首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During spring storms massive uprooting of Littorella uniflora occurred in a shallow Dutch softwater lake. The aim of this study was to test whether changes in plant morphology and sediment characteristics could explain the observed phenomenon. Uprooting was expected to occur in plants having a high shoot biomass and low root to shoot ratio (R:S), growing on sediments with a high organic matter content. Normally, uprooting of the relative buoyant L. uniflora is prevented by an extensive root system, expressed as a high R:S. This was studied by sampling floating and still rooted L. uniflora plants, as well as sediment and sediment pore water, along a gradient of increasing sediment organic matter content. Increasing organic matter content was related to increasing L. uniflora shoot biomass and consequently decreasing R:S. Furthermore, the results indicated that uprooting indeed occurred in plants growing on very organic sediments and was related to a low R:S. The increased shoot biomass on more organic sediments could be related to increased sediment pore water total inorganic carbon (TIC; mainly CO2) availability. Additionally, increased phosphorus availability could also have played a role. The disappearance of L. uniflora might lead to higher nutrient availability in the sediments. It is suggested that this could eventually promote the expansion of faster‐growing macrophytes.  相似文献   

2.
3.
4.
1. Arbuscular mycorrhizal fungi (AMF) commonly colonise isoetid species inhabiting oxygenated sediments in oligotrophic lakes but are usually absent in other submerged plants. We hypothesised that organic enrichment of oligotrophic lake sediments reduces AMF colonisation and hyphal growth because of sediment O2 depletion and low carbon supply from stressed host plants. 2. We added organic matter to sediments inhabited by isoetids and measured pore‐water chemistry (dissolved O2, inorganic carbon, Fe2+ and ), colonisation intensity of roots and hyphal density after 135 days of exposure. 3. Addition of organic matter reduced AMF colonisation of roots of both Lobelia dortmanna and Littorella uniflora, and high additions stressed the plants. Even small additions of organic matter almost stopped AMF colonisation of initially un‐colonised L. uniflora, though without reducing plant growth. Mean hyphal density in sediments was high (6 and 15 m cm?3) and comparable with that in terrestrial soils (2–40 m cm?3). Hyphal density was low in the upper 1 cm of isoetid sediments, high in the main root zone between 1 and 8 cm and positively related to root density. Hyphal surface area exceeded root surface area by 1.7–3.2 times. 4. We conclude that AMF efficiently colonise isoetids in oligotrophic sediments and form extensive hyphal networks. Small additions of organic matter to sediments induce sediment anoxia and reduce AMF colonisation of roots but cause no apparent plant stress. High organic addition induces night‐time anoxia in both the sediment and the plant tissue. Tissue anoxia reduces root growth and AMF colonisation, probably because of restricted translocation of nutrient ions and organic solutes between roots and leaves. Isoetids should rely on AMF for P uptake on nutrient‐poor mineral sediments but are capable of growing without AMF on organic sediments.  相似文献   

5.
1. Lake eutrophication has increased phytoplankton blooms and sediment organic matter. Among higher plants, small, oligotrophic rosette species (isoetids) have disappeared, while a few tall, eutrophic species (elodeids) may have persisted. Despite recent reduction of nutrient loading in restored lakes, the vegetation has rarely regained its former composition and coverage. Patterns of recovery may depend on local alkalinity because HCO3? stimulates photosynthesis of elodeids and not of isoetids. In laboratory growth experiments with two isoetids (Lobelia dortmanna and Littorella uniflora) and two elodeids (Potamogeton crispus and P. perfoliatus), we test whether organic enrichment of lake sediments has a long‐lasting influence by: (i) reducing plant growth because of oxygen stress on plant roots and (ii) inhibiting growth more for isoetids than elodeids. We also test whether (iii) increasing alkalinity (from 0.17 to 3.20 meq. L?1) enhances growth and reduces inhibition of organic sediment enrichment for elodeids but not for isoetids. 2. In low organic sediments, higher oxygen release from roots of isoetids than elodeids generated oxic conditions to greater sediment depth for Lobelia (4.3 cm) and Littorella (3.0 cm) than for Potamogeton species (1.6–2.2 cm). Sediment oxygen penetration depth fell rapidly to 0.4–1.0 cm for all four species at even modest organic enrichment and oxygen consumption in the sediments. Roots became shorter and isoetid roots became thicker to better supply oxygen to apical meristems. 3. Growth of elodeids was strongly inhibited across all levels of organic enrichment of sediments being eight‐fold lower at the highest enrichment compared to the unenriched control. Leaf biomass of isoetids increased three‐fold by moderate organic enrichment presumably because of greater CO2 supply from sediments being their main CO2 source. At higher organic enrichment, isoetid biomass was reduced, leaf chlorophyll declined up to 10‐fold, root length declined from 7 to <2 cm and mortality rose (up to 50%) signalling high plant stress. 4. Lobelia was not affected by HCO3? addition in accordance with its use of sediment CO2. Biomass of elodeids increased severalfold by rising alkalinity from 0.17 to 3.20 meq. L?1 in accordance with their use of HCO3? for photosynthesis, while the negative impact of organically enriched sediments remained. 5. Overall, root development of all four species was so strongly restricted in sediments enriched with labile organic matter that plants if growing in situ may lose root anchorage. Other experiments demonstrate that this risk is enhanced by greater water content and reduced consolidation in organically rich sediments. Therefore, formation of more muddy and oxygen‐demanding sediments during eutrophication will impede plant recovery in restored lakes while high local alkalinity will help elodeid recovery.  相似文献   

6.
1. It has been hypothesised that the symbiosis with arbuscular mycorrhizal fungi (AMF) leads to a higher uptake of phosphorus (P) and nitrogen (N) in aquatic plants, but it has never been shown experimentally without the use of fungicides. In particular, the symbiosis may be important for nutrient uptake by isoetids in oligotrophic lakes, where low concentrations of inorganic N and P both in the water and in the sediment limit the growth of plants and where symbiosis facilitates the uptake of nutrients from the sediment. 2. Plants of the isoetid Littorella uniflora were propagated under the sterile conditions without an AMF infection. The plants were then grown for 60 days with and without re‐infection by AMF, and with either high (150 μm ) or low (ambient concentration approximately 15 μm ) CO2 concentration. 3. The study proved that the symbiosis between AMF and L. uniflora had a positive impact on the retention of N and P in the plants at very low nutrient concentrations in the water and on biomass development. Shoot biomass and standing stocks of both P and N were significantly higher in re‐infected plants. 4. Raised CO2 concentration resulted in a fivefold increase in hyphal infection, but had no impact on the number of arbuscules and vesicles in the cross sections. There were significantly higher biomass and lower tissue P and N concentrations in the plants from high CO2 treatments. This resulted in similar standing stocks of P and N in plants from low and high CO2 treatments. 5. The results from this study showed that the symbiosis between AMF and L. uniflora is an important adaptation enabling isoetids to grow on nutrient‐poor sediments in oligotrophic lakes.  相似文献   

7.
8.
Freshwater isoetids exchanges a high proportion of the photosynthetically produced oxygen over the extensive root system and, therefore, they influence the redox potential (Eh) and phosphorus (P) availability in their sediments. Because isoetids rely on the sediment for P uptake, P may be a key element in controlling the distribution of isoetids. We investigated biomass and P availability to isoetids (Littorella uniflora and Isoetes lacustris) in a transect of five stations across the littoral zone in oligotrophic Lake Kalgaard, Denmark. At the two shallowest stations (0.6 and 1.0 m depth) the redox potential in the low organic rhizosphere sediment was high (>300 mV) and low concentrations of reduced exchangeable iron (Fe) and manganese (Mn) compounds in the sediment and of precipitated Fe and Mn oxides on isoetid roots (plaques) were found. The concentration of sediment P pools was low and so was isoetid P content and isoetid biomass. At intermediate water depth (1.8 m) sediment Eh was high (300 mV) and isoetids showed low root plaque concentrations. However, higher concentration of P pools in the rhizosphere was found at 1.8 m and isoetids showed the highest P content and biomass. At deeper stations (2.8 and 4.6 m depth) Eh was low (<100 mV) in the high organic rhizosphere and high concentrations of plaques were found. The P content in the sediment was high, however, isoetids showed low biomass and low P content. We suggest that the low P content in isoetids growing on P rich organic sediments is partly due to inhibition of the P uptake because of adsorption of P to the oxidized Fe and Mn plaques. However, ratios between oxidized Fe and Fe-bound P, 150 for plaques and 40 for sediment, suggest the isoetids are able to access some of the P that is bound in the plaques. The pools of dissolved P in the porewater were 25–1100 times lower than the estimated annual P requirement for net growth of isoetids while solid fraction P pools were 20–260 times higher than the estimated annual P requirement. Clearly, the oxygen release from isoetid roots decreases the availability of P either by keeping the entire rhizosphere oxidized (low organic sediments) or by the formation of root plaques (high organic sediments).  相似文献   

9.
10.
1. Littorella uniflora and Lobelia dortmanna are prominent small rosette species in nutrient‐poor, soft‐water lakes because of efficient root exchange of CO2 and O2. We hypothesise that higher gas exchange across the leaves of L. uniflora than of L. dortmanna ensures O2 uptake from water and underlies its greater tolerance to sediment anoxia following organic enrichment. 2. We studied plant response to varying sediment O2 demand and biogeochemistry by measuring photosynthesis, gas exchange across leaves and O2 dynamics in plants during long‐term laboratory and field studies. Frequent non‐destructive sampling of sediment pore water was used to track changes in sediment biogeochemistry. 3. Addition of organic matter triggered O2 depletion and accumulation of , Fe2+ and CO2 in sediments. Gas exchange across leaf surfaces was 13–16 times higher for L. uniflora than for L. dortmanna. Oxygen in the leaf lacunae of L. uniflora remained above 10 kPa late at night on anoxic sediments despite organic enrichment. Leaf content of N and P of L. uniflora remained sufficient to keep up photosynthesis despite prolonged sediment anoxia, whereas nutrient content was too low for long‐term survival of L. dortmanna. 4. High gas exchange across L. uniflora leaves improves its performance and survival on anoxic sediments compared with L. dortmanna. Lobelia dortmanna uses the same gas‐tight leaves in air and water, which makes it highly susceptible to sediment anoxia but more cost‐effective in ultra‐oligotrophic environments because of slow leaf turnover.  相似文献   

11.
1. The vulnerability of softwater, oligotrophic lakes to eutrophication has caused the disappearance of many, if not most, of the unique isoetid plant communities. We tested whether the presence or disappearance of the isoetid Littorella uniflora (L.) could be predicted from environmental parameters, soil types and land use in the catchment area, and atmospheric nitrogen deposition. 2. We found that the topographic catchment area of a lake was an irrelevant unit to study effects of soil type and land use. Instead, using a GIS‐generated buffer zone around the lakes it proved feasible to classify 472 lakes into historical (if L. uniflora had disappeared) or recent (if L. uniflora was still present) Littorella lakes, based on soil type and land use. Our analysis showed that aeolian sand deposits and heath in the buffer zone favoured the presence of L. uniflora, whereas moraine clay and agriculture were strongly linked to the disappearance of L. uniflora. 3. However, in order to understand fully the presence or disappearance of L. uniflora, environmental data were needed in addition to soil types, land use and nitrogen deposition, and the use of discriminant analysis allowed us to classify 96% of the investigated lakes correctly into recent or historical sites. Alkalinity, total phosphorus, total nitrogen, aeolian sand deposits and heath were the most important parameters explaining the presence or disappearance of L. uniflora. Our analysis also indicated that eutrophication, rather than acidification, has likely caused the disappearance of L. uniflora from 218 of the 472 lakes investigated. 4. Our findings have widespread implications for the conservation or restoration of isoetid habitats and we recommend applying a wide buffer zone around lakes, with restrictions on farming and traditional forestry activities. In addition, our buffering concept may prove a useful tool for aquatic ecologists to investigate relationships between catchment features and organisms (plants, insects and amphibians) with aquatic as well as terrestrial life forms.  相似文献   

12.
The submersed freshwater macrophyte Utricularia inflata is a recent invader of Adirondack Mountain lakes (NY, USA). Previous experiments suggested that U. inflata can indirectly change nutrient cycling in Adirondack lake ecosystems by reducing the growth of native isoetid macrophytes, which in turn affects sediment chemistry. A 13-week greenhouse experiment was conducted to test the hypothesis that shading can explain the detrimental effect of U. inflata on the native short-statured isoetid, Eriocaulon aquaticum. Eriocaulon aquaticum has a dense root system that oxidizes sediment by releasing oxygen; it also takes up carbon dioxide from sediment. Growth and asexual reproduction of E. aquaticum grown under shaded conditions was reduced significantly compared to an unshaded control (< 0.001). Shading resulted in sediment changes: redox potential fell from 216 mV in the absence of shading to 76 mV under four layers of shade cloth (< 0.0001). Shading also increased the concentration of extractable sediment ammonium (P < 0.01), as well as carbon dioxide concentrations (< 0.0001) and pH of porewater (P < 0.05). The effect of U. inflata on the native isoetids and consequently on sediment chemistry closely matched the impact of shade cloth with similar light attenuation. Our results indicate that the principal mechanism by which U. inflata affects native isoetids and sediment chemistry is shading.  相似文献   

13.
1. The impact of groundwater seepage on the growth of submerged macrophytes was investigated in experiments on the isoetid Littorella uniflora and the elodeid Myriophyllum alterniflorum both in the laboratory and in the field. Isoetids rely mostly on sediment‐derived CO2 and nutrients via root uptake, whereas elodeids acquire their inorganic carbon and nutrients from the water column. We thus hypothesised that L. uniflora would respond positively to seeping ground water as it should improve both CO2 and nutrient supply. 2. Laboratory experiments were conducted by percolating vegetated cores containing natural sediment or technical sand with artificial ground water of high CO2 concentrations and with either high or low levels of nutrients. Field experiments were conducted in the oligotrophic Lake Hampen, Denmark, with custom‐built seepage‐growth chambers that permitted a near‐natural flow‐through of seeping ground water. Chambers with a solid bottom, and thus no flow‐through of seeping ground water, served as controls in both laboratory and field experiments. In the field, seepage chambers were installed at a site with relatively high seepage fluxes (ground water from forest catchment), at a site with much lower seepage fluxes but with higher nutrient concentrations (ground water from agricultural catchment) and at a reference site with no net discharge or recharge of ground water. 3. Positive growth responses were observed in the field at transects with high groundwater discharge compared to the control chambers with no seepage. No growth response was observed at the reference transect with low or alternating direction of groundwater seepage. The growth rates of L. uniflora in the field were significantly higher in seepage treatments compared to control treatments, and final plant mass was up to 70% higher than that for plants where seepage was excluded. In areas with high groundwater discharge, a strong positive correlation was found between groundwater seepage fluxes, growth rates, and final plant mass for L. uniflora, while there was no such relationship at the reference transect. The growth of M. alterniflorum was also significantly affected by groundwater seepage, but to a lesser degree than L. uniflora. Laboratory experiments generally showed the same trend for both L. uniflora and M. alterniflorum, and the positive influence of seeping ground water was apparently related to increased inorganic carbon supply and, to a lesser degree, improved nutrient availability. 4. Groundwater discharge results in enhanced growth of isoetids and to some extent elodeids inhabiting a groundwater‐fed softwater lake. We propose that the shallow dense vegetation present where most of the discharge takes place acts as a biological filter that retains nutrients that otherwise would end up in the water column and could result in increased algal growth.  相似文献   

14.
Historical data from the 1930s were compared with new data gathered during the 2000s to evaluate the effects of increased numbers of larger stature submersed species (both elodeids and characeans) on resident isoetid communities. The cover and species richness of submersed species were assessed in 23 seepage lakes in northwestern Wisconsin, USA, using randomly located 1 m × 1 m plots. Water clarity, conductivity and residential land use were determined on a whole-lake basis and the sediment type and water depth were recorded at each plot. The probability of elodeids or characeans occurring in isoetid plots increased with the number of elodeids and characeans gained by a lake since the 1930s, with additions ranging from two to 15 species per lake. However, not all species were equally likely to co-occur with isoetids. Six elodeid species (Najas flexilis, Najas gracillima, Potamogeton gramineus, Potamogeton pusillus, Potamogeton spirillus and Vallisneria americana) along with Chara spp. were the most frequent isoetid associates, while other species that were common in the lakes, such as Elodea canadensis and Potamogeton robbinsii, were less frequent in isoetid plots. The lake-wide proportion of isoetid plots colonized by elodeids or characeans ranged from 5% to 100%, with increasing conductivity and total elodeids (plus Chara spp. and Nitella spp.) the strongest predictors of this colonization. Approximately half (49.6%) of all isoetid plots sampled had elodeids or characeans present (39.2% elodeids, 7.4% elodeids and characeans, 3.0% characeans), and isoetid cover and species richness were lower when these larger stature species were present. The risks this colonization poses for the long-term viability of isoetid species appeared to depend on multiple factors, including whole-lake characteristics, opportunities for refuge, and connections among regional isoetid populations. There was evidence of a time lag between the introduction of elodeid or characean species to a lake and invasion of isoetid plots within the lake, a process that deserves further study.  相似文献   

15.
1. Oligotrophic softwater lakes represent a special type of aquatic ecosystem with unique plant communities where generalisations from other aquatic plant communities to rising CO2 in the water column may not apply. 2. In the present study, we set up large in situ mesocosms and supporting laboratory experiments with isoetid vegetation (Littorella uniflora) where water column CO2 and light could be manipulated in order to test whether (i) light and CO2 availability affect nutrient concentrations in isoetid vegetation, and (ii) if changes in light and CO2 climate affect fluxes of inorganic nitrogen (N) and phosphorus (P) from sediment to water column, which potentially could result in increased growth of epiphytic algae. 3. The results showed that the standing stocks of phosphorus and nitrogen in the L. uniflora vegetation were significantly influenced by CO2 concentration and light intensity. Both standing stocks of P and N were significantly higher in the mesocosm treatments with high CO2 concentration than in those at low CO2 concentration. Similarly, standing stocks of P and N enhanced with increasing light intensity. 4. Measurements of nutrient fluxes both in the field and the laboratory did not show any significant release of nutrients to the water column from plants or sediments at any of the light or CO2 treatments. However, mats of epiphytic algae developed from the beginning of June to late September and caused a light reduction for the isoetid vegetation. 5. Increasing CO2 concentrations in the water column may over time potentially result in a change in soft water plant communities.  相似文献   

16.
The photosynthetic uptake of root-zone CO2 was determined forEriocaulon septangulare, Gratiola aurea, Isoetes macrospora,Littorella uniflora var. americana and Lobelia dortmanna aspart of a study of the photosynthetic carbon economy of submergedaquatic isoetids. The pH and dissolved inorganic carbon (DIC)of the sediment interstitial water in four Wisconsin lakes reflectedthe water column character, where the DIC increased with depthin the sediment to concentrations five to ten times those ofthe water column. Sediment free CO2 concentrations were 5–50times those in the water column and were similar at all sites(about 05–1.0mM CO2 in the root-zone). In ‘pH-drift’studies these plants were unable to take up HCO2. Laboratory determinations of the carbon uptake from the rootand shoot-zones were made for all five species. These experimentsshowed that CO2 in the root-zone accounted for 65–95 percent of external carbon uptake for the five species. For G.aurea and E. septangulare, root-zone CO2 was > 85 per centof carbon uptake. Carbon, CO2, photosynthesis, sediment, isoetid, Eriocaulon septangulare, Gratiola aurea, Isoetes macrospora, Littorella uniflora, Lobelia dortmanna  相似文献   

17.
Nomenclature: follows Flora Europea (Tutin et al. 1964–1980). Since the extension of the irrigation system, the water regime of most of the permanent marshes of the Camargue (southern France) have been intensively controlled. Considerable quantities of nutrient rich Rhone water are pumped into these marshes, leading to lower salinities and a higher biomass production and consequently an increasing organic matter concentration of the sediments. Myriophyllum spicatum has become abundant in these permanent marshes since large quantities of freshwater entered these systems. It has displaced Potamogeton pectinatus in several of these marshes. The different factors likely to influence the distribution of P. pectinatus and M. spicatum were investigated experimentally. The impact of Cl- concentrations between 0 and 6 g l-1 on the biomass production of both species was tested. P. pectinatus appears to be more salt tolerant than M. spicatum. The influence of sediment quality on the biomass production of both species was investigated using six sediments differing in organic matter concentration. Compared to P. pectinatus, M. spicatum had a lower total biomass production when grown on sediments with low organic matter concentration (2–4% organic matter) and a higher biomass production on sediments with relatively high organic matter concentration (9–13% organic matter).Nitrogen addition to the sediments yielded an increased biomass production of P. pectinatus and M. spicatum. On some sediments M. spicatum needed higher concentrations of nitrogen than P. pectinatus to increase its biomass production.The creation of freshwater marshes by the introduction of irrigation water, resulting in lower salinities and an increase in sediment organic matter concentration, stimulates the biomass production of M. spicatum.As M. spicatum grows less well on poor sediments and at higher salinities it seems to be unable to displace P. pectinatus in more natural systems in the Camargue.  相似文献   

18.
1. The growth of submerged macrophytes in softwater lakes is often assumed to be carbon limited. Isoetid species are well adapted to grow at low carbon availability and therefore commonly dominate the submerged macrophyte vegetation in softwater lakes. In many such lakes, however, large‐scale invasions of fast‐growing elodeid species, replacing the isoetid vegetation, have been observed. 2. In a laboratory experiment, we tested how rising aquatic carbon availability, in interaction with different densities of the isoetid Littorella uniflora, affected the growth (and thereby the potential invasion success) of the elodeid Myriophyllum alterniflorum. For this purpose, the growth of M. alterniflorum was determined at a combination of three concentrations of dissolved CO2 (15, 90, 200 μmol L?1) and three densities of L. uniflora (0, 553, 1775 plants m?2). 3. At an ambient CO2 of 15 μmol L?1, M. alterniflorum could not sustain itself, whereas at raised CO2 concentrations, growth became positive and increased with higher CO2 availability. 4. The presence of L. uniflora, independent of its density, reduced the growth of M. alterniflorum by 50%. Whether this is related to nutrient availability or other factors is not clear. 5. Despite the growth reduction of M. alterniflorum by L. uniflora, at CO2 ≥90 μmol L?1, L. uniflora was still overgrown by M. alterniflorum. This may imply that, in field situations, M. alterniflorum can invade softwater systems with relatively high CO2 availability, even in the presence of dense stands of L. uniflora.  相似文献   

19.
This paper is concerned with the biomechanical properties of the emergent aquatic macrophyte, Sparganium erectum. We present observations of adjustments in the physical characteristics and biomechanical properties of S. erectum during the growing season (April-November) from the River Blackwater, UK. When a pulling device is attached to plant stems to measure their resistance to uprooting, individual plants show remarkable strength in their above- and below-ground biomass (median stem strength when stems break away from the underground biomass, 78 N, median rhizome strength, 39 N) and high resistance to uprooting (median uprooting resistance when entire plants uproot, 114 N). This provides the potential for the species to protect and reinforce the generally soft, silty sediments that it often retains and within which its rhizomes and roots develop in lower energy river environments. There is a propensity for plant stems to break before the plant is uprooted at the beginning and end of the growth season, but for the stems to have sufficient strength in mid season for plant uprooting to dominate. This ensures that rhizome and root systems remain relatively undisturbed at times when the silty sediments in which they grow are poorly protected by above-ground biomass. In contrast, rhizome strength remains comparatively invariant through the growing season, supporting the plant's potential to have a protective/reinforcing effect on fine sediments through the winter when above ground biomass is absent.  相似文献   

20.
The increase in alkalinity and SO4 2? in softwater lakes can negatively affect pristine isoetid population because the increase in alkalinity and SO4 2? can stimulate sediment mineralization and consequently cause anoxia. The consequences of increased sediment mineralization depend on the ability of isoetids such as Lobelia dortmanna to oxidize the rhizosphere via radial O2 loss. To study how alkalinity and SO4 2? affect the isoetid L. dortmanna, and if negative effects could be alleviated by neighboring plants, three densities of L. dortmanna (“Low”?=?64 plants m?2, “Medium”?=?256 plants m?2 and “High”?=?1,024 plants m?2) were exposed to elevated alkalinity in the water column, or a combination of both elevated alkalinity and SO4 2?, and compared to a control situation. The combination of SO4 2? and alkalinity significantly increased mortality, lowered areal biomass and reduced actual photosynthetic efficiency. Plant density did not significantly alleviate the negative effects caused by SO4 2? and alkalinity. However, actual photosynthetic efficiency was significantly positively correlated to redox potential in the sediment, indicating a positive relationship between plant performance and sediment oxidation. The negative effects on L. dortmanna were probably caused by long periods of tissue anoxia by itself or in combination with H2S intrusion. Therefore, increase in both SO4 2? and alkalinity surface water can dramatically affect L. dortmanna populations, causing reduction or even disappearance of this icon species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号