首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim There is increasing concern regarding sustainable management and restoration of planted forests, particularly in the Mediterranean Basin where pine species have been widely used. The aim of this study was to analyse the environmental and structural characteristics of Mediterranean planted pine forests in relation to natural pine forests. Specifically, we assessed recruitment and woody species richness along climatic, structural and perturbation gradients to aid in developing restoration guidelines. Location Continental Spain. Methods We conducted a multivariate comparison of ecological characteristics in planted and natural stands of main Iberian native pine species (Pinus halepensis, Pinus pinea, Pinus pinaster, Pinus nigra and Pinus sylvestris). We fitted species‐specific statistical models of recruitment and woody species richness and analysed the response of natural and planted stands along ecological gradients. Results Planted pine forests occurred on average on poorer soils and experienced higher anthropic disturbance rates (fire frequency and anthropic mortality) than natural pine forests. Planted pine forests had lower regeneration and diversity levels than natural pine forests, and these differences were more pronounced in mountain pine stands. The largest differences in recruitment – chiefly oak seedling abundance – and species richness between planted and natural stands occurred at low‐medium values of annual precipitation, stand tree density, distance to Quercus forests and fire frequency, whereas differences usually disappeared in the upper part of the gradients. Main conclusions Structural characteristics and patterns of recruitment and species richness differ in pine planted forests compared to natural pine ecosystems in the Mediterranean, especially for mountain pines. However, management options exist that would reduce differences between these forest types, where restoration towards more natural conditions is feasible. To increase recruitment and diversity, vertical and horizontal heterogeneity could be promoted by thinning in high‐density and homogeneous stands, while enrichment planting would be desirable in mesic and medium‐density planted forests.  相似文献   

2.
Quantifying climate-growth associations is needed to evaluate how forest productivity will respond to climate change. Year-to-year fluctuations in forest productivity and radial growth are partly explained by local climatic conditions driven by large-scale atmospheric patterns. This is illustrated by Iberian forests in the western Mediterranean Basin, which are subjected to complex climatic and atmospheric influences such as Atlantic and Mediterranean cyclogenesis. The North Atlantic Oscillation (NAO) is one of the major atmospheric circulation patterns affecting Iberian forests since positive winter NAO phases lead to dry and warm conditions. The Western Mediterranean Oscillation (WeMO) may also explain Iberian forest growth in some areas since this index captures Mediterranean cyclogenesis and WeMO negative phases are linked to warm and wet spring to summer conditions. Here, we analyze the associations between atmospheric patterns, climate and tree growth and we determine if they are changing through time. We use dendrochronology to relate radial growth of four tree species (Pyrenean oak, Sweet chestnut, Maritime pine and Scots pine) growing in western Spain to climate conditions and the NAO and WeMO indices. Winter and early spring temperatures increased since the 1950s in the area whereas the negative association between winter precipitation and the NAO strengthened since then. However, mean temperature rise was particularly evident since the 1970s. Growth was reduced by dry conditions during the growing season (spring and summer), but also by cold and dry conditions during the previous autumn and winter. This explains why the NAO January and the WeMo April indices were negative to growth of three species excluding Pyrenean oak. The early 1970s reflected an inflection point in the instability of climate-growth associations in the study area. We conclude that the winter NAO is a relevant driver of forest growth in the western Iberian Peninsula forests but additional atmospheric patterns (WeMO) also affect, albeit to a minor extent, these forests.  相似文献   

3.
Aim Species distribution models have been used frequently to assess the effects of climate change on mountain biodiversity. However, the value and accuracy of these assessments have been hampered by the use of low‐resolution data for species distributions and climatic conditions. Herein we assess potential changes in the distribution and community composition of tree species in two mountainous regions of Spain under specific scenarios of climate change using data with a high spatial resolution. We also describe potential changes in species distributions and tree communities along the entire elevational gradient. Location Two mountain ranges in southern Europe: the Central Mountain Range (central west of the Iberian Peninsula), and the Iberian Mountain Range (central east). Methods We modelled current and future distributions of 15 tree species (Eurosiberian, sub‐Mediterranean and Mediterranean species) as functions of climate, lithology and availability of soil water using generalized linear models (logistic regression) and machine learning models (gradient boosting). Using multivariate ordination of a matrix of presence/absence of tree species obtained under two Intergovernmental Panel on Climate Change (IPCC) scenarios (A2 and B2) for two different periods in the future (2041–70 and 2071–2100), we assessed the predicted changes in the composition of tree communities. Results The models predicted an upward migration of communities of Mediterranean trees to higher elevations and an associated decline in communities of temperate or cold‐adapted trees during the 21st century. It was predicted that 80–99% of the area that shows a climate suitable for cold–wet‐optimum Eurosiberian coniferous and broad‐leaved species will be lost. The largest overall changes were predicted for Mediterranean species found currently at low elevations, such as Pinus halepensis, Pinus pinaster, Quercus ilex ssp. ballota and Juniperus oxycedrus, with sharp increases in their range of 350%. Main conclusions It is likely that areas with climatic conditions suitable for cold‐adapted species will decrease significantly under climate warming. Large changes in species ranges and forest communities might occur, not only at high elevations within Mediterranean mountains but also along the entire elevational gradient throughout this region, particularly at low and mid‐elevations. Mediterranean mountains might lose their key role as refugia for cold‐adapted species and thus an important part of their genetic heritage.  相似文献   

4.

Questions

We aim for a better understanding of the different modes of intra‐ and inter‐specific competition in two‐ and three‐species mixed‐forests. How can the effect of different modes of competitive interactions be detected and integrated into individual tree growth models? Are species interactions in spruce–fir–beech forests more associated with size‐symmetric or size‐asymmetric competition? Do competitive interactions between two of these species change from two‐ to three‐species mixtures?

Location

Temperate mixed‐species forests in Central Europe (Switzerland).

Methods

We used data from the Swiss National Forest Inventory to fit basal area increment models at the individual tree level, including the effect of ecological site conditions and indices of size‐symmetric and size‐asymmetric competition. Interaction terms between species‐specific competition indices were used to disentangle significant differences in species interactions from two‐ to three‐species mixtures.

Results

The growth of spruce and fir was positively affected by increasing proportions of the other species in spruce–fir mixtures, but negative effects were detected with increasing presence of beech. We found that competitive interactions for spruce and fir were more related to size‐symmetric competition, indicating that species interactions might be more associated with competition for below‐ground resources. Under constant amounts of stand basal area, the growth of beech clearly benefited from the increasing admixture of spruce and fir. For this species, patterns of size‐symmetric and size‐asymmetric competitive interactions were similar, indicating that beech is a strong self‐competitor for both above‐ground and below‐ground resources. Only for silver fir and beech, we found significant changes in species interactions from two‐ to three‐species mixtures, but these were not as prominent as the effects due to differences between intra‐ and inter‐specific competition.

Conclusions

Species interactions in spruce–fir–beech, or other mixed forests, can be characterized depending on the mode of competition, allowing interpretations of whether they occur mainly above or below ground level. Our outcomes illustrate that species‐specific competition indices can be integrated in individual tree growth functions to express the different modes of competition between species, and highlight the importance of considering the symmetry of competition alongside competitive interactions in models aimed at depicting growth in mixed‐species forests.
  相似文献   

5.
Understanding how tropical tree species differ in their growth strategies is critical to predict forest dynamics and assess species coexistence. Although tree growth is highly variable in tropical forests, species maximum growth is often considered as a major axis synthesizing species strategies, with fast-growing pioneer and slow-growing shade tolerant species as emblematic representatives. We used a hierarchical linear mixed model and 21-years long tree diameter increment series in a monsoon forest of the Western Ghats, India, to characterize species growth strategies and question whether maximum growth summarizes these strategies. We quantified both species responses to biotic and abiotic factors and individual tree effects unexplained by these factors. Growth responses to competition and tree size appeared highly variable among species which led to reversals in performance ranking along those two gradients. However, species-specific responses largely overlapped due to large unexplained variability resulting mostly from inter-individual growth differences consistent over time. On average one-third of the variability captured by our model was explained by covariates. This emphasizes the high dimensionality of the tree growth process, i.e. the fact that trees differ in many dimensions (genetics, life history) influencing their growth response to environmental gradients, some being unmeasured or unmeasurable. In addition, intraspecific variability increased as a power function of species maximum growth partly as a result of higher absolute responses of fast-growing species to competition and tree size. However, covariates explained on average the same proportion of intraspecific variability for slow- and fast-growing species, which showed the same range of relative responses to competition and tree size. These results reflect a scale invariance of the growth process, underlining that slow- and fast-growing species exhibit the same range of growth strategies.  相似文献   

6.
林木间的竞争是影响树木生长、形态和死亡的主要因素.单木邻域竞争分析能够反映个体间相互作用规律及其距离范围,对于减缓林木竞争、促进林木生长具有重要意义.为弄清竞争对阔叶红松林林木生长的影响,本研究基于Hegyi单木竞争指数和邻域分析方法,探讨了长白山原始阔叶红松林中的5个关键树种——红松、紫椴、水曲柳、蒙古栎和春榆(胸高断面积合计占80%)竞争的邻域半径,并分析了竞争对关键树种生长和死亡的影响.结果表明:红松、紫椴、水曲柳和蒙古栎4个树种单木竞争的邻域半径均为11 m,春榆为13 m.关键树种单木邻域竞争强度与其生长量的对数呈显著负相关,与树木个体的大小呈显著正相关;竞争强度对树木生长影响的相对重要性随着个体的生长而降低.邻域竞争显著增加了关键树种的死亡率.本研究表明长白山阔叶红松林中邻域竞争对关键树种的生长和存活有重要影响,研究结果对阔叶红松林关键树种竞争环境的调整和生产力的提升具有指导意义.  相似文献   

7.
Seasonally dry tropical forests are an important global climatic regulator, a main driver of the global carbon sink dynamics and are predicted to suffer future reductions in their productivity due to climate change. Yet, little is known about how interannual climate variability affects tree growth and how climate-growth responses vary across rainfall gradients in these forests. Here we evaluate changes in climate sensitivity of tree growth along an environmental gradient of seasonally dry tropical vegetation types (evergreen forest – savannah – dry forest) in Northeastern Brazil, using congeneric species of two common neotropical genera: Aspidosperma and Handroanthus. We built tree-ring width chronologies for each species × forest type combinations and explored how growth variability correlated with local (precipitation, temperature) and global (the El Niño Southern Oscillation - ENSO) climatic factors. We also assessed how growth sensitivity to climate and the presence of growth deviations varied along the gradient. Precipitation stimulates tree growth and was the main growth-influencing factor across vegetation types. Trees in the dry forest site showed highest growth sensitivity to interannual variation in precipitation. Temperature and ENSO phenomena correlated negatively with growth and sensitivity to both climatic factors were similar across sites. Negative growth deviations were present and found mostly in the dry-forest species. Our results reveal a dominant effect of precipitation on tree growth in seasonally dry tropical forests and suggest that along the gradient, dry forests are the most sensitivity to drought. These forests may therefore be the most vulnerable to the deleterious effects of future climatic changes. These results highlight the importance of understanding the climatic sensitivity of different tropical forests. This understanding is key to predict the carbon dynamics in tropical regions, and sensitivity differences should be considered when prioritizing conservation measures of seasonally dry topical forests.  相似文献   

8.
Investigating how interactions among plants depend on environmental conditions is key to understand and predict plant communities’ response to climate change. However, while many studies have shown how direct interactions change along climatic gradients, indirect interactions have received far less attention. In this study, we aim at contributing to a more complete understanding of how biotic interactions are modulated by climatic conditions. We investigated both direct and indirect effects of adult tree canopy and ground vegetation on seedling growth and survival in five tree species in the French Alps. To explore the effect of environmental conditions, the experiment was carried out at 10 sites along a climatic gradient closely related to temperature. While seedling growth was little affected by direct and indirect interactions, seedling survival showed significant patterns across multiple species. Ground vegetation had a strong direct competitive effect on seedling survival under warmer conditions. This effect decreased or shifted to facilitation at lower temperatures. While the confidence intervals were wider for the effect of adult canopy, it displayed the same pattern. The monitoring of micro‐environmental conditions revealed that competition by ground vegetation in warmer sites could be related to reduced water availability; and weak facilitation by adult canopy in colder sites to protection against frost. For a cold‐intolerant and shade‐tolerant species (Fagus sylvatica), adult canopy indirectly facilitated seedling survival by suppressing ground vegetation at high temperature sites. The other more cold tolerant species did not show this indirect effect (Pinus uncinata, Larix decidua and Abies alba). Our results support the widely observed pattern of stronger direct competition in more productive climates. However, for shade tolerant species, the effect of direct competition may be buffered by tree canopies reducing the competition of ground vegetation, resulting in an opposite trend for indirect interactions across the climatic gradient.  相似文献   

9.
Tree mortality is a key process underlying forest dynamics and community assembly. Understanding how tree mortality is driven by simultaneous drivers is needed to evaluate potential effects of climate change on forest composition. Using repeat-measure information from c. 400,000 trees from the Spanish Forest Inventory, we quantified the relative importance of tree size, competition, climate and edaphic conditions on tree mortality of 11 species, and explored the combined effect of climate and competition. Tree mortality was affected by all of these multiple drivers, especially tree size and asymmetric competition, and strong interactions between climate and competition were found. All species showed L-shaped mortality patterns (i.e. showed decreasing mortality with tree size), but pines were more sensitive to asymmetric competition than broadleaved species. Among climatic variables, the negative effect of temperature on tree mortality was much larger than the effect of precipitation. Moreover, the effect of climate (mean annual temperature and annual precipitation) on tree mortality was aggravated at high competition levels for all species, but especially for broadleaved species. The significant interaction between climate and competition on tree mortality indicated that global change in Mediterranean regions, causing hotter and drier conditions and denser stands, could lead to profound effects on forest structure and composition. Therefore, to evaluate the potential effects of climatic change on tree mortality, forest structure must be considered, since two systems of similar composition but different structure could radically differ in their response to climatic conditions.  相似文献   

10.
Analysing how species modify their trait expression along a diversity gradient brings insight about the role that intraspecific variability plays over species interactions, e.g. competition versus complementarity. Here, we evaluated the functional trait space of nine tree species dominant in three types of European forests (a continental‐Mediterranean, a mountainous mixed temperate and a boreal) growing in communities with different species richness in the canopy, including pure stands. We compiled whole‐plant and leaf traits in 1719 individuals, and used them to quantify species trait hypervolumes in communities with different tree species richness. We investigated changes along the species richness gradient to disentangle species responses to the neighbouring environment, in terms of hypervolume size (trait variance), shape (trait relative importance) and centroid translation (shifts of mean trait values) using null models. Our main results showed differences in trait variance and shifts of mean values along the tree diversity gradient, with shorter trees but with larger crowns in mixed stands. We found constrained functional spaces (trait convergence) in pure stands, suggesting an important intraspecific competition, and expanded functional spaces (trait divergence) in two‐species admixtures, suggesting competition release due to interspecific complementarity. Nevertheless, further responses to increasing species richness were different for each forest type, waning species complementarity in sites with limiting conditions for growth. Our results demonstrate that tree species phenotypes respond to the species richness in the canopy in European forests, boosting species complementarity at low level of canopy diversity and with a site‐specific pattern at greater level of species richness. These outcomes evidence the limitation of functional diversity measures based only on traits from pure stands or general trait database values.  相似文献   

11.
Climate increases regional tree-growth variability in Iberian pine forests   总被引:3,自引:0,他引:3  
Tree populations located at the geographical distribution limit of the species may provide valuable information about tree‐growth response to changes on climatic conditions. We established nine Pinus nigra, 12 P. sylvestris and 17 P. uncinata tree‐ring width chronologies along the eastern and northern Iberian Peninsula, where these species are found at the edge of their natural range. Tree‐growth variability was analyzed using principal component analysis (PCA) for the period 1885–1992. Despite the diversity of species, habitats and climatic regimes, a common macroclimatic signal expressed by the first principal component (PC1) was found. Moreover, considering the PC1 scores as a regional chronology, significant relations were established with Spanish meteorological data. The shared variance held by the tree chronologies, the frequency of narrow rings and the interannual growth variability (sensitivity) increased markedly during the studied period. This shows an enhancement of growth synchrony among forests indicating that climate might have become more limiting to growth. Noticeably, an upward abrupt shift in common variability at the end of the first half of the 20th century was detected. On the other hand, moving‐interval response functions showed a change in the growth–climate relationships during the same period. The relationship between growth and late summer/autumn temperatures of the year before growth (August–September, negative correlation, and November, positive correlation) became stronger. Hence, water stress increase during late summer previous to tree growth could be linked to the larger growth synchrony among sites, suggesting that climate was driving the growth pattern changes. This agrees with the upward trend in temperature observed in these months. Moreover, the higher occurrence of extreme years and the sensitivity increase in the second half of the 20th century were in agreement with an increment in precipitation variability during the growing period. Precipitation variability was positively related to tree‐growth variability, but negatively to radial growth. In conclusion, a change in tree‐growth pattern and in the climatic response of the studied forests was detected since the mid‐20th century and linked to an increase in water stress. These temporal trends were in agreement with the observed increase in warmer conditions and in precipitation variability.  相似文献   

12.
The future performance of native tree species under climate change conditions is frequently discussed, since increasingly severe and more frequent drought events are expected to become a major risk for forest ecosystems. To improve our understanding of the drought tolerance of the three common European temperate forest tree species Norway spruce, silver fir and common beech, we tested the influence of climate and tree‐specific traits on the inter and intrasite variability in drought responses of these species. Basal area increment data from a large tree‐ring network in Southern Germany and Alpine Austria along a climatic cline from warm‐dry to cool‐wet conditions were used to calculate indices of tolerance to drought events and their variability at the level of individual trees and populations. General patterns of tolerance indicated a high vulnerability of Norway spruce in comparison to fir and beech and a strong influence of bioclimatic conditions on drought response for all species. On the level of individual trees, low‐growth rates prior to drought events, high competitive status and low age favored resilience in growth response to drought. Consequently, drought events led to heterogeneous and variable response patterns in forests stands. These findings may support the idea of deliberately using spontaneous selection and adaption effects as a passive strategy of forest management under climate change conditions, especially a strong directional selection for more tolerant individuals when frequency and intensity of summer droughts will increase in the course of global climate change.  相似文献   

13.
Growth models can be used to assess forest vulnerability to climate warming. If global warming amplifies water deficit in drought‐prone areas, tree populations located at the driest and southernmost distribution limits (rear‐edges) should be particularly threatened. Here, we address these statements by analyzing and projecting growth responses to climate of three major tree species (silver fir, Abies alba; Scots pine, Pinus sylvestris; and mountain pine, Pinus uncinata) in mountainous areas of NE Spain. This region is subjected to Mediterranean continental conditions, it encompasses wide climatic, topographic and environmental gradients, and, more importantly, it includes rear‐edges of the continuous distributions of these tree species. We used tree‐ring width data from a network of 110 forests in combination with the process‐based Vaganov–Shashkin‐Lite growth model and climate–growth analyses to forecast changes in tree growth during the 21st century. Climatic projections were based on four ensembles CO2 emission scenarios. Warm and dry conditions during the growing season constrain silver fir and Scots pine growth, particularly at the species rear‐edge. By contrast, growth of high‐elevation mountain pine forests is enhanced by climate warming. The emission scenario (RCP 8.5) corresponding to the most pronounced warming (+1.4 to 4.8 °C) forecasted mean growth reductions of ?10.7% and ?16.4% in silver fir and Scots pine, respectively, after 2050. This indicates that rising temperatures could amplify drought stress and thus constrain the growth of silver fir and Scots pine rear‐edge populations growing at xeric sites. Contrastingly, mountain pine growth is expected to increase by +12.5% due to a longer and warmer growing season. The projections of growth reduction in silver fir and Scots pine portend dieback and a contraction of their species distribution areas through potential local extinctions of the most vulnerable driest rear‐edge stands. Our modeling approach provides accessible tools to evaluate forest vulnerability to warmer conditions.  相似文献   

14.

Background and Aims

The coexistence of forest tree species has often been linked to differences among species in terms of their response to light availability during the regeneration stage. From this perspective, species coexistence results from growth–growth or mortality–growth trade-offs along spatial light gradients. Experimental evidence of growth–growth trade-offs in natural conditions is sparse due to various confounding factors that potentially hinder the relationship. This study examined growth hierarchies along light gradients between two tree species with contrasting shade tolerance by controlling potential confounding factors such as seedling size, seedling status, seedling density and species composition.

Methods

Natural regenerated shade-tolerant Fagus sylvatica and shade-intermediate Quercus petraea seedlings were used, and growth rankings over a 4-year period were compared in 8- to 10-year-old tree seedlings.

Key results

No rank reversal occurs between the two species along the light gradient, or along the density, mixture or seedling size gradients. The shade-tolerant species was always the more competitive of the two. Pronounced effects of initial size on seedling growth were observed, whereas the effects of light and competition by neighbours were of secondary importance. The paramount effect of size, which results from the asymmetric nature of interseedling competition, gives a strong advantage to tall seedlings over the long term.

Conclusions

This study extends previous efforts to identify potential drivers of rank reversals in young tree mixtures. It does not support the classical assumption that spatial heterogeneity in canopy opening explains the coexistence of the two species studied. It suggests that spatial variation in local size hierarchies among seedlings that may be caused by seedling emergence time or seedling initial performance is the main driver of the dynamics of these mixed stands.  相似文献   

15.
Climate change will exacerbate the degree of abiotic stress experienced by semi-arid ecosystems. While abiotic stress profoundly affects biotic interactions, their potential role as modulators of ecosystem responses to climate change is largely unknown. Using plants and biological soil crusts, we tested the relative importance of facilitative–competitive interactions and other community attributes (cover, species richness and species evenness) as drivers of ecosystem functioning along stress gradients in semi-arid Mediterranean ecosystems. Biotic interactions shifted from facilitation to competition along stress gradients driven by water availability and temperature. These changes were, however, dependent on the spatial scale and the community considered. We found little evidence to suggest that biotic interactions are a major direct influence upon indicators of ecosystem functioning (soil respiration, organic carbon, water-holding capacity, compaction and the activity of enzymes related to the carbon, nitrogen and phosphorus cycles) along stress gradients. However, attributes such as cover and species richness showed a direct effect on ecosystem functioning. Our results do not agree with predictions emphasizing that the importance of plant–plant interactions will be increased under climate change in dry environments, and indicate that reductions in the cover of plant and biological soil crust communities will negatively impact ecosystems under future climatic conditions.  相似文献   

16.
Forest decline and increasing tree mortality are of global concern and the identification of the causes is necessary to develop preventive measures. Global warming is an emerging factor responsible for the increasing tree mortality in drought-prone ecosystems. In the southwestern Iberian Peninsula, Mediterranean holm oak open woodlands currently undergo large-scale population-level tree die-off. In this region, temperature and aridity have increased during recent decades, but the possible role of climate change in the current oak mortality has not been investigated.To assess the role of climate change in oak die-off in managed open woodlands in southwestern Spain, we analyzed climate change-related signals in century-long tree ring chronologies of dead holm oaks. We examined the high/low-frequency variability in growth and the relationship between growth and climate.Similar to other Mediterranean forests, growth was favored by precipitation from autumn of the year prior to ring formation to spring of the year of ring formation, whereas high temperatures during spring limited growth. Since the 1970s, the intensity of the high-frequency response to water availability increased simultaneously with temperature and aridity. The growth trends matched those of climatic changes. Growth suppressions occurred during droughts in the 1970s, 1980s and 1990s. Widespread stand-level, age-independent mortality occurred since 2005 and affected trees that cannot be considered old for the species standards.The close relationship between growth and climate indicate that climate change strongly controlled the growth patterns. This suggests that harsher climatic conditions, especially increased aridity, affected the tree performance and could have played a significant role in the mortality process. Climate change may have exacerbated or predisposed trees to the impact of other factors (e.g. intense management and pathogens). These observations could suggest a similar future increase in oak mortality which may occur in more northern oak open woodlands if aridity further increases.  相似文献   

17.
Climatic harshness is expected to increase at higher elevations; however, elevational trends of tree radial growth response of high-elevation forests to climate change need to be investigated at different locations because of existing local variability in site-specific climatic conditions. We developed tree-ring width chronologies of Yunnan fir (Abies georgei) along elevation gradients at two sites in the central Hengduan Mountains (HM). High-elevation forests of A. georgei showed growth synchronicity and common growth signals along elevation gradients, indicating a common climatic forcing, although tree radial growth rates decreased with increasing elevation. Radial growth of Yunnan fir showed positive correlations with summer temperatures and February precipitation and moisture availability, but were negatively correlated with spring temperatures. The strongest positive relationship indicated summer (July) mean and minimum temperatures are the most important growth determining climatic factors for tree radial growth in the cold environment of HM, and this relationship revealed a clear elevational trend with stronger correlations at higher altitudes. In contrast, tree radial growth was negatively correlated with June precipitation and moisture availability. The whole study period 1954–2015 was split in two sub-periods of equal length. Comparing the early sub-period (1954–1984) to the later sub-period (1985–2015), tree growth response to the summer temperatures strongly increased, while it became weaker to June precipitation and moisture availability. High-elevation Yunnan fir forests in the HM currently benefit from elevated growing season temperatures under humid summer conditions. However, increasing temperatures may induce drought stress on tree radial growth if the observed decreasing trend in humidity and precipitation continues.  相似文献   

18.
Species often respond to human‐caused climate change by shifting where they occur on the landscape. To anticipate these shifts, we need to understand the forces that determine where species currently occur. We tested whether a long‐hypothesised trade‐off between climate and competitive constraints explains where tree species grow on mountain slopes. Using tree rings, we reconstructed growth sensitivity to climate and competition in range centre and range margin tree populations in three climatically distinct regions. We found that climate often constrains growth at environmentally harsh elevational range boundaries, and that climatic and competitive constraints trade‐off at large spatial scales. However, there was less evidence that competition consistently constrained growth at benign elevational range boundaries; thus, local‐scale climate‐competition trade‐offs were infrequent. Our work underscores the difficulty of predicting local‐scale range dynamics, but suggests that the constraints on tree performance at a large‐scale (e.g. latitudinal) may be predicted from ecological theory.  相似文献   

19.
Rates of tree growth in tropical forests reflect variation in life history strategies, contribute to the determination of species' distributional limits, set limits to timber harvesting and control the carbon balance of the stands. Here, we review the resources that limit tree growth at different temporal and spatial scales, and the different growth rates and responses of functional groups defined on the basis of regeneration strategy, maximum size, and species' associations with particular edaphic and climatic conditions.Variation in soil water availability determines intra- and inter-annual patterns of growth within seasonal forests, whereas irradiance may have a more important role in aseasonal forests. Nutrient supply limits growth rates in montane forests and may determine spatial variation in growth of individual species in lowland forests. However, its role in determining spatial variation in stand-level growth rates is unclear. In terms of growth rate, we propose a functional classification of tropical tree species which contrasts inherently fast-growing, responsive species (pioneer, large-statured species), from slow-growing species that are less responsive to increasing resource availability (shade-bearers, small-statured species). In a semi-deciduous forest in Ghana, pioneers associated with high-rainfall forests with less fertile soils, had significantly lower growth rates than pioneers that are more abundant in low-rainfall forests with more fertile soils. These results match patterns found in seedling trials and suggest for pioneers that species' associations with particular environmental conditions are useful indicators of maximum growth rate.The effects of variation in resource availability and of inherent differences between species on stand-level patterns of growth will not be independent if the functional group composition of tropical forests varies along resource gradients. We find that there is increasing evidence of such spatial shifts at both small and large scales in tropical forests. Quantifying these gradients is important for understanding spatial patterns in forest growth rates.  相似文献   

20.
Global change is widely altering environmental conditions which makes accurately predicting species range limits across natural landscapes critical for conservation and management decisions. If climate pressures along elevation gradients influence the distribution of phenotypic and genetic variation of plant functional traits, then such trait variation may be informative of the selective mechanisms and adaptations that help define climatic niche limits. Using extensive field surveys along 16 elevation transects and a large common garden experiment, we tested whether functional trait variation could predict the climatic niche of a widespread tree species (Populus angustifolia) with a double quantile regression approach. We show that intraspecific variation in plant size, growth, and leaf morphology corresponds with the species' total climate range and certain climatic limits related to temperature and moisture extremes. Moreover, we find evidence of genetic clines and phenotypic plasticity at environmental boundaries, which we use to create geographic predictions of trait variation and maximum values due to climatic constraints across the western US. Overall, our findings show the utility of double quantile regressions for connecting species distributions and climate gradients through trait‐based mechanisms. We highlight how new approaches like ours that incorporate genetic variation in functional traits and their response to climate gradients will lead to a better understanding of plant distributions as well as identifying populations anticipated to be maladapted to future environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号