首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nitrogen fertilization is considered as an important source of atmospheric N2O emission. A seven site‐year on‐farm field experiment was conducted at Ottawa and Guelph, ON and Saint‐Valentin, QC, Canada to characterize the affect of the amount and timing of N fertilizer on N2O emission in corn (Zea mays L.) production. Using the static chamber method, gas samples were collected for 28‐days after preplant and 28‐days after sidedress fertilization at the seven site‐year, resulting in 14 monitoring periods. For both methods of fertilization, peak N2O flux and cumulative emission increased with the amount of N applied, with rates ranging from 30 to 900 μg N m?2 h?1. Depending on N amount and time of application, cumulative emission varied from 0.05 to 2.42 kg N ha?1, equivalent to 0.03% to 1.45% of the N fertilizer applied. Differences in N2O emission peaks among fertilizer treatments were clearly separated in 13 out of 14 monitoring periods. Total N2O emissions may have been underestimated compared with annual monitoring in 10 out of the 49 cases because the monitoring period ended before N2O efflux returned to the baseline level. The flux of N2O was negligible when soil mineral N in the 0–15 cm layer was < 20 mg N kg?1. While rainfall stimulated emission, soil temperature > 15 °C was likely the driving force responsible for the higher levels of N2O found for sidedress than preplant application methods. However, caution must be taken when interpreting these later results as preplant fertilization may have continuously stimulated N2O emissions after the 28‐days monitoring period, especially in situations where N2O effluxes have not fallen back to their baseline levels. Increasing fertilizer rates from 90 to 150 kg N ha?1 resulted in slight increases in yields, but doubled cumulative N2O emissions.  相似文献   

2.
Sources and sinks of nitrous oxide (N2O) in deep lakes   总被引:2,自引:1,他引:2  
As reported from marine systems, we found that also in15 prealpine lakes N2O concentrations werestrongly correlated with O2 concentrations. Inoxic waters below the mixed surface layer, N2Oconcentrations usually increased with decreasingO2 concentrations. N2O is produced in oxicepilimnia, in oxic hypolimnia and at oxic-anoxicboundaries, either in the water or at the sediment-waterinterface. It is consumed, however, incompletely anoxic layers. Anoxic water layers weretherefore N2O undersaturated. All studied lakeswere sources for atmospheric N2O, including thosewith anoxic, N2O undersaturated hypolimnia.However, compared to agriculture, lakes seem not tocontribute significantly to atmospheric N2Oemissions.  相似文献   

3.
4.
Our understanding and quantification of global soil nitrous oxide (N2O) emissions and the underlying processes remain largely uncertain. Here, we assessed the effects of multiple anthropogenic and natural factors, including nitrogen fertilizer (N) application, atmospheric N deposition, manure N application, land cover change, climate change, and rising atmospheric CO2 concentration, on global soil N2O emissions for the period 1861–2016 using a standard simulation protocol with seven process‐based terrestrial biosphere models. Results suggest global soil N2O emissions have increased from 6.3 ± 1.1 Tg N2O‐N/year in the preindustrial period (the 1860s) to 10.0 ± 2.0 Tg N2O‐N/year in the recent decade (2007–2016). Cropland soil emissions increased from 0.3 Tg N2O‐N/year to 3.3 Tg N2O‐N/year over the same period, accounting for 82% of the total increase. Regionally, China, South Asia, and Southeast Asia underwent rapid increases in cropland N2O emissions since the 1970s. However, US cropland N2O emissions had been relatively flat in magnitude since the 1980s, and EU cropland N2O emissions appear to have decreased by 14%. Soil N2O emissions from predominantly natural ecosystems accounted for 67% of the global soil emissions in the recent decade but showed only a relatively small increase of 0.7 ± 0.5 Tg N2O‐N/year (11%) since the 1860s. In the recent decade, N fertilizer application, N deposition, manure N application, and climate change contributed 54%, 26%, 15%, and 24%, respectively, to the total increase. Rising atmospheric CO2 concentration reduced soil N2O emissions by 10% through the enhanced plant N uptake, while land cover change played a minor role. Our estimation here does not account for indirect emissions from soils and the directed emissions from excreta of grazing livestock. To address uncertainties in estimating regional and global soil N2O emissions, this study recommends several critical strategies for improving the process‐based simulations.  相似文献   

5.
With increasing nitrogen (N) application to croplands required to support growing food demand, mitigating N2O emissions from agricultural soils is a global challenge. National greenhouse gas emissions accounting typically estimates N2O emissions at the country scale by aggregating all crops, under the assumption that N2O emissions are linearly related to N application. However, field studies and meta‐analyses indicate a nonlinear relationship, in which N2O emissions are relatively greater at higher N application rates. Here, we apply a super‐linear emissions response model to crop‐specific, spatially explicit synthetic N fertilizer and manure N inputs to provide subnational accounting of global N2O emissions from croplands. We estimate 0.66 Tg of N2O‐N direct global emissions circa 2000, with 50% of emissions concentrated in 13% of harvested area. Compared to estimates from the IPCC Tier 1 linear model, our updated N2O emissions range from 20% to 40% lower throughout sub‐Saharan Africa and Eastern Europe, to >120% greater in some Western European countries. At low N application rates, the weak nonlinear response of N2O emissions suggests that relatively large increases in N fertilizer application would generate relatively small increases in N2O emissions. As aggregated fertilizer data generate underestimation bias in nonlinear models, high‐resolution N application data are critical to support accurate N2O emissions estimates.  相似文献   

6.
The relationship between nitrous oxide (N2O) flux and N availability in agricultural ecosystems is usually assumed to be linear, with the same proportion of nitrogen lost as N2O regardless of input level. We conducted a 3‐year, high‐resolution N fertilizer response study in southwest Michigan USA to test the hypothesis that N2O fluxes increase mainly in response to N additions that exceed crop N needs. We added urea ammonium nitrate or granular urea at nine levels (0–292 kg N ha?1) to four replicate plots of continuous maize. We measured N2O fluxes and available soil N biweekly following fertilization and grain yields at the end of the growing season. From 2001 to 2003 N2O fluxes were moderately low (ca. 20 g N2O‐N ha?1 day?1) at levels of N addition to 101 kg N ha?1, where grain yields were maximized, after which fluxes more than doubled (to >50 g N2O‐N ha?1 day?1). This threshold N2O response to N fertilization suggests that agricultural N2O fluxes could be reduced with no or little yield penalty by reducing N fertilizer inputs to levels that just satisfy crop needs.  相似文献   

7.
Crop yields in sub‐Saharan Africa remain stagnant at 1 ton ha?1, and 260 million people lack access to adequate food resources. Order‐of‐magnitude increases in fertilizer use are seen as a critical step in attaining food security. This increase represents an unprecedented input of nitrogen (N) to African ecosystems and will likely be accompanied by increased soil emissions of nitric oxide (NO). NO is a precursor to tropospheric ozone, an air pollutant and greenhouse gas. Emissions of NO from soils occur primarily during denitrification and nitrification, and N input rates are a key determinant of emission rates. We established experimental maize plots in western Kenya to allow us to quantify the response function relating NO flux to N input rate during the main 2011 and 2012 growing seasons. NO emissions followed a sigmoid response to fertilizer inputs and have emission factors under 1% for the roughly two‐month measurement period in each year, although linear and step relationships could not be excluded in 2011. At fertilization rates above 100 kg N ha?1, NO emissions increased without a concomitant increase in yields. We used the geos‐chem chemical transport model to evaluate local impacts of increased NO emissions on tropospheric ozone concentrations. Mean 4‐hour afternoon tropospheric ozone concentrations in Western Kenya increased by up to roughly 2.63 ppbv under fertilization rates of 150 kg N ha?1 or higher. Using AOT40, a metric for assessing crop damage from ozone, we find that the increased ozone concentrations result in an increase in AOT40 exposure of approximately 110 ppbh for inputs of 150 kg N ha?1 during the March–April–May crop growing season, compared with unfertilized simulations, with negligible impacts on crop productivity. Our results suggest that it may be possible to manage Kenyan agricultural systems for high yields while avoiding substantial impacts on air quality.  相似文献   

8.
Soils are both a major source and sink of nitrous oxide (N2O), but the proportion of soil N2O production released to the atmosphere (termed the N2O yield) is poorly constrained due to the difficulty in measuring gross N2O production. The quantification of gross N2O fluxes would greatly improve our ability to predict N2O dynamics across the soil‐atmosphere interface. We report a new approach, the 15N2O pool dilution technique, to measure rates of gross N2O production and consumption under laboratory and field conditions. In the laboratory, gross N2O production and consumption compared well between the 15N2O pool dilution and acetylene inhibition methods whereas the 15NO3? tracer method measured significantly higher rates. In the field, N2O emissions were not significantly affected by increasing chamber headspace concentrations up to 100 ppb 15N2O. The pool dilution model estimates of 14N2O and 15N2O concentrations as well as net N2O fluxes fit observed data very well, suggesting that the technique yielded robust estimates of gross N2O production. Estimated gross N2O consumption rates were underestimated relative to rates calculated as the difference between gross and net N2O production rates, possibly due to heterogeneous and/or inadequate tracer diffusion to deeper layers in the soil profile. Gross N2O production rates were high, averaging 8.4 ± 3.2 mg N m?2 day?1, and were most strongly correlated to mineral nitrogen concentrations and denitrifying enzyme activity (R2 = 0.73). Gross N2O production rates varied spatially, with the highest rates in soils with the best drainage and the highest mineral N availability. Estimated and calculated N2O consumption rates constrained the average N2O yield from 0.70 to 0.84. Our results demonstrate that the 15N2O pool dilution technique can provide well‐constrained estimates of N2O yields and field rates of gross N2O production correlated to soil characteristics, improving our understanding of terrestrial N2O dynamics.  相似文献   

9.
为减少土壤N2O排放,提高作物氮素利用,采用田间试验法研究了不同氮肥用量喷涂一定比例的吡啶(0、180、270、360 kg N·hm-2)对夏玉米生育期内土壤N2O排放和氮素表观损失、籽粒产量及氮素利用的影响.结果表明:不同氮肥用量下喷涂吡啶的土壤N2O排放主要集中在播种-苗期和拔节-抽雄期,基肥和追肥后均会出现显著的土壤N2O排放通量高峰.随氮肥用量增加,玉米产量不断增加,但270和360 kg N·hm-2间无显著差异,2种施氮量下的玉米分别净增收5209和5426元·hm-2.与不施氮肥比,各施氮处理下的玉米籽粒吸氮量提高幅度为109.6%~134.1%.各处理间的氮肥农学效率和氮肥利用率均以氮肥喷涂吡啶270 kg N·hm-2较大,而土壤氮素表观损失较小.氮肥喷涂吡啶在270 kg N·hm-2时玉米增产增收,氮肥利用效率较高,土壤N2O排放和氮素表观损失较少,是一种较为合理的氮肥调控施用技术.  相似文献   

10.
11.
Soils are the main sources of the greenhouse gas nitrous oxide (N2O). The N2O emission at the soil surface is the result of production and consumption processes. So far, research has concentrated on net N2O production. However, in the literature, there are numerous reports of net negative fluxes of N2O, (i.e. fluxes from the atmosphere to the soil). Such fluxes are frequent and substantial and cannot simply be dismissed as experimental noise.
Net N2O consumption has been measured under various conditions from the tropics to temperate areas, in natural and agricultural systems. Low mineral N and large moisture contents have sometimes been found to favour N2O consumption. This fits in with denitrification as the responsible process, reducing N2O to N2. However, it has also been reported that nitrifiers consume N2O in nitrifier denitrification. A contribution of various processes could explain the wide range of conditions found to allow N2O consumption, ranging from low to high temperatures, wet to dry soils, and fertilized to unfertilized plots. Generally, conditions interfering with N2O diffusion in the soil seem to enhance N2O consumption. However, the factors regulating N2O consumption are not yet well understood and merit further study.
Frequent literature reports of net N2O consumption suggest that a soil sink could help account for the current imbalance in estimated global budgets of N2O. Therefore, a systematic investigation into N2O consumption is necessary. This should concentrate on the organisms, reactions, and environmental factors involved.  相似文献   

12.
A lab-scale sequencing batch reactor fed with real municipal wastewater was used to study nitrous oxide (N(2)O) emissions from simulated wastewater treatment processes. The experiments were performed under four different controlled conditions as follows: (1) fully aerobic, (2) anoxic-aerobic with high dissolved oxygen (DO) concentration, (3) anoxic-aerobic with low DO concentration, and 4) intermittent aeration. The results indicated that N(2)O production can occur from both incomplete nitrification and incomplete denitrification. N(2)O production from denitrification was observed in both aerobic and anoxic phases. However, N(2)O production from aerobic conditions occurred only when both low DO concentrations and high nitrite concentration existed simultaneously. The magnitude of N(2) O produced via anoxic denitrification was lower than via oxic denitrification and required the presence of nitrite. Changes in DO, ammonium, and nitrite concentrations influenced the magnitude of N(2)O production through denitrification. The results also suggested that N(2)O can be produced from incomplete denitrification and then released to the atmosphere during aeration phase due to air stripping. Therefore, biological nitrogen removal systems should be optimized to promote complete nitrification and denitrification to minimize N(2)O emissions.  相似文献   

13.
Nitrous oxide (N2O) is an air pollutant of major environmental concern, with agriculture representing 60% of anthropogenic global N2O emissions. Much of the N2O emissions from livestock production systems result from transformation of N deposited to soil within animal excreta. There exists a substantial body of literature on urine patch N2O dynamics, we aimed to identify key controlling factors influencing N2O emissions and to aid understanding of knowledge gaps to improve GHG reporting and prioritize future research. We conducted an extensive literature review and random effect meta‐analysis (using REML) of results to identify key relationships between multiple potential independent factors and global N2O emissions factors (EFs) from urine patches. Mean air temperature, soil pH and ruminant animal species (sheep or cow) were significant factors influencing the EFs reviewed. However, several factors that are known to influence N2O emissions, such as animal diet and urine composition, could not be considered due to the lack of reported data. The review highlighted a widespread tendency for inadequate metadata and uncertainty reporting in the published studies, as well as the limited geographical extent of investigations, which are more often conducted in temperate regions thus far. Therefore, here we give recommendations for factors that are likely to affect the EFs and should be included in all future studies, these include the following: soil pH and texture; experimental set‐up; direct measurement of soil moisture and temperature during the study period; amount and composition of urine applied; animal type and diet; N2O emissions with a measure of uncertainty; data from a control with zero‐N application and meteorological data.  相似文献   

14.
等氮滴灌对宿根蔗产量及土壤氧化亚氮排放的影响   总被引:1,自引:0,他引:1  
为得到合理的水肥管理措施,研究等氮量下不同滴灌施肥比例对宿根蔗产量以及不同生育期蔗田土壤氧化亚氮(N2 O)通量和无机氮含量的影响,并分析蔗田土壤N2 O通量与无机氮含量之间的关系.该文以自然降雨W0为对照,设置2种滴灌灌水量水平W1(田间持水量的75%)和W2(田间持水量的85%),等量氮肥(N 300 kg·hm-...  相似文献   

15.
Soils are among the important sources of atmospheric nitric oxide (NO) and nitrous oxide (N2O), acting as a critical role in atmospheric chemistry. Updated data derived from 114 peer‐reviewed publications with 520 field measurements were synthesized using meta‐analysis procedure to examine the N fertilizer‐induced soil NO and the combined NO+N2O emissions across global soils. Besides factors identified in earlier reviews, additional factors responsible for NO fluxes were fertilizer type, soil C/N ratio, crop residue incorporation, tillage, atmospheric carbon dioxide concentration, drought and biomass burning. When averaged across all measurements, soil NO‐N fluxes were estimated to be 4.06 kg ha?1 yr?1, with the greatest (9.75 kg ha?1 yr?1) in vegetable croplands and the lowest (0.11 kg ha?1 yr?1) in rice paddies. Soil NO emissions were more enhanced by synthetic N fertilizer (+38%), relative to organic (+20%) or mixed N (+18%) sources. Compared with synthetic N fertilizer alone, synthetic N fertilizer combined with nitrification inhibitors substantially reduced soil NO emissions by 81%. The global mean direct emission factors of N fertilizer for NO (EFNO) and combined NO+N2O (EFc) were estimated to be 1.16% and 2.58%, with 95% confidence intervals of 0.71–1.61% and 1.81–3.35%, respectively. Forests had the greatest EFNO (2.39%). Within the croplands, the EFNO (1.71%) and EFc (4.13%) were the greatest in vegetable cropping fields. Among different chemical N fertilizer varieties, ammonium nitrate had the greatest EFNO (2.93%) and EFc (5.97%). Some options such as organic instead of synthetic N fertilizer, decreasing N fertilizer input rate, nitrification inhibitor and low irrigation frequency could be adopted to mitigate soil NO emissions. More field measurements over multiyears are highly needed to minimize the estimate uncertainties and mitigate soil NO emissions, particularly in forests and vegetable croplands.  相似文献   

16.
Arable soil continues to be the dominant anthropogenic source of nitrous oxide (N2O) emissions owing to application of nitrogen (N) fertilizers and manures across the world. Using laboratory and in situ studies to elucidate the key factors controlling soil N2O emissions remains challenging due to the potential importance of multiple complex processes. We examined soil surface N2O fluxes in an arable soil, combined with in situ high-frequency measurements of soil matrix oxygen (O2) and N2O concentrations, in situ 15N labeling, and N2O 15N site preference (SP). The in situ O2 concentration and further microcosm visualized spatiotemporal distribution of O2 both suggested that O2 dynamics were the proximal determining factor to matrix N2O concentration and fluxes due to quick O2 depletion after N fertilization. Further SP analysis and in situ 15N labeling experiment revealed that the main source for N2O emissions was bacterial denitrification during the hot-wet summer with lower soil O2 concentration, while nitrification or fungal denitrification contributed about 50.0% to total emissions during the cold-dry winter with higher soil O2 concentration. The robust positive correlation between O2 concentration and SP values underpinned that the O2 dynamics were the key factor to differentiate the composite processes of N2O production in in situ structured soil. Our findings deciphered the complexity of N2O production processes in real field conditions, and suggest that O2 dynamics rather than stimulation of functional gene abundances play a key role in controlling soil N2O production processes in undisturbed structure soils. Our results help to develop targeted N2O mitigation measures and to improve process models for constraining global N2O budget.  相似文献   

17.
18.
19.
20.
过量施肥对设施菜田土壤菌群结构及N2O产生的影响   总被引:1,自引:0,他引:1  
【背景】N_2O是一种很强的温室气体,其温室效应强度大约是CO_2的265倍。土壤氮肥施加量是影响N_2O排放的重要因素,而厌氧条件下微生物反硝化则是N_2O产生的重要途径。【目的】研究过量施肥条件下蔬菜大棚土壤菌群结构变化及其对N_2O气体排放的影响。【方法】利用自动化培养与实时气体检测系统(Robot)监测土壤厌氧培养过程中N_2O和N_2排放通量,比较过量施肥和减氮施肥模式下土壤N_2O排放模式的差异。通过Illumina二代测序平台对这2种不同施肥处理的土壤微生物群落进行高通量测序,研究不同施肥量对土壤菌群组成的影响。【结果】过量施肥土壤中硝酸盐的含量大约是减氮施肥土壤的2倍,通过添加硝酸盐使2种土壤的硝酸盐含量均为60 mg/kg或为200 mg/kg时,过量施肥土壤在厌氧培养前期N_2O气体的产生量及产生速度都明显高于减氮施肥土壤。另外,过量施肥导致土壤菌群结构发生显著改变,并且降低了土壤微生物的多样性。相对于减氮施肥,过量施肥方式富集了Rhodanobacter属的微生物。PICRUSt预测结果显示,传统施肥没有显著改变反硝化功能基因相对丰度。【结论】长期过量氮肥施用显著增加了土壤N_2O的排放,可能原因是施肥改变了包括氮转化相关微生物在内的土壤菌群组成,从而影响了土壤N_2O气体的形成与还原过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号