首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The melyrid lineage of beetles form a distinct group of the superfamily Cleroidea with a high level of soft‐bodiedness. Here we present the first molecular phylogenetic analysis of this group. The data matrix included partial sequences of the small and large subunits of rRNA, the mitochondrial large subunit rRNA, and cytochrome oxidase subunit I of 67 melyrid and eight outgroup taxa. The concatenated sequences were analysed using maximum‐parsimony (MP), maximum‐likelihood (ML) and Bayesian analysis (BA) approach. The results strongly supported the monophyly of the melyrid lineage splitting into six major clades: Rhadalidae, Mauroniscidae, Prionoceridae, Melyridae sensu stricto, Dasytidae and Malachiidae. The rhadalids were placed in the most basal position, followed by mauroniscids and prionocerids. Three terminal lineages—the true melyrids, dasytids, and malachiids—are well supported by all analyses, but their mutual relationships remain uncertain as MP analysis proposed alternative topologies to that of the ML and BA trees, with often low node support in the latter two methods. The monophyly of the subfamily Danacaeinae (Dasytidae) with respect to the danacaeine genera of the southern hemisphere (Hylodanacaea, Listrocerus, Amecocerus) was challenged as they were found to be polyphyletic. Similarly, the monophyly of Attalus was rejected by our analyses and shown to be polyphyletic. Based on the preferred phylogenetic hypothesis, the subfamilies Rhadalinae, Dasytinae and Malachiinae are elevated to family rank. © The Willi Hennig Society 2011.  相似文献   

2.
Complete mitochondrial cytochrome b sequences of 54 species, including 18 newly sequenced, were analyzed to infer the phylogenetic relationships within the family Cyprinidae in East Asia. Phylogenetic trees were generated using various tree-building methods, including Neighbor-joining (NJ), Maximum Parsimony (MP) and Maximum Likelihood (ML) methods, with Myxocyprinus asiaticus (family Catostomidae) as the designated outgroup. The results from NJ and ML methods were mostly similar, supporting some existing subfamilies within Cyprinidae as monophyletic, such as Cultrinae, Xenocyprinae and Gobioninae (including Gobiobotinae). However, genera within the subfamily “Danioninae” did not form a monophyletic group. The subfamily Leuciscinae was divided into two unrelated groups: the “Leuciscinae” in East Asia forming as a monophyletic group together with Cultrinae and Xenocyprinae, while the Leuciscinae in Europe, Siberia, and North America as another monophyletic group. The monophyly of subfamily Cyprininae sensu Howes was supported by NJ and ML trees and is basal in the tree. The position of Acheilognathinae, a widely accepted monophyletic group represented by Rhodeus sericeus, was not resolved.  相似文献   

3.
The nymphalid butterfly tribe Preponini includes some of the Neotropical region's most spectacular and familiar butterflies, but the taxonomy of the group nevertheless remains unstable. Several recent studies of Nymphalidae phylogeny have suggested that both the tribe itself and several genera might not be monophyletic, but to date taxon sampling has not been sufficiently comprehensive to allow informed revision of the group's systematics. We therefore conducted the first complete species‐level phylogenetic study of the tribe to establish a firm higher classification. We used DNA sequence data from three genes, the two mitochondrial genes cytochrome oxidase subunits I and II (COI and COII), and the nuclear gene elongation factor‐1α (EF‐1α), to reconstruct the phylogeny of the tribe using maximum likelihood (ML), maximum parsimony (MP) and Bayesian inference (BI). We included 48 individuals representing the 22 recognised Preponini species, and an additional 25 out‐group taxa to explore taxonomic limits at different levels. Firstly, we found that Anaeomorpha splendida Rothschild never grouped with remaining Preponini, so that maintaining monophyly of the tribe requires the taxon to be excluded, and we thus reinstate the tribe Anaeomorphini stat.rev. Secondly, we investigated generic limits, in particular the relationship of Noreppa Rydon to Archaeoprepona Fruhstorfer, and that of Agrias Doubleday to Prepona Boisduval. The molecular results coupled with previous morphological studies suggest that Noreppa syn.n should be synonymised with Archaeoprepona, and that Agrias syn.n should be synonymised with Prepona. We found Prepona pheridamas (Cramer) to be sister to all other Prepona, and markedly divergent from them in both morphology and DNA sequences, suggesting the possibility that it should be placed in a separate genus. We also found a number of cases of significant DNA sequence divergence and paraphyly or polyphyly within putative species that require further taxonomic attention, including Prepona claudina (Godart) stat.n. and Prepona narcissus (Staudinger) stat.n., Prepona pylene Hewitson and Prepona deiphile (Godart). Future research should focus on a broader population sampling of widespread, polymorphic Preponini species to thoroughly revise the current species‐level taxonomy, thus creating a solid foundation for studies in ecology and conservation.  相似文献   

4.
The Palaeotropical goniine genus Dolichocolon Brauer & Bergenstamm is revised and analysed cladistically. Seventeen new species are described from Australia (Queensland, Northern Territory), Cameroon, China, the Democratic Republic of Congo, Ethiopia, Japan, Papua New Guinea, Senegal, Thailand, Uganda, Yemen, and Zimbabwe. The following new synonymy is proposed after direct comparison of primary types: Dolichocolon klapperichi Mesnil, 1967 = Dolichocolon orientale Townsend, 1927 syn. nov. A key to the 21 known species is presented. A cladistic analysis based on 36 morphological characters provides support for the monophyly of Dolichocolon. A sister‐group relationship is indicated between Dolichocolon and Kuwanimyia Townsend, whereas Dolichocolon chiangmaiensis sp. nov. from Thailand takes a position as sister group to all other Dolichocolon species. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011, 162 , 544–584.  相似文献   

5.
Arecaceae tribe Cocoseae is the most economically important tribe of palms, including both coconut and African oil palm. It is mostly represented in the Neotropics, with one and two genera endemic to South Africa and Madagascar, respectively. Using primers for six single copy WRKY gene family loci, we amplified DNA from 96 samples representing all genera of the palm tribe Cocoseae as well as outgroup tribes Reinhardtieae and Roystoneae. We compared parsimony (MP), maximum likelihood (ML), and Bayesian (B) analysis of the supermatrix with three species‐tree estimation approaches. Subtribe Elaeidinae is sister to the Bactridinae in all analyses. Within subtribe Attaleinae, Lytocaryum, previously nested in Syagrus, is now positioned by MP and ML as sister to the former, with high support; B maintains Lytocaryum embedded within Syagrus. Both MP and ML resolve Cocos as sister to Syagrus; B positions Cocos as sister to Attalea. Bactridineae is composed of two sister clades, Bactris and Desmoncus in one, for which there is morphological support, and a second comprising Acrocomia, Astrocaryum, and Aiphanes. Two B and one ML gene tree‐species estimation approaches are incongruent with the supermatrix in a few critical intergeneric clades, but resolve the same infrageneric relationships. The biogeographic history of the Cocoseae is dominated by dispersal events. The tribe originated in the late Cretaceous in South America. Evaluated together, the supermatrix and species tree analyses presented in this paper provide the most accurate picture of the evolutionary history of the tribe to date, with more congruence than incongruence among the various methodologies.  相似文献   

6.
The water scavenger beetle tribe Hydrobiusini contains 47 species in eight genera distributed worldwide. Most species of the tribe are aquatic, although several species are known to occur in waterfalls or tree mosses. Some members of the tribe are known to communicate via underwater stridulation. While recent morphological and molecular‐based phylogenies have affirmed the monophyly of the tribe as currently circumscribed, doubts remain about the monophyly of included genera. Here we use morphological and molecular data to infer a species‐level phylogeny of the Hydrobiusini. The monophyly of the tribe is decisively supported, as is the monophyly of most genera. The genus Hydrobius was found to be polyphyletic, and as a result the genus Limnohydrobius stat. rev. is removed from synonymy with Hydrobius, yielding three new combinations: L. melaenus comb.n. , L. orientalis comb.n. , and L. tumbius comb.n. Recent changes to the species‐level taxonomy of Hydrobius are reviewed. The morphology of the stridulatory apparatus has undergone a single remarkable transformation within the lineage, from a simple, unmodified pars stridens to one that is highly organized and complex. We present an updated key to genera, revised generic diagnoses and a list of the known distributions for all species within the tribe.  相似文献   

7.
The first comprehensive phylogenetic analyses of the most diverse subfamily of plant bugs, Mirinae, is presented in this study, for 110 representative taxa based on total evidence analysis. A total of 85 morphological characters and 3898 bp of mitochondrial (16S, COI) and nuclear (18S, 28S) sequences were analysed for each partitioned and combined dataset based on parsimony, maximum likelihood and Bayesian inference. Major results obtained in this study include monophyly of the tribe Mecistoscelini. The largest tribe, Mirini, was recovered as polyphyletic, and Stenodemini was recovered as paraphyletic. The clade of Stenodemini + Mecistoscelini is the sister group of the remaining Mirinae. The monophyly of two complexes composed of superficially similar genera were tested; the Lygus complex was recovered as nonmonophyletic, and the Adelphocoris–Creontiades–Megacoelum complex was confirmed to be monophyletic. The generic relationships of the main clades within each tribe based on the phylogeny, as well as their supported morphological characters, are discussed.  相似文献   

8.
Extant genera of Characeae have been assigned to two tribes: Chareae (Chara, Lamprothamnium, Nitellopsis, and Lychnothamnus) and Nitelleae (Nitella and Tolypella), based on morphology of the thallus and reproductive structures. Character analysis of fossil and extant oogonia suggest that Tolypella is polyphyletic, the genus comprising two sections, one in each of the two tribes. Eleven morphological characters and sequence data for the Rubisco large subunit (rbcL) were used to reconstruct the phylogeny of genera, including the two sections of Tolypella. Parsimony analysis of the rbcL data, with all positions and changes weighted equally, strongly supports the monophyly of the Characeae. The two Tolypella sections form a robust monophyletic group basal to the family. Transversion weighting yielded the same tree but with a paraphyletic Tolypella. The rbcL data strongly support monophyly of tribe Chareae but tribe Nitelleae is paraphyletic. Parsimony analysis of morphological data produced one unrooted tree consistent with monophyly of the two tribes; on this tree the Tolypella sections were paraphyletic. Combining morphological with rbcL data did not change the results derived from rbcL sequences alone. The rbcL data support the monophyly of the Characeae and Coleochaete, which together form a monophyletic sister group to embryophytes.  相似文献   

9.
Phylogenetic relationships among members of the family Gyrinidae (Coleoptera: Adephaga) were inferred from analysis of 42 morphological characters and DNA sequence data from the genes 12S rRNA, cytochrome c oxidase I and II, elongation factor 1 alpha (2 different copies) and histone III. Eighty‐nine species of Gyrinidae were included representing all known subfamilies, tribes and genera. Outgroups include species from Noteridae, Paelobiidae and Dytiscidae. Analyses include parsimony analysis, and partitioned time‐free and relaxed‐clock Bayesian analyses of the combined data using reversible‐jump MCMC to simultaneously integrate over all possible 4 × 4 nucleotide substitution models. Analyses resulted in conflicting topologies between the combined parsimony and Bayesian analyses on the one hand, and the relaxed‐clock analysis on the other. The marginal likelihoods of competing models were calculated with stepping‐stone sampling and used in a Bayes factor test, which, along with arguments from morphology, supported the topology generated by the relaxed‐clock analysis. This phylogenetic hypothesis is adopted to revise the higher classification of Gyrinidae. Major taxonomic conclusions include: (i) monophyletic Gyrinidae, (ii) the Nearctic Spanglerogyrinae Folkerts (with one species, Spanglerogyrus albiventris Folkerts) sister to all other Gyrinidae, (iii) the Madagascar endemic Heterogyrinae Brinck stat. n. (with one species, Heterogyrus milloti Legros) sister to all Gyrinidae except Spanglerogyrinae, (iv) monophyletic Gyrininae Latreille including three monophyletic tribes with the following relationship: Orectochilini Régimbart + (Gyrinini Latreille + Enhydrini Régimbart), (v) monophyletic Orectochilini comprising four monophyletic genera with the following relationships: (Gyretes Brullé + Patrus Aubé stat. n. ) + (Orectogyrus Régimbart + Orectochilus Dejean), (vi) monophyletic Gyrinini comprising three genera with the following relationships: Gyrinus Geoffroy + (Metagyrinus Brinck + Aulonogyrus Motschulsky), each monophyletic except Metagyrinus with only one included species and not tested for monophyly, and (vii) monophyletic Enhydrini comprising five genera with the following relationships: (Porrorhynchus Laporte + Dineutus MacLeay) + (Enhydrus Laporte + (Andogyrus Ochs + Macrogyrus Régimbart)), each monophyletic except Porrorhynchus, Enhydrus and Andogyrus each with one included species and untested for monophyly. Each subfamily, tribe and genus is diagnosed and discussed. The female reproductive tract of each group is presented, illustrated and discussed with respect to the phylogenetic conclusions.  相似文献   

10.
Abstract A phylogeny of the tribe Aphidini (Hemiptera: Aphididae) was reconstructed from three gene fragments: two mitochondrial regions, partial tRNA‐leucine + cytochrome oxidase II (tRNA/COII), partial 12S rRNA + tRNA‐valine + 16S rRNA (12S/16S) and one nuclear gene, the elongation factor‐1 alpha (EF1α). Bayesian phylogenetic (BP) analyses were performed on each individual dataset of tRNA/COII, 12S/16S and EF1α, and maximum parsimony (MP), Bremer support test, maximum likelihood (ML) and BP analysis were performed on the combined dataset. After comparing our molecular phylogenetic results with the classic classification based on morphological and ecological data, we analysed three main issues: the monophyletic relationships among tribes and subtribes, the validities of the latest taxonomic positions of genera and species and the status of certain Aphis species groups. Our results indicate that 36 of the species analysed, with the exception of Cryptosiphum artemisiae, are clustered within the clade of Aphidini. Also, the 28 species representative of the subtribe Aphidina were separated from the eight species representative of Rhopalosiphina; each monophyletic subtribe was supported by significant P‐values in the combined analysis. According to our results, Cryptosiphum should be moved to Macrosiphini because it is more closely related to the genera Lipaphis and Brevicoryne. The genus Toxoptera was recovered as non‐monophyletic. In Rhopalosiphina, three genera, Hyalopterus, Rhopalosiphum and Schizaphis, were relatively closer to each other than to the genus Melanaphis. In the relationships between species‐groups among Aphis, most species were separated into two main lineages; the fabae group seemed to be more closely related to the spiraecola and craccivora group rather than to the gossypii group.  相似文献   

11.
The Heliothinae comprise some of the world's most injurious agricultural pests. This study reanalyses a subsample of the Heliothis group to determine the monophyly of Chloridea (Heliothis virescens and H. subflexa). Two nuclear gene regions, elongation factor‐1α (EF‐1α; 1240 bp) and dopa decarboylase (DDC; 687 bp), and the barcoding region of mitochondrial cytochrome oxidase I (COI; 708 bp) were used in this analysis for a total of 2635 bp and a morphological dataset of 20 characters and 62 character states. Sixteen species representing five genera plus two outgroup species were used in the analysis. Analyses used were Maximum Parsimony (MP), Maximum Likelihood (ML) and Bayesian Inference (BI). The revised status for the monophyletic genus Chloridea Duncan and (Westwood) was supported by a very strong bootstrap support (BP = 98–100). Larval host‐plant usage is discussed within the Heliothis clade. Polyphagy is most likely the ancestral condition with a host shift to monophagy and oligophagy. Based on known larval hosts, Heliocheilus is oligophagous on Poaceae. Traits of host plant use in Helicoverpa and Chloridea where both polyphagy and oligophagy occur in closely related species are discussed.  相似文献   

12.
《Systematic Entomology》2018,43(1):218-238
Phasiinae (Diptera: Tachinidae) are endoparasitoid flies that attack Heteroptera, including a multitude of agricultural pests. A phylogenetically informed classification of Phasiinae has eluded systematists for over a century, primarily because of the conflicting character states and confusing morphology of certain taxa that indicate potential placement within other subfamilies. The unstable nature of phasiine taxonomy discourages important research into their classification, life history and potential use in biological control. In hopes of resolving several longstanding taxonomic debates and encouraging future research into this important group of parasitoids, the first molecular systematic analysis of Phasiinae is presented, including 128 worldwide taxa (80 genera) and approximately 7.6 kb of nuclear data representing four genes. Special emphasis is placed on the resolution of taxonomically ambiguous groups. The resulting robustly supported phylogenetic trees [maximum‐likelihood (ML)/Bayesian] were used to trace the evolution of significant adaptive traits within Tachinidae and test hypotheses about the classification of Phasiinae. Subfamily placements of certain taxa are confidently resolved including Eutherini, Epigrimyiini, Litophasia Girschner within Dexiinae, and Strongygastrini and Parerigonini within Phasiinae. The members of tribe Phasiini are redistributed: Cistogaster Latreille, Clytiomya Rondani, Ectophasia Townsend, Eliozeta Rondani and Euclytia Townsend transferred to Gymnosomatini; Opesia Robineau‐Desvoidy to Strongygastrini; and Xysta Meigen to Xystini. Similarly, members of Parerigonini are treated as belonging to Parerigonini (Parerigone Brauer, Zambesomima Walker), Cylindromyiini (Australotachina Curran, Pygidimyia Crosskey, Neobrachelia Townsend) or new tribe Zitini (Zita Curran, Leverella Baranov). Penthosia van der Wulp is transferred from Cylindromyiini to Hermyini. Ancestral state reconstruction suggests that piercing structures used to insert eggs directly into host tissues have evolved separately in a number of groups, but have also been lost or reduced in several lineages. A single potentially unequivocal morphological synapomorphy of Phasiinae, an elongated medial plate of the hypandrium in males, is identified. This published work has been registered in ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub:8BE75122‐FC7C‐4809‐AAF7‐19575596EF78 .  相似文献   

13.
Phylogenetic relationships of the subfamily Combretoideae (Combretaceae) were studied based on DNA sequences of nuclear ribosomal internal transcribed spacer (ITS) regions, the plastid rbcL gene and the intergenic spacer between the psaA and ycf3 genes (PY-IGS), including 16 species of eight genera within two traditional tribes of Combretoideae, and two species of the subfamily Strephonematoideae of Combretaceae as outgroups. Phylogenetic trees based on the three data sets (ITS, rbcL, and PY-IGS) were generated by using maximum parsimony (MP) and maximum likelihood (ML) analyses. Partition-homogeneity tests indicated that the three data sets and the combined data set are homogeneous. In the combined phylogenetic trees, all ingroup taxa are divided into two main clades, which correspond to the two tribes Laguncularieae and Combreteae. In the Laguncularieae clade, two mangrove genera, Lumnitzera and Laguncularia, are shown to be sister taxa. In the tribe Combreteae, two major clades can be classified: one includes three genera Quisqualis, Combretum and Calycopteris, within which the monophyly of the tribe Combreteae sensu Engler and Diels including Quisqualis and Combretum is strongly supported, and this monophyly is then sister to the monotypic genus Calycopteris; another major clade includes three genera Anogeissus, Terminalia and Conocarpus. There is no support for the monophyly of Terminalia as it forms a polytomy with Anogeissus. This clade is sister to Conocarpus. Electronic Publication  相似文献   

14.
Taxonomic schemes for the Heteroderinae Filip'ev & Schuurmans Stekhoven, 1941, sensu Luc et al., (1988) have been unstable due to the large number of genera and the paucity of known reliable characters. Reliable characters are essential when using phylogenetic inference in developing a natural classification. Morphological and developmental studies using light, scanning and transmission electron microscopy have revealed the new characters of host response, en face patterns, phasmid structure and female cuticular layers. These techniques also gave us insight into the homoplasy and polarity of many characters, revealed previously undetected character states and clarified misinterpreted character states. A matrix with the 19 most reliable characters is proposed for 20 operational taxonomic units (OTUs) and we employ this matrix for comparing computer generated phylogenetic analyses of the PHYLIP and PAUP packages. PAUP was deemed the more reliable parsimony algorithm for phylogenetic analysis of the Heteroderinae (Fink, 1986; Platnick, 1987). Monophyly of Atalodera + Sherodera + Thecavermiculatus (tribe Ataloderini), and Cactodera + Heterodera + Afenestrata, as well as Punctodera + Globodera + Dolichodera is supported by both programs. Most importantly, analyses strongly support monophyly of all cyst-forming genera (tribe Heteroderini) contrary to previous hypotheses of repeated evolution of the cyst (Wouts, 1985). In addition, monophyly of the Heteroderini with the Ataloderini is demonstrated. PAUP indicates monophyly of Sarisodera + Rhizonema + Bellodera + Hylonema and Ekphymatodera (tribe Sarisoderini new rank). Monophyly of the Sarisoderini was at first only weakly supported, but, subsequently, the reduced width of the submedial lips of second stage juveniles and males was recognized as a synapomorphy which strengthened subsequent PAUP trees and monophyly of the tribe. The present study rejects as paraphyletic or polyphyletic several previously proposed combinations, including Thecavermiculatus sequoiae (versus Rhizonema sequoiae), Sarisodera africana (versus Afenestrata africana), Dolichodera andinus (versus Thecavermiculatus andinus). The question whether T. andinus is a distinct genus, was not resolved due to insufficient data. PAUP supports our previous observations that Cactodera betulae is intermediate in a transformation series between other Cactodera and Heterodera: it also indicates these species as bring monophyletic with Heterodera + Afenestrata, but not with other Cactodera. Although these phylogenetic analyses strongly support some relationships, they indicate unresolved alternative hypotheses for others. Meloidodera (tribe Meloidoderini) and Cryphodera (tribe Cryphoderini) must be investigated for consideration of a possible synapomorphy not included in the present data matrix. Future studies are proposed to more clearly define the monophyly of the Heteroderini, as well as the Sarisoderini. Tests are also proposed to clarify questions of the monophyly of Verutus (tribe Verutini new rank) with the Heteroderinae versus other Tylenchida.  相似文献   

15.
A phylogenetic analysis based on 58 morphological characters including 18 species representing 14 genera over the 15 currently known in Darnini (Hemiptera: Membracidae) confirms the monophyly of this tribe. This result is particularly supported by the presence of cucullate setae on the ventral side of the femora. Two sister clades are inferred: the clade Funkhouseriana+ which groups four genera (Aspona, Cyphotes, Funkhouseriana, Taunaya) and exhibits a ‘bird dropping’ habitus and all other genera which exhibit a ‘dewdrop’ like habitus (Alobia, Darnis, Dectonura, Hebetica, Hebeticoides, Leptosticta, Ochrolomia, Stictopelta) or a ‘thorny’ habitus (Alcmeone, Sundarion). In the ‘dewdrop’ habitus, only the clade Ochrolomia+ is retained as a monophyletic unit. According to these results, pronotal shapes and habitus have evolved independently in each monophyletic unit and each one seems correlated with a particular type of mimicry strategy. According to the strategy, characters involved are different, a priori independent; moreover, they look coordinated regarding to the mimicry function they serve. The various evolutionary scenarios are discussed in relation to the phylogeny, and particularly in correlation with the non-gregarious behavior of these membracids, also coherent with their mimicry strategy.  相似文献   

16.
Chironius is one of the most speciose genera of the South American colubrid snakes. Although the genus represents a well‐known radiation of diurnal racers, its monophyly, affinities with other Neotropical colubrid genera, and intrageneric relationships are open questions. Here, we present a phylogenetic analysis of Chironius based on a data matrix that combines one nuclear (c‐mos) and two mitochondrial (12S and 16S rRNA) genes with 37 morphological characters derived from scutellation, skull, and hemipenial features. Phylogenetic relationships were inferred using maximum parsimony (MP) and maximum likelihood (ML). Our combined morphological and molecular analyses strongly support the monophyly of the genus Chironius and its sister‐group relationship with a clade formed by the genera Dendrophidion and Drymobius. Phylogenetic relationships within the genus Chironius is still controversial, although five clades are retrieved with medium to strong support. © 2014 The Linnean Society of London  相似文献   

17.
Central Asian mountain voles Alticola is one of the least known groups of voles both in evolution and life history. This genus includes three subgenera Alticola s.str., Aschizomys and Platycranius, and belongs to the tribe Clethrionomyini comprising also red‐backed voles Clethrionomys and oriental voles Eothenomys. In order to elucidate the phylogenetic relationships within Alticola and to examine its position within the tribe, mitochondrial cytochrome b (cyt b) gene variation was estimated, and the results were compared with morphological and palaeontological data. Maximum likelihood (ML), neighbor‐joining (NJ), maximum parsimony (MP) and Bayesian phylogenetic analyses show that the genus Alticola does not appear to be a monophyletic group since the representatives of Aschizomys branch within Clethrionomys, whereas two other subgenera (Alticola and Platycranius) form a separate monophyletic clade. Flat‐headed vole Alticola (Platycranius) strelzowi is nested within the nominative subgenus showing close association with A. (Alticola) semicanus. Surprisingly, the two species of Aschizomys do not form a monophyletic group. The results of the relaxed‐clock analysis suggest that the Alticola clade splits from the Clethrionomys stem in early Middle Pliocene while basal cladogenetic events within Alticola s.str. dates back to the late Middle to early Late Pliocene. A scenario of evolution in Clethrionomyini is put forward implying rapid parallel morphological changes in different lineages leading to the formation of Alticola‐like biomorphs adapted to mountain and arid petrophilous habitats. Corresponding author: Vladimir S. Lebedev, Zoological Museum, Moscow State University, B. Nikitskaya 6, 125009 Moscow, Russia. E‐mail: wslebedev@hotmail.com Anna A. Bannikova, Lomonosov Moscow State University, Vorobievy Gory, 119992 Moscow, Russia. E‐mail: hylomys@mail.ru Alexey S. Tesakov, Geological Institute RAS, Pyzhevsky 7, 119017 Moscow, Russia. E‐mail: tesak@ginras.ru Natalia I. Abramson, Zoological Institute RAS, Universitetskaya nab. 1, 199034 St Petersburg, Russia. E‐mail: lemmus@zin.ru  相似文献   

18.
We provide the first highly sampled phylogeny estimate for the dipteran family Chironomidae using molecular data from fragments of two ribosomal genes (18S and 28S), one nuclear protein‐coding gene (CAD), and one mitochondrial protein‐coding gene (COI), analysed using mixed‐model Bayesian and maximum likelihood inference methods. The most recently described subfamilies Chilenomyiinae and Usambaromyiinae proved elusive, and are unsampled. We confirm monophyly of all sampled subfamilies except Prodiamesinae, which contains Propsilocerus Kieffer, previously in Orthocladiinae. The semifamily Chironomoinae is confirmed only if Telmatogetoninae is included, which is closer to Brundin's original suggestion. Buchonomyiinae is excluded from Chironomoinae: it is a sister group to all remaining Chironomidae, conforming more to Murray and Ashe's argumentation. Semifamily Tanypodoinae is a grade and unsupported as monophyletic: the austral Aphroteniinae alone is sister to all Chironomidae (less Buchonomyiinae). Podonominae is weakly supported as the next sister group, in contrast to some estimates that place this subfamily as sister group to Tanypodinae alone. In Diamesinae, the southern African Harrisonini is confirmed as a member, but embedded within austral tribe Heptagiini, which is confirmed as sister to the undersampled Diamesini. Tribe Pentaneurini and ‘non‐Pentaneurini’ taxa are reciprocally monophyletic in Tanypodinae. Recent molecular findings concerning Podonominae are substantiated, with a monophyletic tribe Podonomini, Boreochlini forming a grade and Lasiodiamesa Kieffer placed as sister to all other Podonominae, but with uncertainty. In Orthocladiinae, a postulated two‐tribe system of Orthocladiini and Metriocnemini can be supported after exclusion of a Corynoneura group and a Brillia group, which is revealed as sister to Stictocladius Edwards. The marine Clunio Haliday and Thalassosmittia Strenzke & Remmert (given high rank in the past) are clearly embedded deep in Orthocladiinae. The finding of Shangomyia Sæther & Wang + Xyiaomyia Sæther & Wang as sister group to all other Chironominae justifies high rank, as their authors suggested. Pseudochironomini (untested by sampling shortfall) is sister to a monophyletic Tanytarsini (with a weakly supported inclusion of the enigmatic Nandeva Wiedenbrug, Reiss & Fittkau). The tribe Chironomini can be supported only by excluding Shangomyia + Xyiaomyia, and a postulated monophyletic clade comprising several taxa such as Microtendipes Kieffer, with six‐segmented larval antennae and alternate Lauterborn organs, that is sister group to Pseudochironomini + Tanytarsini. The tempo of diversification of the family, deduced by divergence time analysis (beast ), shows Permian origination with subfamily stem‐group origination from the mid–late Triassic to the early Cretaceous. Crown‐group origination ranged from Podonominae on a short stem originating in the mid Jurassic to long‐stemmed Aphroteninae from the late Cretaceous. Node dates allow inference of some vicariance via Gondwanan fragmentation, including certain nodes involving southern Africa.  相似文献   

19.
Yang, L., Mayden, R. L., Sado, T., He, S., Saitoh, K. & Miya, M. (2010). Molecular phylogeny of the fishes traditionally referred to Cyprinini sensu stricto (Teleostei: Cypriniformes). —Zoologica Scripta, 39, 527–550. Carps (e.g. Koi) of the genus Cyprinus and Crucian carps (e.g. Goldfish) of the genus Carassius are among the most popular freshwater fishes around the world. However, their phylogenetic positions within the subfamily Cyprininae, relationships with their allies (e.g. Procypris, Carassioides), and the monophyly of the group formed by them and their allies, which is referred as the tribe Cyprinini sensu stricto, are far from clear. Historically, the Cyprinini was defined by different people according to whether a cyprinine fish possessed a spinous anal‐fin ray (or anal spine), the spine was serrated or not, and occasionally, the number of branched dorsal‐fin rays. Some definitions were established without providing any diagnostic characters. In this study, we investigated the monophyly of the tribe Cyprinini sensu stricto, based on four different historical definitions, and explored the phylogenetic relationships of these members in the subfamily Cyprininae. Using five mitochondrial genes as markers, both maximum‐likelihood and Bayesian trees were constructed using the optimal partitioning strategy. Both analyses successfully resolved a monophyletic Cyprininae and recovered seven major clades from this subfamily. The diagnosis limiting the tribe Cyprinini sensu stricto to four genera, Cyprinus, Carassius, Carassioides and Procypris, received most support. We propose that only those cyprinines that possess a serrated anal spine and have no <10 branched dorsal‐fin rays should be considered members of this tribe. Cyprinini is sister to the Sinocyclocheilus clade, a group traditionally considered a barbin, and together they form the ‘Cyprinini‐Sinocyclocheilus’ clade. Procypris forms the basal clade of the Cyprinini, whereas species of Carassius and Carassioides locate at the top.  相似文献   

20.
1. Diverse assemblages of blood-feeding parasitic arthropods occupy the nests of birds, and nest temperature and humidity can strongly influence the population dynamics of these ectoparasites, with important implications for parasite–host relationships. 2. This study used two types of nest box that differed in internal microclimates, one constructed of plywood and the other constructed of boles of aspen (Populus tremuloides Michx.), more closely replicating natural cavities, to examine how nest microclimate affects the prevalence and abundance of nest-dwelling larval blow flies (Protocalliphora and Trypocalliphora spp.) in nests of tree swallows (Tachycineta bicolor Vieillot, 1808). 3. Based on known microclimatic differences between the box types and responses of larval blow flies to different temperatures, it was predicted that the microclimate of plywood boxes would be more favourable for growth and development of larval blow flies, and therefore have higher abundance, and possibly higher prevalence, of larval blow flies. 4. Plywood nest boxes had higher abundance, but not prevalence, of larval blow flies compared with aspen boxes at two different geographical locations in Canada. Nest composition also differed between box types, particularly at one site, where aspen boxes contained more nesting material (grass and feathers) than did plywood boxes. 5. Although it seems probable that microclimate was driving the differences between box types in abundance of larval blow flies, several additional explanations are discussed. These findings may have implications for conservation efforts, particularly those where nest boxes are used to aid in the recovery of declining bird populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号