首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Treatment of the six-coordinate trimethylstannyl complex, Os(SnMe3)(κ2-S2CNMe2)(CO)(PPh3)2 (1) with SnMe2Cl2 produces Os(SnMe2Cl)(κ2-S2CNMe2)(CO)(PPh3)2 (2), which in turn reacts readily with hydroxide ion to give, Os(SnMe2OH)(κ2-S2CNMe2)(CO)(PPh3)2 (3). The osmastannol complex 3 undergoes a reaction with 2 equivalents of tBuLi, in which one of the phenyl rings of a triphenylphosphine ligand is “ortho-stannylated”, without cleavage of the Os-Sn bond, to give the cyclic complex, Os(κ2(Sn,P)-SnMe2C6H4PPh2)(κ2-S2CNMe2)(CO)(PPh3) (4). This novel cyclic complex is selectively functionalised at the tin atom by reaction with SnMe2Cl2 which exchanges one methyl group for chloride giving the diastereomeric mixture, Os(κ2(Sn,P)-SnMeClC6H4PPh2)(κ2-S2CNMe2)(CO)(PPh3) (5a/5b). Crystal structure determination reveals that both diastereomers occur in the unit cell. The mixture, 5a/5b, undergoes reaction with hydroxide ion to give the diastereomeric osmastannol complexes, Os(κ2(Sn,P)-SnMeOHC6H4PPh2)(κ2-S2CNMe2)(CO)(PPh3) (6a/6b) and with sodium borohydride to give the corresponding tin-hydride mixture, Os(κ2(Sn,P)-SnMeHC6H4PPh2)(κ2-S2CNMe2)(CO)(PPh3) (7a/7b). Crystal structure determinations for 2, 4, and 5a/5b have been obtained.  相似文献   

2.
Reactions of orthometallated binuclear palladium complexes with NaER, obtained by NaBH4 reduction of R2E2 in methanol, gave complexes, [Pd2(μ-ER)2(CY)2] (HCY = N,N-dimethylbenzylamine (C6H5CH2NMe2), N,N-dimethylnaphthylamine (C10H7NMe2), tri-o-tolylphosphine {P(tol-o)3}; ER=SePh, SeMes, TePh, TeMes (Mes = 2,4,6-Me3C6H2). Similar reactions of [Pd2(μ-Cl)2(C10H6NMe2-C,N)2] with Pb(SMes)2 or MesSH in the presence of NaHCO3 gave chloro/thiolato-bridged complex [Pd2(μ-Cl)(μ-SMes)(C10H6NMe2-C,N)2]. The newly synthesized complexes were characterized by elemental analysis, UV-Vis, IR, NMR (1H, 13C, 31P, 77Se, 125Te) spectroscopy. These complexes crystallized out preferentially in sym-cis configuration. A low energy charge transfer transition has been identified from chalcogenolate centers to an emptyπ orbital of cyclometallated ligand in absorption spectroscopy in these complexes. The structures of [Pd2(μ-Cl)(μ-SMes)(C10H6NMe2-C,N)2] (1) and [Pd2(μ-SePh)2(C10H6NMe2-C,N) 2] (3) have been established by single crystal X-ray diffraction analyses. In the former, the two palladium atoms are held together by chloro and thiolato bridges whereas in the latter, the two phenylselenolato ligands bridge two palladium atoms. The pyrolysis of [Pd(μ-TeMes)(C10H6NMe2-C,N)]2 (10) in a furnace gave Pd7Te3 whereas thermolysis in TOPO afforded primarily PdTe2.  相似文献   

3.
A new singly bridging complex [Cu(dach)(μ-NCS)(NCS)]n (dach=1,4-diazacycloheptane) has been synthesised and its crystal structure determined. There are many examples of double NCS bridged polymeric chains, but fewer singly bridged ones. IR, ESR and temperature variable magnetic studies are described but no magnetic interaction was found between the copper centres. [Cu(dach)2(N3)]ClO4 has also been characterised by IR, ESR spectra and magnetic studies. The crystal structure determination shows that it is a penta-coordinated monomeric species with an axially coordinated azide linked to the perchlorate counterion by hydrogen bonding.  相似文献   

4.
The reactions of [Pt2(μ-E)2(PPh3)4] (E = S, Se) with cis-1,4-dichlorobut-2-ene (cis-ClCH2CHCHCH2Cl) give the dichalcogenolate complexes [Pt2(μ-ECH2CHCHCH2E)(PPh3)4]2+; an X-ray structure determination on the thiolate complex was carried out. The complexes give the expected dications in ESI mass spectra recorded at very low cone voltages, but at moderate cone voltages undergo facile fragmentation via a retro-Diels-Alder reaction and loss of 1,3-butadiene, giving the dichalcogenide species [Pt2(μ-E2)(PPh3)4]2+. Analogous species containing bidentate phosphine or arsine ligands have been previously generated electrochemically, and studied theoretically.  相似文献   

5.
Photoirradiation with a 150 W medium-pressure Hg lamp for 17 h in acetontrile as the solvent replaces the benzene ligand in the cationic complexes [(η6-C6H6)Ru(CH3CN)2(L)]2+ and [(η6-C6H6)Ru(CH3CN)(L2)]2+ (L=CH3CN, PPh3, L2=dppe, bipy) with acetonitrile. These replacements are equally clean to those reported before for analogous CpRu+ complexes. Crystal structures of the products obtained are included.  相似文献   

6.
Photolysis of M2(CO)4(μ-S-t-Bu)2, where M = Rh or Ir, in Nujol matrices at ca. 90 K results in simple CO loss to form a tricarbonyl intermediate analogous to that observed for Rh2(CO)4(μ-Cl)2. Photolysis of the anions, [M(CO)2Cl2]1−, where M = Rh or Ir, in inert ionic matrices at ca. 90 K, results in CO-loss to form an intermediate analogous to that formed by Rh(CO)2(i-Pr2HN)Cl. Finally, photolysis of trans-Ir(CO)(PMe3)2Cl in a Nujol matrix at ca. 90 K gives rise to a new species whose carbonyl band is shifted slightly down in energy as has been observed for trans-Rh(CO)(PMe3)2Cl. In all cases the iridium compounds behave similarly to the rhodium species although the photon energy for iridium photochemistry is typically above that of the rhodium compounds.  相似文献   

7.
The bimetallic cyano-bridged [(η5-C5H5)(PPh3)2Ru(μ-CN)Ru(PPh3)25-C5H5)][PF6] (1) was prepared by reaction of [(η5-C5H5)(PPh3)2RuCl] with N,N′-bis(cyanomethyl)ethylenediamine. The single crystal structure determined by X-ray diffraction showed crystallization on the triclinic P1 space group with a perfect alignment of the cyanide bridges. This accentric crystallization was explored having in view the NLO properties at the macroscopic level, determined by the Kurtz Powder technique. Besides the very low efficiency values for the second harmonic generation, the value obtained for the bimetallic complex 1 showed to be higher than one of the parent complex [(η5-C5H5)(PPh3)2RuCN] (2).  相似文献   

8.
The metal-sulfur bonding present in the transition metal-thiolate complexes CpFe(CO)2SCH3, CpFe(CO)2StBu, CpRe(NO)(PiPr3)SCH3, and CpRe(NO)(PPh3)SCH3 (Cp = η5-C5H5) is investigated via gas-phase valence photoelectron spectroscopy. For all four complexes a strong dπ-pπ interaction exists between a filled predominantly metal d orbital of the [CpML2]+ fragment and the purely sulfur 3pπ lone pair of the thiolate. This interaction results in the highest occupied molecular orbital having substantial M-S π antibonding character. In the case of CpFe(CO)2SCH3, the first (lowest energy) ionization is from the Fe-S π orbital, the next two ionizations are from predominantly metal d orbitals, and the fourth ionization is from the Fe-S π orbital. The pure sulfur pπ lone pair of the thiolate fragment is less stable than the filled metal d orbitals of the [CpFe(CO)2]+ fragment, resulting in a Fe-S π combination that is higher in sulfur character than the Fe-S π combination. Interestingly, substitution of a tert-butyl group for the methyl group on the thiolate causes little shift in the first ionization, in contrast to the shift observed for related thiols. This is a consequence of the delocalization and electronic buffering provided by the Fe-S dπ-pπ interaction. For CpRe(NO)(PiPr3)SCH3 and CpRe(NO)(PPh3)SCH3, the strong acceptor ability of the nitrosyl ligand rotates the metal orbitals for optimum backbonding to the nitrosyl, and the thiolate rotates along with these orbitals to a different preferred orientation from that of the Fe complexes. The initial ionization is again the M-S π combination with mostly sulfur character, but now has considerable mixing among several of the valence orbitals. Because of the high sulfur character in the HOMO, ligand substitution on the metal also has a small effect on the ionization energy in comparison to the shifts observed for similar substitutions in other molecules. These experiments show that, contrary to the traditional interpretation of oxidation of metal complexes, removal of an electron from these metal-thiolate complexes is not well represented by an increase in the formal oxidation state of the metal, nor by simple oxidation of the sulfur, but instead is a variable mix of metal and sulfur content in the highest occupied orbital.  相似文献   

9.
A series of triphenylphosphine coordinated silver α,β-unsaturated carboxylates of type [Ag(O2CR)(PPh3)n: n = 1, R = CH3CHCH (2a), (CH3)2CCH (2b), CH3CH2CHCH (2c), CH3CH2CH2CHCH (2d), PhCHCH (2e), CH2CH (2f); n = 2, CH3CHCH (3a), (CH3)2CCH (3b), CH3CH2CHCH (3c), CH3CH2CH2CHCH (3d)] were prepared by reaction of relative silver carboxylates (1a-1f) with triphenylphosphine in chloroform. These complexes were obtained in high yields and characterized by elemental analysis, 1H NMR, 13C NMR, 31P NMR and IR spectroscopy. Thermal stability of the complexes has been determined by TG analysis. The molecular structure of [Ag((O2CCHC(CH3)2))(PPh3)2] (3b) shows that the senecioato ligand is chelated with silver atom and generate, a distorted tetrahedron.  相似文献   

10.
Both enantiomers of 3α-acyloxy-6β-acetoxyltropane derivatives 14 were prepared respectively and underwent functional studies and radioreceptor binding assays. 6S Enantiomers showed obvious muscarinic M3, M2 antagonistic activity, while the 6R ones elicited little muscarinic activity by functional studies. Besides, the affinity of 6S enantiomers to muscarinic M3 receptors of rat submandibulary gland, M2 receptors of rat left atria was much larger than that of corresponding 6R enantiomers. All these pharmalogical results indicated 6S configuration was favorable for 3α-acyloxy-6β-acetoxyltropane derivatives to bind with muscarinic M3 or M2 receptors and elicited antagonistic activity. Furthermore, the muscarinic M3 activity and subtype selectivity (M3/M2) of 6S enantiomers could be improved by increasing the electron density of carbonyl oxygen or introducing methylene group between the carbonyl and phenyl ring in C-3α position. Understanding the effect of absolute configuration on activity, subtype selectivity (M3/M2) of 3α-acyloxy-6β-acetoxyltropane derivatives will provide the clues for designing muscarinic M3 antagonists with high activity and low side effects or toxicity.  相似文献   

11.
A three-dimensional polymeric KITlI heterometallic compound [K2Tl(μ-C4H4O4)(μ-NO3)]n, with mixes succinate and nitrate ligands, has been synthesized and characterized. Its single-crystal X-ray structure shows two types of K+-ions with coordination numbers of seven and eight and one Tl+-ion with a coordination number of five. However, the arrangement of O-atoms for TlI suggests a gap or hole in the coordination geometry around this atom. This ‘hole’ is possibly occupied by a stereochemically ‘active’ electron lone pair of thallium atoms. Two hydrogen atoms of succinate situated 3.26 Å above the proposed site on the lone pair of TlI is oriented in such a way that it might be thought to be forming weak Tl-Lp?H-C hydrogen bond or agostic interactions, thus attaining of environment TlO5H2.  相似文献   

12.
The reaction of [ZnLI,II2] (LI = [NH2C(S)NP(O)(OiPr)2]; LII = [PhNHC(S)NP(O)(OiPr)2]) or [Cd2LIV4] (LIV = [PhC(S)NP(O)(OiPr)2]) with 2,2′-bipyridine (bpy) or 1,10-phenanthroline (phen) leads to the heteroligand complexes [Zn(bpy)LI,II2], [Zn(phen)LI,II2], [Cd(bpy)LIV2] or [Cd(phen)LIV2], respectively. The introduction of the diimine ligands into the coordination sphere of the metal cation provokes a change from 1,5-O,S- to 1,3-N,S-coordination of the anionic ligands for Zn but not for the Cd species. The reaction of [Zn(phen)LIV2] (LIV = PhC(S)NP(O)(OiPr)2) with CH2Cl2 cleaves the chlorine atoms from CH2Cl2 and leads to the formation of [Zn(phen)LIVCl] and S,S′-bis(benzimidothio-N-diisopropoxyphosphoryl)methane (LIV-CH2-LIV) in high yields. Using CHCl3 or CCl4 instead of CH2Cl2 does not lead to the formation of chlorine substituted products even under reflux conditions. The new compounds were investigated by 1H and 31P{1H} NMR, IR spectroscopy and microanalysis. Crystal structures of [ZnLII2], [Cd(phen)LIV2]·CH2Cl2, [Zn(bpy)LI2] and [Zn(phen)LIVCl] were elucidated by X-ray diffraction.  相似文献   

13.
The arsonium-substituted isocyanides, o-(I+R3AsCH2)C6H4NC (AsR3=AsPh3, L1; AsMePh2, L2; AsMe2Ph, L3), were prepared by reaction of o-(chloromethyl)phenyl isocyanide, o-(CH2Cl)C6H4NC, with a slight molar stoichiometric amount of the arsine in the presence of a 3-fold excess of NaI in acetone at room temperature. The isocyanides L1-L3 coordinate to some Pt(II) complexes such as trans-[PtX{o-(I+R3AsCH2)C6H4NC}(PPh3)2] [BF4] (AsR3=AsPh3, 1; AsMePh2, 2; AsMe2Ph, 3; X=Cl, I) and [PtX{o-(I+R3AsCH2)C6H4NC}(Ph2PCHCHPPh2)] [BF4] (AsR3=AsMePh2, 4; X=Cl, I). Complexes 2-4 are converted in CH2Cl2 at room temperature in the presence of NEt3 to the corresponding indolidin-2-ylidene derivatives trans-[PtX{(AsR3)}(PPh3)2]BF4] (AsR3=AsPh3, 5; AsMePh2, 6; AsMe2Ph, 7) and [PtX{(AsMePh2)}(Ph2PCHCHPPh2)][BF4] (8).  相似文献   

14.
The cationic carbyne complex [Cp(CO)2MnCC6H5]BBr4 (1) reacts with PPN[Rh(CO)4] (2) to give the title cluster [(μ3-CC6H5)(μ-CC6H5) Rh2Mn2Cp2(μ-CO)3(CO)3] (3) whose structure has been determined by X-ray diffraction. The electrochemical properties of 3 have been investigated using cyclic voltammetric method. At 60 °C and 2.0 MPa of initial total CO/H2 (1:1) pressure, the catalytic activity of 3 towards hydroformylation of styrene has also been checked.  相似文献   

15.
By employing the common precursor Na3[Fe(CN)5(NH3)]·3H2O in a new synthetic approach, the azidopentacyanoferrate(III) ion has been isolated and structurally characterized as (Ph4As)2[Na(H2O)4][Fe(CN)5(N3)] 1. In order to confirm its building block ability, compound 1 has been reacted with the mononuclear complex [Mn(valphen)(H2O)2]ClO4 (H2valphen represents the Schiff base resulting from the condensation of o-vanillin with 1,2-phenylenediamine in a 2:1 M ratio) to afford the new MnIII-FeIII heterometallic system [Mn(valphen)(H2O)2]2[(H2O)(valphen)Mn(μ-CN)Fe(CN)4(N3)]·8H2O 2. The crystal structure of compound 2 reveals a supramolecular assembly generated by [(H2O)(valphen)Mn(μ-CN)Fe(CN)4(N3)]2− dianions and discrete [Mn(valphen)(H2O)2]+ counterions. The dynamic magnetic measurements of compound 2 point to a slow relaxation of the magnetization.  相似文献   

16.
The crystal structures of two copper(II) complexes containing the ligand di-2-pyridylamine (dpyam) with monovalent H2PO4 − and divalent HPO4 2− oxoanions, [Cu(dpyam)(μ-H2PO4-O,O)(H2PO4)]2 (1) and [Cu(dpyam)(μ3-HPO4-O,O,O″)]n (2), are reported and determined by X-ray crystallography. The dinuclear Cu(II) complex 1 was obtained by the reaction of dpyam with Cu(NO3)2 · 3H2O and KH2PO4 in a water-ethanol (45/55) mixture. The molecules are linked into dinuclear units by two bridging didentate dihydrogenphosphate groups (endo/exo) in an equatorial-equatorial configuration giving a slightly distorted square pyramidal stereochemistry. The Cu-Cu contact distance of 5.136(2) Å is unusually large due to the exo/endo binding of the phosphate bridges. Complex 2 is a polymeric copper(II) derivative with helical [Cu(HPO4)]3 units surrounded by dpyam ligands and stabilized by intermolecular hydrogen bonds. Two nearest Cu(II) ions are bridged by a tridentate hydrogenphosphate group which is didentately coordinated to one copper(II) ion, and monodentately coordinated to another in an equatorial-equatorial configuration in an unusual bridging coordination mode. Each copper(II) ion in 2 exhibits a tetrahedrally distorted square-based geometry with the third oxygen atom (Cu-O=2.719(3) Å), from the hydrogenphosphate group weakly bound in an approximately axial position giving an extremely tetrahedrally distorted square-based pyramidal CuN2O2O chromophore. The magnetic susceptibility measurements (5-300 K) reveals an antiferromagnetic interaction with J values of −2.85(1) and −26.20(2) cm−1 for complexes 1 and 2, respectively. Some magneto-structural trends are discussed, along with their EPR and electronic reflectance spectra and compared with those of related complexes.  相似文献   

17.
Two dinuclear iron(III) complexes with tetradentate N-donor ligand 1,4-di(2-pyridyl)aminophthalazine (PAP), [Fe2(μ-OMe)2(PAP)Cl4] (2) and [Fe2(μ-OMe)2(PAP)(OAc)4] (3) were prepared and characterized. Single crystal X-ray molecular structure of [Fe2(μ-OMe)2(PAP)Cl4] · 2MeOH have been elucidated. The six-coordinate iron atoms are in distorted octahedral environment bridged by the oxygen atoms of two methoxy groups and the PAP ligand. The Mössbauer spectra of both complexes show one quadrupole doublet and the isomer shift and quadrupole splitting values indicate the presence of octahedral high-spin FeIII ions. Complex 2 showed catalytic activity for alkane oxidation with hydrogen peroxide.  相似文献   

18.
A series of 3,6-disubstituted β-carbolines was synthesized and evaluated for their in vitro affinities at α(x)β(3)γ(2) GABA(A)/benzodiazepine receptor subtypes by radioligand binding assays in search of α(1) subtype selective ligands to treat alcohol abuse. Analogues of β-carboline-3-carboxylate-t-butyl ester (βCCt, 1) were synthesized via a CDI-mediated process and the related 6-substituted β-carboline-3-carboxylates 6 including WYS8 (7) were synthesized via a Sonogashira or Stille coupling processes from 6-iodo-βCCt (5). The bivalent ligands of βCCt (32 and 33) were also designed and prepared via a palladium-catalyzed homocoupling process to expand the structure-activity relationships (SAR) to larger ligands. Based on the pharmacophore/receptor model, a preliminary SAR study on 34 analogues illustrated that large substituents at position-6 of the β-carbolines were well tolerated. As expected, these groups are proposed to project into the extracellular domain (L(Di) region) of GABA(A)/Bz receptors (see 32 and 33). Moreover, substituents located at position-3 of the β-carboline nucleus exhibited a conserved stereo interaction in lipophilic pocket L(1), while N(2) presumably underwent a hydrogen bonding interaction with H(1). Three novel β-carboline ligands (βCCt, 3PBC and WYS8), which preferentially bound to α1 BzR subtypes permitted a comparison of the pharmacological efficacies with a range of classical BzR antagonists (flumazenil, ZK93426) from several different structural groups and indicated these β-carbolines were 'near GABA neutral antagonists'. Based on the SAR, the most potent (in vitro) α(1) selective ligand was the 6-substituted acetylenyl βCCt (WYS8, 7). Earlier both βCCt and 3PBC had been shown to reduce alcohol self-administration in alcohol preferring (P) and high alcohol drinking (HAD) rats but had little or no effect on sucrose self-administration.(1-3) Moreover, these two β-carbolines were orally active, and in addition, were anxiolytic in P rats but were only weakly anxiolytic in rodents. These data prompted the synthesis of the β-carbolines presented here.  相似文献   

19.
The relative affinities of various muscarinic drugs in the antagonist ([3H]N-methyl scopolamine ([3H]NMS)) and agonist ([3H]Oxotremorine-m ([3H]OXO-M)) binding assays using a mixture of tissues containing M1–M4 receptor subtypes have been determined. [3H]NMS bound with high affinity (Kd=25±5.9 pM; n=3) and to a high density (Bmax=11.8±0.025 nmol/g wet weight) of muscarinic receptors. [3H]OXO-M appeared to bind to two binding sites with differing affinities (Kd1=2.5±0.1 nM; Kd2=9.0±4.9 M; n=4) and to a different population of binding sites (Bmax1=5.0±0.26 nmol/g wet weight; Bmax2=130±60 nmol/g wet weight). Well known antagonists exhibited high affinity for [3H]NMS binding but a lower affinity for [3H]OXO-M binding. The opposite was true for acetylcholine and other known agonists. However, pilocarpine and McN-A-343 had similar affinities for sites labeled by both radioligands. Using the ratios of antagonist-to-agonist binding affinities, it was possible to group compounds into apparently distinct full agonist (ratios of 180–665; e.g. carbachol, muscarine, OXO-M, OXO-S and arecoline), partial agonist (ratios of 14–132; e.g. McN-A-343, pilocarpine, aceclidine, bethanechol, OXA-22 and acetylcholine) and antagonist (ratios of 0.22–1.9; e.g. atropine, NMS, pirenzepine, methoctramine, 4-DAMP and p-fluorohexahydrosialo-difenidol) classes. These data suggest that the NMS/OXO-M affinity ratios using a mixture of M1–M4 muscarinic receptors may be a useful way to screen and group a large number of compounds into apparent agonist, partial agonist, and antagonist classes of cholinergic agents.  相似文献   

20.
New types of Pt(II) mixed-ligand complexes containing a pyridine derivative (Ypy) and pyrazine (pz) were synthesized. The compounds were characterized by infrared spectroscopy and by multinuclear (1H, 13C and 195Pt) magnetic resonance. The complexes cis-Pt(Ypy)(pz)Cl2 were synthesized from the reaction of K[Pt(Ypy)Cl3] with pyrazine (1:1 proportion) in water. When the reaction was carried on in a 2:1 ratio, a mixture of compounds was obtained, which was refluxed in CH2Cl2 for several days. The final product was found to be pure and it was identified as trans,trans-Cl2(Ypy)Pt(μ-pyrazine)Pt(Ypy)Cl2. The cis monomers isomerize to the trans isomers in organic solvents. Different methyl derivatives of pyridine were studied in order to determine the influence of substitution in ortho position on the pyridine ligand in the complexes. In IR spectroscopy, the cis monomers showed two ν(Pt-Cl) bands, while the trans monomers and dinuclear species showed only one ν(Pt-Cl) band. The NMR results were interpreted in relation to the solvent effect, which seems important in these complexes. The 195Pt NMR signals of the cis monomers were found at slightly higher fields than those of the corresponding trans isomers. The coupling constants J(195Pt-1H) and J(195Pt-13C) are larger in the cis geometry. The δ(195Pt) of the dinuclear species were found close to those of the trans monomers and the coupling constants are similar to those of the trans monomers, strongly suggesting a trans-trans configuration for the dinuclear compounds. The pyrazine-bridged complex K2[Cl3Pt(μ-pz)PtCl3] was also synthesized and spectroscopically studied. The crystal structures of the compounds cis-Pt(3,5-lut)(pz)Cl2 and trans-Pt(2,4,6-col)(pz)Cl2 were determined by X-ray diffraction methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号