首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Analysis of drainage networks provides a framework to evaluate the densities and distributions of prey species relative to locations of their predators. Upstream migration by diadromous shrimp (Atya lanipes and Xiphocaris elongata) during their life cycle provides access to headwater refugia from fish predation, which is intense in estuaries and coastal rivers. 2. We postulate that geomorphic barriers (such as large, steep waterfalls >3.5 m in height), can directly limit the distribution of predatory fishes and, indirectly, affect the densities of their prey (freshwater shrimps) in headwater streams. 3. We compared densities of shrimp in pools above and below waterfalls, in four headwater tributaries in two river basins of the Luquillo Mountains of northeastern Puerto Rico. We measured shrimp densities twice a year over 8 years (1998–2005) in Prieta, Toronja, Bisley 3 and Bisley 5 streams, which differ in drainage network positions relative to steep waterfalls in Río Espíritu Santo and Río Mameyes. 4. Predatory fishes are absent in the Prieta and Toronja pools and present in Bisely 3 and in lower Bisley 5 pools. Atya lanipes and X. elongata rarely occur in the Bisley streams where predatory fishes are present but these shrimps are abundant in Prieta and Toronja, streams lacking predatory fishes. 5. The mean carapace length of X. elongata is longer in pools where fish are present (Bisley 3 and lower Bisley 5) than in pools lacking fish (Prieta, Toronja, Upper Bisley 5). The increased body size is primarily due to significantly longer rostrums of individuals in stream reaches with fish (below waterfall barriers) than in those reaches lacking fish (above waterfall barriers). Rostrum length may be an adaptation to avoid predation by visually feeding fishes. 6. Atya lanipes and X. elongata distributions and densities were predicted primarily by drainage network position relative to the presence or absence of predatory fishes. High, steep waterfalls effectively impeded fish from moving upstream and created a spatial refuge. Xiphocaris elongata may rely on size refugia (longer rostrum) to minimize predation where spatial refugia are lacking.  相似文献   

2.
1. Barriers to immigration, all else being equal, should in principle depress local abundance and reduce local species richness. These issues are particularly relevant to stream‐dwelling species when improperly designed road crossings act as barriers to migration with potential impacts on the viability of upstream populations. However, because abundance and richness are highly spatially and temporally heterogeneous and the relative importance of immigration on demography is uncertain, population‐ and community‐level effects can be difficult to detect. 2. In this study, we tested the effects of potential barriers to upstream movements on the local abundance and species richness of a diverse assemblage of resident stream fishes in the Monongahela National Forest, West Virginia, U.S.A. Fishes were sampled using simple standard techniques above‐ and below road crossings that were either likely or unlikely to be barriers to upstream fish movements (based on physical dimensions of the crossing). We predicted that abundance of resident fishes would be lower in the upstream sections of streams with predicted impassable barriers, that the strength of the effect would vary among species and that variable effects on abundance would translate into lower species richness. 3. Supporting these predictions, the statistical model that best accounted for variation in abundance and species richness included a significant interaction between location (upstream or downstream of crossing) and type (passable or impassable crossing). Stream sections located above predicated impassable culverts had fewer than half the number of species and less than half the total fish abundance, while stream sections above and below passable culverts had essentially equivalent richness and abundance. 4. Our results are consistent with the importance of immigration and population connectivity to local abundance and species richness of stream fishes. In turn, these results suggest that when measured at appropriate scales (multiple streams within catchments), with simple protocols amenable to use by management agencies, differences in local abundance and species richness may serve as indicators of the extent to which road crossings are barriers to fish movement and help determine whether road‐crossing improvements have restored connectivity to stream fish populations and communities.  相似文献   

3.
  • 1 Long-term data on rainfall suggests that perennial rainforest streams rarely are subject to drying of riffles or pools in the wet, non-seasonal Caribbean climate of Puerto Rico. Unusually low rainfall in 1994 caused some headwater riffles to dry out completely, resulting in isolated pools, reduced pool volumes and loss of access to microhabitats by benthic invertebrates.
  • 2 From 1992 to 1998, shrimp populations were sampled bimonthly using baited traps in six pools along 1200 m (from 305 to 480 m in altitude) of Quebrada Prieta, a second-order headwater stream in the Luquillo Experimental Forest (Caribbean National Forest).
  • 3 Following contraction of the smaller and shallower pools in the most upstream section of the stream, mean densities of the dominant shrimp (Atya lanipes) increased from 22 to 75 shrimp m−2 of pool area during the 1994 drought year. A second common species (Xiphocaris elongata) increased from 5 to 14 shrimp m−2. A smaller percentage of adults of both species was gravid during the drought.
  • 4 Following the 1994 drought (1995–1998), densities of both shrimp species and reproductive activity of Atya returned to predrought (1990–1993) levels. However, the reproductive activity of Xiphocaris remained lower than in the predrought period.
  • 5 It is suggested that prolonged droughts, even in tropical rainforest biomes, may significantly alter aquatic communities through localised crowding effects resulting from habitat contraction, and lead to prolonged decreases in reproductive output. Consequently, major alterations in aquatic populations and communities would be predicted by current climate change scenarios of decreased total rainfall and increased variability.
  相似文献   

4.
Although habitat fragmentation fosters extinctions, it also increases the probability of speciation by promoting and maintaining divergence among isolated populations. Here we test for the effects of two isolation factors that may reduce population dispersal within river networks as potential drivers of freshwater fish speciation: 1) the position of subdrainages along the longitudinal river gradient, and 2) the level of fragmentation within subdrainages caused by natural waterfalls. The occurrence of native freshwater fish species from 26 subdrainages of the Orinoco drainage basin (South America) was used to identify those species that presumably arose from in‐situ cladogenetic speciation (i.e. neo‐endemic species; two or more endemic species from the same genus) within each subdrainage. We related subdrainages fish diversity (i.e. total, endemic and neo‐endemic species richness) and an index of speciation to our two isolation factors while controlling for subdrainages size and energy availability. The longitudinal position of subdrainages was unrelated to any of our diversity measures, a result potentially explained by the spatial grain we used and/or the contemporary connection between Orinoco and Amazon basins via the upstream Casiquiare region. However, we found higher neo‐endemic species richness and higher speciation index values in highly fragmented subdrainages. These results suggest that habitat fragmentation generated by natural waterfalls drives cladogenetic speciation in fragmented subdrainages. More generally, our results emphasize the role of history and natural waterfalls as biogeographic barriers promoting freshwater biodiversity in river drainage basins.  相似文献   

5.
The effects of late Quaternary climate on distributions and evolutionary dynamics of insular species are poorly understood in most tropical archipelagoes. We used ecological niche models under past and current climate to derive hypotheses regarding how stable climatic conditions shaped genetic diversity in two ecologically distinctive frogs in Puerto Rico. Whereas the mountain coquí Eleutherodactylus portoricensis is restricted to montane forest in the Cayey and Luquillo Mountains, the red‐eyed coquí E. antillensis is a habitat generalist distributed across the entire Puerto Rican Bank (Puerto Rico and the Virgin Islands, excluding St Croix). To test our hypotheses, we conducted phylogeographic and population genetic analyses based on mitochondrial and nuclear loci of each species across their range in Puerto Rico. Patterns of population differentiation in E. portoricensis, but not in E. antillensis, supported our hypotheses. For E. portoricensis, these patterns include: individuals isolated by long‐term unsuitable climate in the Río Grande de Loíza Basin in eastern Puerto Rico belong to different genetic clusters; past and current climate strongly predicted genetic differentiation; and Cayey and Luquillo Mountains populations split prior to the last interglacial. For E. antillensis, these patterns include: genetic clusters did not fully correspond to predicted long‐term unsuitable climate; and past and current climate weakly predicted patterns of genetic differentiation. Genetic signatures in E. antillensis are consistent with a recent range expansion into western Puerto Rico, possibly resulting from climate change and anthropogenic influences. As predicted, regions with a large area of long‐term suitable climate were associated with higher genetic diversity in both species, suggesting larger and more stable populations. Finally, we discussed the implications of our findings for developing evidence‐based management decisions for E. portoricensis, a taxon of special concern. Our findings illustrate the role of persistent suitable climatic conditions in promoting the persistence and diversification of tropical island organisms.  相似文献   

6.
Taxon cycling, i.e. sequential phases of expansions and contractions in species' distributions associated with ecological or morphological shifts, are postulated to characterize dynamic biogeographic histories in various island faunas. The Caribbean freshwater shrimp assemblage is mostly widespread and sympatric throughout the region, although one species (Atyidae: Atya lanipes) is geographically restricted and ecologically and morphologically differentiated from other Atya species. Using patterns of nucleotide variation at the COI mtDNA gene in five species of freshwater shrimp (A. lanipes, A. scabra, A. innocuous; Xiphocarididae: Xiphocaris elongata; Palaemonidae: Macrobrachium faustinum) from Puerto Rico, we expected to detect a signature of sequential colonization in these shrimp, consistent with the concept of taxon cycling, and expected that A. lanipes would be at a different taxon stage (i.e. an early stage species) to all other species. We also examined patterns of genetic population structure in each species expected with poor, intermediate and well-developed abilities for among-river dispersal. Population expansions were detected in all species, although the relative timing of the expansions varied among them. Assuming that population expansions followed colonization of Puerto Rico by freshwater shrimp, results bear the hallmarks of sequential colonization and taxon cycling in this fauna. A. lanipes had a star phylogeny, low mean pairwise nucleotide differences and recent (Holocene) estimates for an in situ population expansion in Puerto Rico, and it was inferred as an early stage species in the taxon cycle undergoing a secondary phase of expansion. All other species were inferred as late stage species undergoing regional population expansions, as their mean pairwise nucleotide differences were relatively high and phylogenetic patterns were more complex than A. lanipes. High rates of gene flow without isolation by distance among rivers were detected in all species, although results should be treated cautiously as some populations are unlikely to be in mutation-drift equilibrium. Nested clade analysis produced inconsistent results among species that all have high rates of gene flow and expanding populations.  相似文献   

7.
8.
Baker  Kate  Chadwick  Michael A.  Wahab  Rodzay A.  Kahar  Rafhiah 《Hydrobiologia》2017,785(1):307-325

Waterfalls are geomorphic features that often partition streams into discrete zones. Our study examined aquatic communities, litter decomposition and periphyton growth rates for above- and below-waterfall pools in Ulu Temburong National Park, Brunei. We observed higher fish densities in below-waterfall pools (0.24 fish m−2 vs. 0.02 fish m−2 in above-waterfall pools) and higher shrimp abundance in above-waterfall pools (eight shrimp/pool vs. less than one shrimp/pool in below-waterfall pools). However, macroinvertebrate densities (excluding shrimp) were similar among both pool types. Ambient periphyton was higher in below-waterfall pools in 2013 (4.3 vs. 2.8 g m−2 in above-waterfall pools) and 2014 (4.8 vs. 3.4 g m−2 in above-waterfall pools), while periphyton growth rates varied from 0.05 to 0.26 g m−2 days−1 and were significantly higher in below-waterfall pools in 2014. Leaf litter decomposition rates (0.001 to 0.024 days−1) did not differ between pool types, suggesting that neither shrimp nor fish densities had consistent impacts on this ecosystem function. Regardless, this research demonstrates the varied effects of biotic and abiotic factors on community structure and ecosystem function. Our results have highlighted the importance of discontinuities, such as waterfalls, in tropical streams.

  相似文献   

9.
The freshwater fauna (crustaceans, molluscs, fish) of many tropical islands in the Caribbean and Pacific share an amphidromous life‐cycle, meaning their larvae need to develop in saline conditions before returning to freshwater as juveniles. This community dominates the freshwaters of much of the tropics, but is poorly known and at risk from development, in particular dam construction. Amphidromy can theoretically lead to dispersal between different freshwater areas, even to distant oceanic islands, via the sea. The extent and scale of this presumed dispersal, however, is largely unknown in the Caribbean. Recent genetic work in Puerto Rico has shown that many freshwater species have little or no population structure among different river catchments, implying high levels of connectivity within an island, whereas between‐island structure is unknown. We used genetic techniques to infer the geographic scales of population structure of amphidromous invertebrates (a gastropod and a number of crustacean species) between distant parts of the Caribbean, in particular Puerto Rico, Panama and Trinidad. We found virtually no geographic population structure across over 2000 km of open sea for these freshwater species. This implies that they are indeed moving between islands in sea currents as larvae, meaning that continued recruitment requires a continuum of healthy habitat from the freshwater to marine environment. We further discuss the role of amphidromy and suggest its ecological and biogeographic role may be more important than previously presumed.  相似文献   

10.
Myster  Randall W 《Plant Ecology》2004,172(2):199-209
To better understand how rainforest regenerates after agriculture I sampled the seed rain and seed bank, and set out seeds and seedlings, on microsites defined by distance to the forest in fields both in Puerto Rico and Ecuador. I found that (1) total seeds, species richness and life-form richness were twice as great in the Ecuador seed rain compared to Puerto Rico but Puerto Rico seeds were more evenly distributed among species and (2) total seedlings from the seed bank were similar between Puerto Rico and Ecuador, (3) the majority of seeds were lost to predation among all species and study sites, (4) seed disease was absent in P. aduncum and Miconia prasina, and no seeds germinated for Gonzalagunia spicata and P. riparia, (5) in Ecuador pathogenic disease claimed more seeds than germinated for all species, and Solanum ovalifolium was the only species that had seeds germinate but did not lose seeds to disease, (6) also in Ecuador, insect predation was significantly lower in the forest border for P. aduncum, and seed disease was significantly greater at the 10 m micro site for S. ovalifolium, (7) distance has a significant effect on seedling height and basal diameter, (8) losses of leaf area due to herbivory and pathogens were always low and (9) biomass and leaf specific mass were significantly reduced in the border and forest microsites. I conclude that Ecuador fields had more seeds, species, and life-forms than Puerto Rico fields, predation was the most severe post-dispersal seed filter in all fields, seeds that survived predation on Puerto Rico were lost either to disease or germination but to both mechanisms in Ecuador, all three seed mechanisms in Ecuador fields showed distance effects of seedling growth but not survivorship.  相似文献   

11.
This work reports the Puerto Rico plant collecting itineraries of 1900 and 1902–1903 of Amos Arthur Heller based on the original notebooks recently located at the Herbarium of the University of Washington-Seattle. The utility of historical data for understanding original distributions of rare species is demonstrated for two Puerto Rican species:Buxus vahlii Ball andDaphnopsis helleriana Urb. Urb.  相似文献   

12.
Roads are one of the most widespread human‐caused habitat modifications that can increase wildlife mortality rates and alter behavior. Roads can act as barriers with variable permeability to movement and can increase distances wildlife travel to access habitats. Movement is energetically costly, and avoidance of roads could therefore impact an animal's energy budget. We tested whether reptiles avoid roads or road crossings and explored whether the energetic consequences of road avoidance decreased individual fitness. Using telemetry data from Blanding's turtles (Emydoidea blandingii; 11,658 locations of 286 turtles from 15 sites) and eastern massasaugas (Sistrurus catenatus; 1,868 locations of 49 snakes from 3 sites), we compared frequency of observed road crossings and use of road‐adjacent habitat by reptiles to expected frequencies based on simulated correlated random walks. Turtles and snakes did not avoid habitats near roads, but both species avoided road crossings. Compared with simulations, turtles made fewer crossings of paved roads with low speed limits and more crossings of paved roads with high speed limits. Snakes made fewer crossings of all road types than expected based on simulated paths. Turtles traveled longer daily distances when their home range contained roads, but the predicted energetic cost was negligible: substantially less than the cost of producing one egg. Snakes with roads in their home range did not travel further per day than snakes without roads in their home range. We found that turtles and snakes avoided crossing roads, but road avoidance is unlikely to impact fitness through energetic expenditures. Therefore, mortality from vehicle strikes remains the most significant impact of roads on reptile populations.  相似文献   

13.
Otolith microchemistry was applied to quantify migratory variation and the proportion of native Caribbean stream fishes that undergo full or partial marine migration. Strontium and barium water chemistry in four Puerto Rico, U.S.A., rivers was clearly related to a salinity gradient; however, variation in water barium, and thus fish otoliths, was also dependent on river basin. Strontium was the most accurate index of longitudinal migration in tropical diadromous fish otoliths. Among the four species examined, bigmouth sleeper Gobiomorus dormitor, mountain mullet Agonostomus monticola, sirajo goby Sicydium spp. and river goby Awaous banana, most individuals were fully amphidromous, but 9–12% were semi‐amphidromous as recruits, having never experienced marine or estuarine conditions in early life stages and showing no evidence of marine elemental signatures in their otolith core. Populations of one species, G. dormitor, may have contained a small contingent of semi‐amphidromous adults, migratory individuals that periodically occupied marine or estuarine habitats (4%); however, adult migratory elemental signatures may have been confounded with those related to diet and physiology. These findings indicate the plasticity of migratory strategies of tropical diadromous fishes, which may be more variable than simple categorization might suggest.  相似文献   

14.
15.
Little is known about the natural history of the Sphaerodactylus species endemic to the three islands located in the Mona Passage separating the Greater Antillean islands of Hispaniola and Puerto Rico. In this study, parts of two mitochondrial genes, 16S rRNA and 12S rRNA, were sequenced to determine the relationships between the sphaerodactylids that live in the Mona Passage and other Caribbean species from the same genus. While the main goal was to identify the biogeographical origin of these species, we also identified a genetically distinct type of dwarf gecko that warrants future evaluation as a possible new species. According to the reconstructed phylogenies, we propose a stepwise model of colonization wherein S. nicholsi from southwestern Puerto Rico or a very close ancestor gave rise through a founder event to Sphaerodactylus monensis on Mona Island. In a similar fashion, S. monensis or a very close ancestor on Mona Island gave rise to S. levinsi on Desecheo Island. This study also suggests that the most recent common ancestor between the species from the islands in the Mona Passage and Puerto Rico existed approximately 3 MYA.  相似文献   

16.
Aim By dissolving natural physical barriers to movement, human‐mediated species introductions have dramatically reshuffled the present‐day biogeography of freshwater fishes. The present study investigates whether the antiquity of Australia's freshwater ichthyofauna has been altered by the widespread invasion of non‐indigenous fish species. Location Australia. Methods Using fish presence–absence data for historical and present‐day species pools, we quantified changes in faunal similarity among major Australian drainage divisions and among river basins of north‐eastern Australia according to the Sørensen index, and related these changes to major factors of catchment disturbance that significantly alter river processes. Results Human‐mediated fish introductions have increased faunal similarity among primary drainages by an average of 3.0% (from 17.1% to 20.1% similarity). Over three‐quarters of the pairwise changes in drainage similarity were positive, indicating a strong tendency for taxonomic homogenization caused primarily by the widespread introduction of Carassius auratus, Gambusia holbrooki, Oncorhynchus mykiss and Poecilia reticulata. Faunal homogenization was highest in drainages subjected to the greatest degree of disturbance associated with human settlement, infrastructure and change in land use. Scenarios of future species invasions and extinctions indicate the continued homogenization of Australian drainages. In contrast, highly idiosyncratic introductions of species in river basins of north‐eastern Australia have decreased fish faunal similarity by an average of 1.4%. Main conclusions We found that invasive species have significantly changed the present‐day biogeography of fish by homogenizing Australian drainages and differentiating north‐eastern river basins. Decreased faunal similarity at smaller spatial scales is a result of high historical similarity in this region and reflects the dynamic nature of the homogenization process whereby sporadic introductions of new species initially decrease faunal similarity across basins. Our study points to the importance of understanding the role of invasive species in defining patterns of present‐day biogeography and preserving the antiquity of Australia's freshwater biodiversity.  相似文献   

17.
Aim To examine the relationship between diadromy and dispersal ability in New Zealand’s freshwater fish fauna, and how this affects the current environmental and geographic distributions of both diadromous and non‐diadromous species. Location New Zealand. Methods Capture data for 15 diadromous and 15 non‐diadromous fish species from 13,369 sites throughout New Zealand were analysed to establish features of their geographic ranges. Statistical models were used to determine the main environmental correlates of species’ distributions, and to establish the environmental conditions preferred by each species. Environmental predictors, chosen for their functional relevance, were derived from an extensive GIS database describing New Zealand’s river and stream network. Results In terms of geography, most diadromous species occur in a scattered fashion throughout extensive geographic ranges, and occupy large numbers of catchments of widely varying size. By contrast, most non‐diadromous species show relatively high levels of occupancy of smaller geographic ranges, and most are restricted to a few large catchments, particularly in the eastern South Island. In terms of environment, there is marked separation of diadromous from non‐diadromous species, with diadromous species generally caught most frequently in low‐gradient coastal rivers and streams with warm, maritime climates. With a few notable exceptions, most diadromous species have lower occurrence in river segments that are located above obstacles to upstream migration. Non‐diadromous species are usually caught in inland rivers and streams with cool, strongly seasonal climates, typified by a low frequency of high‐intensity rainfall events. Main conclusions We interpret the contrasting biogeographies of New Zealand’s diadromous and non‐diadromous species as reflecting interaction between their marked differences in dispersal ability and a landscape that is subject to recurrent, often large‐scale, natural disturbance. While both groups are likely to be equally susceptible to local, disturbance‐driven extinction, the much greater dispersal ability of diadromous species has allowed them to persist over wide geographic ranges. By contrast, the distributions of most non‐diadromous species are concentrated in a few large catchments, mostly in regions where less intense natural disturbance regimes are likely to have favoured their survival.  相似文献   

18.
Synopsis The composition and consistency of fish assemblages in 14 adjacent pools (6–120 m long) of a clear-water, limestone and gravel creek in midwestern U.S.A. were quantified in eight snorkeling surveys over 19 months, to establish a baseline of natural variation in the system at this scale. The fauna of the stream was dominated numerically by minnows (Cyprinidae), sunfish and black bass (Centrarchidae), and topminnows (Fundulidae). The pool fish fauna of the total 1 km reach (including all 14 pools) was highly consistent throughout the study, despite two major floods. Assemblages in individual pools generally were consistent, but there was more variation within pools than at the scale of the entire reach. Throughout the study, most individual pools remained within discrete subsets of the total occupied multivariate space in a principal components analysis based on fish species abundances. Sunfishes (Lepomis spp.) and bass (Micropterus spp.) were more consistent in their distribution among pools than were minnows (Cyprinidae) or a topminnow (Fundulus). There were 25 significant correlations in occurrence of species pairs among stream pools, out of 91 possible comparisons of the 14 most abundant taxa in the reach. Many pools contained assemblages either dominated by large centrarchids or by abundant cyprinids and juvenile centrarchids, but intermediate assemblages also were observed. The dynamics of distribution of fish species and fish assemblages among individual stream pools are likely influenced by a combination of species-specific behaviors and habitat selection, predator constraints on use of individual pools by small fishes, riffles as size-selective barriers to fish movements between pools, dispersal of young-of-the-year fishes, and abiotic phenomena like floods. Individual stream pools appear to be discrete habitat units for fishes, and do represent an appropriate scale for biologically meaningful studies of fish assemblages or their effects on streams.Department of Zoology, University of Oklahoma  相似文献   

19.
  1. Water development threatens rivers and their biodiversity. Amphidromous shrimp are particularly vulnerable as they require migration between freshwater and estuaries to complete their life cycle. The Fitzroy River is a large tropical intermittent river undergoing water development that is home to the amphidromous shrimp Macrobrachium spinipes (cherabin), yet little is known about its habitat use and flow-ecology making it difficult to inform sustainable water-take.
  2. We investigated habitat associations, distributional patterns suggestive of amphidromy, and the influence of water availability by sampling main channel and floodplain pools along a 350-km river length during 2 contrasting flow years. Applying a size-specific abundance model, we estimated abundance per size class, site, and year. We then predicted abundance at the landscape scale with remotely sensed water to reveal the impact of water availability on the meta-population.
  3. Our model revealed that juveniles were in greatest abundance in downstream main channel pools, whereas adults were in greatest abundance in upstream floodplain pools. Abundance varied by year with lower numbers predicted in the low-flow year. Longitudinal and habitat patterns remained when our pool-level results were scaled to the landscape, and the positive relationship of abundance to wet-season flow was strengthened. The predominance of smaller cherabin in the lower reaches of the river provides indirect support for an estuarine nursery and amphidromous life history; however, small individuals observed in landlocked pools, during late dry season suggests possible within-river recruitment.
  4. The importance of water development policies that protect wet-season flow and passage along the Fitzroy River is supported by this work. These types of policies are likely to be important for this and other amphidromous shrimp species across Australia, Southeast Asia and further afield. Further research detailing the species life history and describing flow–recruitment relationships will be important contributions to understanding this important taxonomic group and refining policies for current and future water resource development.
  相似文献   

20.
Synopsis The channel darter, Percina copelandi, is a small benthic fish with a wide but disjunct distribution across central North America. The development of conservation and recovery strategies for Canadian populations is limited by a lack of knowledge regarding ecology, population size and other factors that affect its distribution and abundance. We sampled five rivers in the Lake Ontario basin to test whether the distribution of P. copelandi reflected riffle habitat characteristics or landscape-scale factors such as surficial geology and natural barriers (waterfalls). At most sites yielding P. copelandi, riffles flowed into deep sand bottomed run or pool habitats. Despite a lack of association with local surficial geology or riffle habitat characteristics, both the upstream limits of P. copelandi occurrence and distribution of suitable habitats reflected the distribution of waterfalls, chutes and bedrock outcroppings. In contrast to P. copelandi, distributions of Etheostoma flabellare, P. caprodes and Rhinichthys cataractae reflected among site differences in riffle habitat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号