry‐heat treatment should be optimized. Significance and Impact of the study: This study showed that sequential treatment with ClO2 and dry‐heat was effective in inactivating large numbers of E. coli O157:H7 on radish seeds. These findings will be useful when developing sanitizing strategies for seeds without compromising germination rates.  相似文献   

11.
Aims: To investigate the antimicrobial spectrum of Lactococcus piscium CNCM I‐4031 and its protective effect in cooked and peeled shrimp against Brochothrix thermosphacta. Methods and Results: Sixteen pathogenic and spoiling bacteria were inhibited in Elliker, but not in shrimp juice agar plates. In shrimp packed under modified atmosphere and stored at 8°C, B. thermosphacta (103 CFU g?1) was inhibited by 4·1 log CFU g?1 when co‐inoculated with L. piscium (106 CFU g?1). Brochothrix thermosphacta spoiled the product after 11 days, with the emission of strong butter/caramel off‐odours. In co‐culture with L. piscium, sensory shelf‐life was extended by at least 10 days. The inhibition was partially explained by a drop in pH from 6·6 to 5·6. The physicochemical composition of shrimp and shrimp juice was established to identify the inhibition mechanisms involved. Conclusion: Lactococcus piscium CNCM I‐4031 has a wide antimicrobial spectrum. The strain inhibits B. thermosphacta in shrimp and significantly prolongs sensory shelf‐life. Significance and Impact of the Study: Lactococcus piscium CNCM I‐4031 is shown to be a promising agent for improving shrimp quality and may be tested against pathogens and in other food matrices. Knowledge of the physicochemical composition of shrimp and shrimp juice will allow the development of a chemically defined model medium for determining the inhibition mechanisms involved.  相似文献   

12.
Aims: Resuscitation of dried cultures represents a critical control point in obtaining active and effective probiotic strains. This study examined the effects of various rehydration conditions on the viability of Bifidobacterium longum NCC3001 and Lactobacillus johnsonii La1. Methods and Results: Reconstitution conditions for these strains were optimized using a multivariate experimental design approach. Furthermore, using flow cytometry, the cell integrity was followed during reconstitution. By adjusting the pH, availability of a metabolizable sugar, reconstitution duration, powder matrix and ratio of powder to reconstitution solution, the recovery of Bif. longum NCC3001 and Lact. johnsonii La1 following reconstitution was increased eight‐ and two‐fold, respectively, over standard reconstitution in maximum recovery diluent. It was shown that pH had a significant effect on the recovery of Bif. longum NCC3001 and Lact. johnsonii La1. Conclusions: The recovery of dried probiotic cultures is greatly dependent on the reconstitution conditions. The maximum recovery of 11·7 10log CFU g?1Bif. longum NCC3001 was achieved at 30‐min reconstitution at pH 8, in the presence of 2%l ‐arabinose and a ratio of 1 : 100 of powder to diluent. Lact. johnsonii La1 showed highest recovery (9·3 10log CFU g?1) after reconstitution, when mixed with maltodextrin at pH 4. Significance and Impact of the Study: To achieve accurate viable probiotic numbers from dried probiotic cultures, the reconstitution conditions should be optimized for the strain used.  相似文献   

13.
Aims: The purposes of this study were to evaluate the efficacy of high pressure to inactivate Escherichia coli O157:H7 in ground beef at ambient and subzero treatment temperatures and to study the fate of surviving bacteria postprocess and during frozen storage. Methods and Results: Fresh ground beef was inoculated with a five‐strain cocktail of E. coli O157:H7 vacuum‐packaged, pressure‐treated at 400 MPa for 10 min at ?5 or 20°C and stored at ?20 or 4°C for 5–30 days. A 3‐log CFU g?1 reduction of E. coli O157:H7 in the initial inoculum of 1 × 106 CFU g?1 was observed immediately after pressure treatment at 20°C. During frozen storage, levels of E. coli O157:H7 declined to <1 × 102 CFU g?1 after 5 days. The physiological status of the surviving E. coli was affected by high pressure, sensitizing the cells to pH levels 3 and 4, bile salts at 5% and 10% and mild cooking temperatures of 55–65°C. Conclusions: High‐pressure processing (HPP) reduced E. coli O157:H7 in ground beef by 3 log CFU g?1 and caused substantial sublethal injury resulting in further log reductions of bacteria during frozen storage. Significance and Impact of the Study: HPP treatment of packaged ground beef has potential in the meat industry for postprocess control of pathogens such as E. coli O157:H7 with enhanced safety of the product.  相似文献   

14.
Aims: To evaluate the suitability of commercially available Petrifilm? EC plates for enumeration of Escherichia coli from soil. Methods and Results: A confirmed E. coli strain isolated from liquid swine manure was inoculated into sterilized sandy clay loam and loam soils at the concentrations of 102, 103, 105 CFU g?1 of soil. The efficiency of recovery on Petrifilm? EC plates for soils spiked with E. coli was compared with standard membrane filtration techniques on m‐FC basal medium supplemented with 3‐bromo‐4‐chloro‐5‐indoyl‐β‐d ‐glucopyranoside (BCIG) and most probable numbers (MPN) techniques in E. coli medium with 4‐methylumbelliferyl‐β‐d ‐glucuronide (EC‐MUG) broth. Petrifilm? EC and m‐FC (BCIG) methods were then assessed for the ability to recover E. coli from field soils applied with swine manure. No significant differences (P > 0·05) were observed between Petrifilm? EC, m‐FC (BCIG) and MPN methods for the recovery of E. coli from spiked samples, irrespective of soil type. However, recovery of E. coli from manure‐applied field soil samples showed a significant difference (P < 0·05) between the Petrifilm? EC method and the m‐FC method in enumerating E. coli possibly as a result of false positives on m‐FC. Conclusion: The Petrifilm? EC method is suitable for the enumeration of E. coli from soil with a detection limit of 10 CFU g?1 soil. Significance and Impact of the Study: The commercially available Petrifilm? EC method is comparatively low cost, easy to use method for the enumeration of E. coli from soil without the need for further confirmation tests.  相似文献   

15.
Aims: The current study was aimed to develop a loop‐mediated isothermal amplification (LAMP) combined with amplicon detection by chromatographic lateral flow dipstick (LFD) assay for rapid and specific detection of Vibrio parahaemolyticus. Methods and Results: Biotinylated LAMP amplicons were produced by a set of four designed primers that recognized specifically the V. parahaemolyticus thermolabile haemolysin (tlh) gene followed by hybridization with an FITC‐labelled probe and LFD detection. The optimized time and temperature conditions for the LAMP assay were 90 min at 65°C. The LAMP–LFD method accurately identified 28 isolates of V. parahaemolyticus but did not detect 24 non‐parahaemolyticus Vibrio isolates and 35 non‐Vibrio bacterial isolates. The sensitivity of LAMP–LFD for V. parahaemolyticus detection in pure cultures was 120 CFU ml?1. In the case of spiked shrimp samples without enrichment, the detection limit for V. parahaemolyticus was 1·8 × 103 CFU g?1 or equivalent to 3 CFU per reaction while that of conventional PCR was 30 CFU per reaction. Conclusions: The established LAMP–LFD assay targeting tlh gene was specific, rapid and sensitive for identification of V. parahaemolyticus. Significance and Impact of the Study: The developed LAMP–LFD assay provided a valuable tool for detection of V. parahaemolyticus and can be used effectively for identification of V. parahaemolyticus in contaminated food sample.  相似文献   

16.
Aims: To prepare commercially acceptable formulations of Bacillus subtilis CPA‐8 by spray‐drying with long storage life and retained efficacy to control peach and nectarine brown rot caused by Monilinia spp. Methods and Results: CPA‐8 24‐h‐ and 72‐h‐old cultures were spray dried using 10% skimmed milk, 10% skimmed milk plus 10% MgSO4, 10% MgSO4 and 20% MgSO4 as carriers/protectants. All carriers/protectants gave good percentages of powder recovery (28–38%) and moisture content (7–13%). CPA‐8 survival varied considerably among spray‐dried 24‐h‐ and 72‐h‐old cultures. Seventy‐two hours culture spray dried formulations showed the highest survival (28–32%) with final concentration products of 1·6–3·3 × 109 CFU g?1, while viability of 24‐h‐old formulations was lower than 1%. Spray‐dried 72‐h‐old formulations were selected to subsequent evaluation. Rehydration of cells with water provided a good recovery of CPA‐8 dried cells, similar to other complex rehydration media tested. Spray‐dried formulations stored at 4 ± 1 and 20 ± 1°C showed good shelf life during 6 months, and viability was maintained or slightly decreased by 0·2–0·3‐log. CPA‐8 formulations after 4‐ and 6 months storage were effective in controlling brown rot caused by Monilinia spp. on nectarines and peaches resulting in a 90–100% reduction in disease incidence. Conclusions: Stable and effective formulations of biocontrol agent B. subtilis CPA‐8 could be obtained by spray‐drying. Significance and Impact of the Study: New shelf‐stable and effective formulations of a biocontrol agent have been obtained by spray‐drying to control brown rot on peach.  相似文献   

17.
Aims: Investigating mechanisms of lethality enhancement when Escherichia coli O157:H7, and selected E. coli mutants, were exposed to tert‐butylhydroquinone (TBHQ) during ultra‐high pressure (UHP) treatment. Methods and Results: Escherichia coli O157:H7 EDL‐933, and 14 E. coli K12 strains with mutations in selected genes, were treated with dimethyl sulfoxide solution of TBHQ (15–30 ppm), and processed with UHP (400 MPa, 23 ± 2°C for 5 min). Treatment of wild‐type E. coli strains with UHP alone inactivated 2·4–3·7 log CFU ml?1, whereas presence of TBHQ increased UHP lethality by 1·1–6·2 log CFU ml?1; TBHQ without pressure was minimally lethal (0–0·6 log reduction). Response of E. coli K12 mutants to these treatments suggests that iron–sulfur cluster‐containing proteins ([Fe–S]‐proteins), particularly those related to the sulfur mobilization (SUF system), nitrate metabolism, and intracellular redox potential, are critical to the UHP–TBHQ synergy against E. coli. Mutations in genes maintaining redox homeostasis and anaerobic metabolism were associated with UHP–TBHQ resistance. Conclusions: The redox cycling activity of cellular [Fe–S]‐proteins may oxidize TBHQ, potentially leading to the generation of bactericidal reactive oxygen species. Significance and Impact of the Study: A mechanism is proposed for the enhanced lethality of UHP by TBHQ against E. coli O157:H7. The results may benefit food processors using UHP–based preservation, and biologists interested in piezophilic micro‐organisms.  相似文献   

18.
Aims: To assess the impact of antibiotic therapy on severe osseous infections, animal models of chronic bacterial infections have been developed; however, these models suffer from many experimental limitations. The aim of this work was to develop a new model system in which high levels of bacteria are obtained within femoral bone marrow and bone tissue, and such infections are maintained for at least 14 days. Methods and Results: Experimental osteomyelitis was induced in 25 New Zealand white rabbits. A 109 CFU ml?1 suspension of methicillin‐resistant Staphylococcus aureus was injected into the knee after bone trepanation. On day 3, surgical debridement was performed to mimic a surgical procedure. Animals were euthanized 1, 2, 3, 9 and 14 days post‐inoculation to determine the bacterial counts in marrow and bone, and to evaluate the stability of the infection. Inoculated lesions also were assessed for changes in histological parameters on days 3 and 7 post‐inoculation. At days 1, 2, 3, 9 and 14 post‐inoculation, we observed 6·50 ± 0·64, 7·30 ± 0·49, 7·82 ± 0·19, 8·00 ± 1·48 and 8·99 ± 0·20 log10 CFU g?1 in bone marrow and 8·40 ± 0·68, 7·65 ± 0·27, 7·58 ± 0·30, 8·88 ± 0·52 and 8·28 ± 0·39 log10 CFU g?1 in bone tissue, respectively. No statistical differences in bacterial count were found between bone marrow and bone tissue at any time point. Conclusion: This new model of acute osteomyelitis was validated by histological and microbiological changes in the absence of sclerosing agents, and these changes remained stable for 14 days. Significance and Impact of the Study: These results describe a new experimental model of acute osteomyelitis and demonstrate its usefulness in assessing the activity of antibacterial agents in vivo soon after bone infection.  相似文献   

19.

Aims

To determine the fate of Escherichia coli on vegetables that were processed through commercial wash treatments and stored under simulated retail conditions at 4°C or wholesale at fluctuating ambient temperatures (0–25°C, dependent on season).

Methods and Results

Bovine slurry that was naturally contaminated with E. coli O145 was applied without dilution or diluted 1:10 using borehole water to growing potatoes, leeks or carrots. Manure was applied 1 week prior to harvest to simulate a near‐harvest contamination event by manure deposition or an application of contaminated water to simulate a flooding event or irrigation from a contaminated water source. At harvest, crops were contaminated at up to 2 log cfu g?1. Washing transferred E. coli into the water of a flotation tank used for potato washing and did not completely remove all traces of contamination from the crop. Manure‐contaminated potatoes were observed to contain 0·72 cfu E. coli O145 g?1 after processing and retail storage. Manure‐contaminated leeks harboured 0·73–1·55 cfu E. coli O145 g?1 after washing and storage. There was no cross‐contamination when leeks were spray washed. Washing in an abrasive drum resulted in less than perfect decontamination for manure‐contaminated carrots. There were five post‐distribution isolations from carrots irrigated with contaminated water 24 h prior to harvest.

Conclusions

Standard commercial washing and distribution conditions may be insufficient to reliably control human pathogenic E. coli on fresh produce.

Significance and Impact

Previous speculation that the cause of a UK foodborne disease outbreak was soil from imperfectly cleaned vegetables is plausible.  相似文献   

20.
Starch industry wastewater was efficiently employed for the production of Sinorhizobium meliloti and the concentrated culture was used for the development of a biofertilizer formulation. Tween‐80 (0.02 g/L) acted as the best emulsifier for a Sinorhizobium–canola oil emulsion. The stability of the emulsion and survival of the organism was enhanced by supplementation of xanthan gum at pH 8. The refrigerated condition was most favorable for stability and survival of the microorganism. The survival of microorganism at 4±1°C was 2.78×1010 and 2.01×1010 CFU (colony forming unit)/mL on storage for 1 and 2 months, respectively. The values were higher than the prescribed cell count (×103 CFU/mL) for field application. At 40°C, the survival of bacteria reduced from 3×1010 CFU/mL to 8.1×109 and 8.8×106 CFU/mL in 1 and 2 months, respectively. Emulsion‐coated seed was incubated at different temperatures and a cell count of 105 CFU/seed was observed after 2 months of storage at 4°C, which was equal to the highest level of the described requirement (103–105 CFU/seed). Emulsion supplemented with xanthan gum improved the shelf‐life under optimized conditions (Sinorhizobium concentrate – canola oil (1:1) emulsion with 0.02 g/L Tween‐80; storage at pH 8 and temperature 4±1°C) and this emulsion with the required cell count and prolonged viability was used for the pre‐inoculation of seed or for in situ soil application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号