首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Grosmannia clavigera is a fungal pathogen of pine forests in western North America and a symbiotic associate of two sister bark beetles: Dendroctonus ponderosae and D. jeffreyi. This fungus and its beetle associate D. ponderosae are expanding in large epidemics in western North America. Using the fungal genome sequence and gene annotations, we assessed whether fungal isolates from the two beetles inhabiting different species of pine in epidemic regions of western Canada and the USA, as well as in localized populations outside of the current epidemic, represent different genetic lineages. We characterized nucleotide variations in 67 genomic regions and selected 15 for the phylogenetic analysis. Using concordance of gene genealogies and distinct ecological characteristics, we identified two sibling phylogenetic species: Gc and Gs. Where the closely related Pinus ponderosa and P. jeffreyi are infested by localized populations of their respective beetles, Gc is present. In contrast, Gs is an exclusive associate of D. ponderosae mainly present on its primary host‐tree P. contorta; however, in the current epidemic areas, it is also found in other pine species. These results suggest that the host‐tree species and the beetle population dynamics may be important factors associated with the genetic divergence and diversity of fungal partners in the beetle‐tree ecosystems. Gc represents the original G. clavigera holotype, and Gs should be described as a new species.  相似文献   

2.
The current epidemic of the mountain pine beetle (MPB), an indigenous pest of western North American pine, has resulted in significant losses of lodgepole pine. The leading edge has reached Alberta where forest composition shifts from lodgepole to jack pine through a hybrid zone. The susceptibility of jack pine to MPB is a major concern, but there has been no evidence of host-range expansion, in part due to the difficulty in distinguishing the parentals and their hybrids. We tested the utility of a panel of microsatellite loci optimized for both species to classify lodgepole pine, jack pine and their hybrids using simulated data. We were able to accurately classify simulated individuals, and hence applied these markers to identify the ancestry of attacked trees. Here we show for the first time successful MPB attack in natural jack pine stands at the leading edge of the epidemic. This once unsuitable habitat is now a novel environment for MPB to exploit, a potential risk which could be exacerbated by further climate change. The consequences of host-range expansion for the vast boreal ecosystem could be significant.  相似文献   

3.
We investigated the effect of water potential (WP) on the growth of, and interaction between, two ophiostomatoid fungi, Grosmannia clavigera and Ophiostoma montium, associated with the mountain pine beetle (Dendroctonus ponderosae). The WP of malt extract agar was amended by adding potassium chloride (KCl) or sucrose. Growth of both fungi decreased with WP on KCl-amended media. Growth of G. clavigera also decreased with WP on sucrose-amended media, although growth was stimulated on these media compared to unamended treatments. Growth of O. montium remained relatively constant on sucrose-amended media, confounding the effect of WP on this species. Both fungi were able to colonize media occupied by the other species, but at a slower rate than on unoccupied media, indicating competition. In most treatments, G. clavigera grew faster than O. montium and colonized a greater area when the two fungi were inoculated concurrently but distant to one another on a Petri dish. However, when each fungus was inoculated adjacent to a 10-d-old well-established colony of the other species, O. montium colonized occupied media more effectively than G. clavigera considering the growth rate of each species alone. Thus, G. clavigera dominated primary (uncolonized) resources on most media, whereas O. montium was more effective in colonizing secondary (occupied) resources. The differential response of the two fungi to sucrose indicates that they may use different carbon sources, or use different carbon sources at different rates, in the tree. Fine-scale resource partitioning, differences in primary and secondary resource capture abilities, and the non-equilibrium dynamics in an attacked tree over time, could all act to promote the co-existence of two unit-restricted dispersers on a discontinuous resource.  相似文献   

4.
Aim To understand how the biophysical environment influences patterns of infection by non‐native blister rust (caused by Cronartium ribicola) and mortality caused by native mountain pine beetles (Dendroctonus ponderosae) in whitebark pine (Pinus albicaulis) communities, to determine how these disturbances interact, and to gain insight into how climate change may influence these patterns in the future. Location High‐elevation forests in south‐west Montana, central Idaho, eastern and western Oregon, USA. Methods Stand inventory and dendroecological methods were used to assess stand structure and composition and to reconstruct forest history at sixty 0.1‐ha plots. Patterns of blister rust infection and mountain pine beetle‐caused mortality in whitebark pine trees were examined using nonparametric Kruskal–Wallis ANOVA, Mann–Whitney U‐tests, and Kolmogorov–Smirnov two‐sample tests. Stepwise regression was used to build models of blister rust infection and mountain pine beetle‐related mortality rates based on a suite of biophysical site variables. Results Occurrence of blister rust infections was significantly different among the mountain ranges, with a general gradient of decreasing blister rust occurrence from east to west. Evidence of mountain pine beetle‐caused mortality was identified on 83% of all dead whitebark pine trees and was relatively homogenous across the study area. Blister rust infected trees of all ages and sizes uniformly, while mountain pine beetles infested older, larger trees at all sites. Stepwise regressions explained 64% and 58% of the variance in blister rust infection and beetle‐caused mortality, respectively, indicating that these processes are strongly influenced by the biophysical environment. More open stand structures produced by beetle outbreaks may increase the exposure of surviving whitebark pine trees to blister rust infection. Main conclusions Variability in the patterns of blister rust infection and mountain pine beetle‐caused mortality elucidated the fundamental dynamics of these disturbance agents and suggests that the effects of climate change will be complex in whitebark pine communities and vary across the species’ range. Interactions between blister rust and beetle outbreaks may accelerate declines or facilitate the rise of rust resistance in whitebark pine depending on forest conditions at the time of the outbreak.  相似文献   

5.
We isolated 16 polymorphic microsatellite loci in the mountain pine beetle (Dendroctonus ponderosae Hopkins) and developed conditions for amplifying these markers in four multiplex reactions. Three to 14 alleles were detected per locus across two sampled populations. Observed and expected heterozygosities ranged from 0.000 to 0.902 and from 0.100 to 0.830, respectively. Three loci deviated from Hardy-Weinberg equilibrium in one sampled population. One of these loci may be sex linked. These markers will be useful in the study of population structure in this important pest species.  相似文献   

6.
The mountain pine beetle Dendroctonus ponderosae is a native species currently experiencing large-scale outbreaks in western North American pine forests. We sought to describe the pattern of genetic variation across the range of this species, to determine whether there were detectable genetic differences between D. ponderosae occupying different host trees in common localities, and to determine whether there was molecular evidence for a past demographic expansion. Using a combination of amplified fragment length polymorphism (AFLP) and mitochondrial sequencing analyses, we found evidence of genetic structuring among populations that followed a broad isolation-by-distance pattern. Our results suggest that the geographical pattern of gene flow follows the core distribution of the principal D. ponderosae host species, around rather than across the Great Basin and Mojave Deserts. Patterns of haplotype diversity and divergence were consistent with a range-wide population expansion. This signal was particularly pronounced in the northern part of the species' range, where outbreak activity is currently increasing. Using AFLP markers, we were unable to detect significant differences among groups of insects sampled from different host trees in common locations. Incidentally, we found that a large proportion of the polymorphic AFLP markers were gender-specific, occurring only in males. While we did not include these markers in our analyses, this finding warrants further investigation.  相似文献   

7.
Assessments of population genetic structure and demographic history have traditionally been based on neutral markers while explicitly excluding adaptive markers. In this study, we compared the utility of putatively adaptive and neutral single‐nucleotide polymorphisms (SNPs) for inferring mountain pine beetle population structure across its geographic range. Both adaptive and neutral SNPs, and their combination, allowed range‐wide structure to be distinguished and delimited a population that has recently undergone range expansion across northern British Columbia and Alberta. Using an equal number of both adaptive and neutral SNPs revealed that adaptive SNPs resulted in a stronger correlation between sampled populations and inferred clustering. Our results suggest that adaptive SNPs should not be excluded prior to analysis from neutral SNPs as a combination of both marker sets resulted in better resolution of genetic differentiation between populations than either marker set alone. These results demonstrate the utility of adaptive loci for resolving population genetic structure in a nonmodel organism.  相似文献   

8.
1 The mountain pine beetle Dendroctonus ponderosae is a major tree‐killing bark beetle in North America. We evaluated how the subsequent arrival of a competing bark beetle Ips pini influences the arrival of predators and their impact on both species. 2 The predators Temnochila chlorodia and Enoclerus sphegeus were strongly attracted to pheromones of D. ponderosae. By contrast, Enoclerus lecontei was mostly attracted to I. pini pheromones. The host compound myrcene synergized attraction of both D. ponderosae and E. sphegeus to the pheromone of D. ponderosae. However, it inhibited attraction of both I. pini and E. lecontei to I. pini’s pheromone. 3 Dendroctonus ponderosae were more attracted to trees than logs treated with its pheromones, whereas I. pini were more attracted to logs than trees treated with its pheromones. Some 78% of T. chlorodia were captured at hosts baited with D. ponderosae pheromones, whereas 83% of E. lecontei were captured at hosts baited with I. pini pheromones. We characterized the sequence of arrival to live trees baited with pheromones of D. ponderosae as: D. ponderosae, T. chlorodia, E. sphegeus, I. pini, E. lecontei. 4 Various combinations of I. pini and predators were added to logs colonized by D. ponderosae in the above sequence of arrival observed in live trees baited with D. ponderosae aggregation pheromones. Ips pini reduced D. ponderosae adult brood production. However, the combination of I. pini and E. lecontei did not raise D. ponderosae brood production above that observed with only I. pini present. Similarly, the combination of I. pini and T. chlorodia did not reduce D. ponderosae brood production below that observed with I. pini alone. By contrast, the combination of I. pini, T. chlorodia and E. lecontei caused more brood loss to D. ponderosae than I. pini alone. 5 Enoclerus lecontei did not reduce brood production by T. chlorodia, whereas T. chlorodia substantially reduced brood production by E. lecontei. 6 Secondary bark beetles that exploit the resource created by primary tree‐killing species exert negative effects through both competition and increased predator load. Implications to the population dynamics, ecology and evolution of tree‐killing bark beetles are discussed.  相似文献   

9.
Environmental change has a wide range of ecological consequences, including species extinction and range expansion. Many studies have shown that insect species respond rapidly to climatic change. A mountain pine beetle epidemic of record size in North America has led to unprecedented mortality of lodgepole pine, and a significant range expansion to the northeast of its historic range. Our goal was to determine the spatial genetic variation found among outbreak population from which genetic structure, and dispersal patterns may be inferred. Beetles from 49 sampling locations throughout the outbreak area in western Canada were analysed at 13 microsatellite loci. We found significant north-south population structure as evidenced by: (i) Bayesian-based analyses, (ii) north-south genetic relationships and diversity gradients; and (iii) a lack of isolation-by-distance in the northernmost cluster. The north-south structure is proposed to have arisen from the processes of postglacial colonization as well as recent climate-driven changes in population dynamics. Our data support the hypothesis of multiple sources of origin for the outbreak and point to the need for population specific information to improve our understanding and management of outbreaks. The recent range expansion across the Rocky Mountains into the jack/lodgepole hybrid and pure jack pine zones of northern Alberta is consistent with a northern British Columbia origin. We detected no loss of genetic variability in these populations, indicating that the evolutionary potential of mountain pine beetle to adapt has not been reduced by founder events. This study illustrates a rapid range-wide response to the removal of climatic constraints, and the potential for range expansion of a regional population.  相似文献   

10.
A historically unprecedented mountain pine beetle (MPB) outbreak affected western Montana during the past decade. We examined radial growth rates (AD 1860–2007/8) of co‐occurring mature healthy and MPB‐infected ponderosa pine trees collected at two sites (Cabin Gulch and Kitchen Gulch) in western Montana and: (1) compared basal area increment (BAI) values within populations and between sites; (2) used carbon isotope analysis to calculate intrinsic water‐use efficiency (iWUE) at Cabin Gulch; and (3) compared climate‐growth responses using a suite of monthly climatic variables. BAI values within populations and between sites were similar until the last 20–30 years, at which point the visually healthy populations had consistently higher BAI values (22–34%) than the MPB‐infected trees. These results suggest that growth rates two–three decades prior to the current outbreak diverged between our selected populations, with the slower‐growing trees being more vulnerable to beetle infestation. Both samples from Cabin Gulch experienced upward trends in iWUE, with significant regime shifts toward higher iWUE beginning in 1955–59 for the visually healthy trees and 1960–64 for the MPB‐infected trees. Drought tolerance also varied between the two populations with the visually healthy trees having higher growth rates than MPB‐infected trees prior to infection during a multi‐decadal period of drying summertime conditions. Intrinsic water‐use efficiency significantly increased for both populations during the past 150 years, but there were no significant differences between the visually healthy and MPB‐infected chronologies.  相似文献   

11.
Aim Our aim is to examine the historical breach of the geoclimatic barrier of the Rocky Mountains by the mountain pine beetle (Dendroctonus ponderosae Hopkins). This recent range expansion from west of the North American continental divide into the eastern boreal forest threatens to provide a conduit to naïve pine hosts in eastern North America. We examine the initial expansion events and determine potential mechanism(s) of spread by comparing spread patterns in consecutive years to various dispersal hypotheses such as: (1) meso‐scale atmospheric dispersal of insects from source populations south‐west of the Rocky Mountains in British Columbia (i.e. their historical range), (2) anthropogenic transport of infested plant material, and (3) spread of insect populations across adjacent stands via corridors of suitable habitat. Location British Columbia, Canada. Methods We explore potential mechanism(s) of invasion of the mountain pine beetle using spatial point process models for the initial 3 years of landscape‐level data collection, 2004–2006. Specifically, we examine observed patterns of infestation relative to covariates reflecting various dispersal hypotheses. We select the most parsimonious models for each of the initial 3 years of invasion using information criteria statistics. Results The initial range expansion and invasion of the beetle was characterized by aerial deposition along a strong north‐west to south‐east gradient, with additional aerial deposition and localized dispersal from persisting populations in following years. Main conclusions Following deposition of a wave front of mountain pine beetles parallel to the Rocky Mountains via meso‐scale atmospheric dispersal, the areas of highest intensity of infestations advanced up to 25 km north‐east towards jack pine (Pinus banksiana) habitat in a single year. There appeared to be no association between putative anthropogenic movement of infested materials and initial range expansion of the mountain pine beetle across the continental divide.  相似文献   

12.
Many modern crop varieties rely on animal pollination to set fruit and seeds. Intensive crop plantations usually do not provide suitable habitats for pollinators so crop yield may depend on the surrounding vegetation to maintain pollination services. However, little is known about the effect of pollinator‐mediated interactions among co‐flowering plants on crop yield or the underlying mechanisms. Plant reproductive success is complex, involving several pre‐ and post‐pollination events; however, the current literature has mainly focused on pre‐pollination events in natural plant communities. We assessed pollinator sharing and the contribution to pollinator diet in a community of wild and cultivated plants that co‐flower with a focal papaya plantation. In addition, we assessed heterospecific pollen transfer to the stigmatic loads of papaya and its effect on fruit and seed production. We found that papaya shared at least one pollinator species with the majority of the co‐flowering plants. Despite this, heterospecific pollen transfer in cultivated papaya was low in open‐pollinated flowers. Hand‐pollination experiments suggest that heterospecific pollen transfer has no negative effect on fruit production or weight, but does reduce seed production. These results suggest that co‐flowering plants offer valuable floral resources to pollinators that are shared with cultivated papaya with little or no cost in terms of heterospecific pollen transfer. Although HP reduced seed production, a reduced number of seeds per se are not negative, given that from an agronomic perspective the number of seeds does not affect the monetary value of the papaya fruit.  相似文献   

13.
Aim As climate change is increasing the frequency, severity and extent of wildfire and bark beetle outbreaks, it is important to understand how these disturbances interact to affect ecological patterns and processes, including susceptibility to subsequent disturbances. Stand‐replacing fires and outbreaks of mountain pine beetle (MPB), Dendroctonus ponderosae, are both important disturbances in the lodgepole pine, Pinus contorta, forests of the Rocky Mountains. In the current study we investigated how time since the last stand‐replacing fire affects the susceptibility of the stand to MPB outbreaks in these forests. We hypothesized that at a stand‐scale, young post‐fire stands (< c. 100–150 years old) are less susceptible to past and current MPB outbreaks than are older stands. Location Colorado, USA. Methods We used dendroecological methods to reconstruct stand‐origin dates and the history of outbreaks in 23 lodgepole pine stands. Results The relatively narrow range of establishment dates among the oldest trees in most sampled stands suggested that these stands originated after stand‐replacing or partially stand‐replacing fires over the past three centuries. Stands were affected by MPB outbreaks in the 1940s/1950s, 1980s and 2000s/2010s. Susceptibility to outbreaks generally increased with stand age (i.e. time since the last stand‐replacing fire). However, this reduced susceptibility of younger post‐fire stands was most pronounced for the 1940s/1950s outbreak, less so for the 1980s outbreak, and did not hold true for the 2000s/2010s outbreak. Main conclusions Younger stands may not have been less susceptible to the most recent outbreak because: (1) after stands reach a threshold age of > 100–150 years, stand age does not affect susceptibility to outbreaks, or (2) the high intensity of the most recent outbreak reduces the importance of pre‐disturbance conditions for susceptibility to disturbance. If the warm and dry conditions that contribute to MPB outbreaks concurrently increase the frequency and/or extent of severe fires, they may thereby mitigate the otherwise increased landscape‐scale susceptibility to outbreaks. Potential increases in severe fires driven by warm and dry climatic trends may lead to a negative feedback by making lodgepole pine stands less susceptible to future MPB outbreaks.  相似文献   

14.
We developed microsatellite loci for the southern pine beetle (Dendroctonus frontalis). Twelve microsatellite loci were identified. Eight loci were polymorphic and sufficiently variable in 62 individuals (expected heterozygosity ranged from 0.707 to 0.880) to investigate population structure. All loci conformed to HWE except Dfr‐14, which showed heterozygote excess, and no two loci deviated from linkage equilibrium. The loci were tested for cross‐species amplification in four species of Dendroctonus (D. valens, D. terebrans, D. brevicomis, and D. ponderosae). Seven loci were polymorphic in at least one of the species tested.  相似文献   

15.
The lily beetle Lilioceris lilii (Scopoli) (Coleoptera: Chrysomelidae) feeds on Lilium, Fritillaria and Cardiocrinum plants and is a serious pest in gardens and amenity plantings in parts of Northern Europe and North America. In the present study, the odour‐mediated behaviour of L. lilii is investigated by behavioural bioassays using a linear‐track olfactometer. The behavioural responses of L. lilii to hosts and conspecifics are, at least in part, odour‐mediated and the responses differ with respect to the physiological (reproductive) state of the adult beetle (i.e. pre‐ or post‐diapause). Significantly more diapaused female L. lilii move into air streams containing the odour of intact host plants than into clean air, and move into air streams containing odour of host plants and beetles combined in preference to odour from manually‐damaged host plants. Diapaused females also move into air streams containing odours from intact plants over those from larval‐infested plants. Pre‐diapause males move into the air streams of intact plants rather than L. lilii‐infested plants. Pre‐diapause females show no significant response in any experiment. The data indicate that the odour‐mediated responses of L. lilii are consistent with those known for other chrysomelids that produce a male aggregation pheromone to which reproductive individuals of both sexes respond.  相似文献   

16.
Aim The spatial extent of western Canada’s current epidemic of mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae, Scolytinae), is increasing. The roles of the various dispersal processes acting as drivers of range expansion are poorly understood for most species. The aim of this paper is to characterize the movement patterns of the mountain pine beetle in areas where range expansion is occurring, in order to describe the fine‐scale spatial dynamics of processes associated with mountain pine beetle range expansion. Location Three regions of Canada’s Rocky Mountains: Kicking Horse Pass, Yellowhead Pass and Pine Pass. Methods Data on locations of mountain pine beetle‐attacked trees of predominantly lodgepole pine (Pinus contorta var. latifolia) were obtained from annual fixed‐wing aircraft surveys of forest health and helicopter‐based GPS surveys of mountain pine beetle‐damaged areas in British Columbia and Alberta. The annual (1999–2005) spatial extents of outbreak ranges were delineated from these data. Spatial analysis was conducted using the spatial–temporal analysis of moving polygons (STAMP), a recently developed pattern‐based approach. Results We found that distant dispersal patterns (spot infestations) were most often associated with marginal increases in the areal size of mountain pine beetle range polygons. When the mountain pine beetle range size increased rapidly relative to the years examined, local dispersal patterns (adjacent infestation) were more common. In Pine Pass, long‐range dispersal (> 2 km) markedly extended the north‐east border of the mountain pine beetle range. In Yellowhead Pass and Kicking Horse Pass, the extension of the range occurred incrementally via ground‐based spread. Main conclusions Dispersal of mountain pine beetle varies with geography as well as with host and beetle population dynamics. Although colonization is mediated by habitat connectivity, during periods of low overall habitat expansion, dispersal to new distant locations is common, whereas during periods of rapid invasion, locally connected spread is the dominant mode of dispersal. The propensity for long‐range transport to establish new beetle populations, and thus to be considered a driver of range expansion, is likely to be determined by regional weather patterns, and influenced by local topography. We conclude that STAMP appears to be a useful approach for examining changes in biogeograpical ranges, with the potential to reveal both fine‐ and large‐scale patterns.  相似文献   

17.
Novel forest decline is increasing due to global environmental change, yet the causal factors and their interactions remain poorly understood. Using tree ring analyses, we show how climate and multiple biotic factors caused the decline of whitebark pine (Pinus albicaulis) in 16 stands in the southern Canadian Rockies. In our study area, 72% of whitebark pines were dead and 18% had partially dead crowns. Tree mortality peaked in the 1970s; however, the annual basal area increment of disturbed trees began to decline significantly in the late 1940s. Growth decline persisted up to 30 years before trees died from mountain pine beetle (Dendroctonus ponderosae), Ips spp. bark beetles or non‐native blister rust pathogen (Cronartium ribicola). Climate–growth relations varied over time and differed among the healthy and disturbed subpopulations of whitebark pine. Prior to the 1940s, cool temperatures limited the growth of all subpopulations. Growth of live, healthy trees became limited by drought during the cool phase (1947 –1976) of the Pacific Decadal Oscillation (PDO) and then reverted to positive correlations with temperature during the subsequent warm PDO phase. In the 1940s, the climate–growth relations of the disturbed subpopulations diverged from the live, healthy trees with trees ultimately killed by mountain pine beetle diverging the most. We propose that multiple factors interacted over several decades to cause unprecedented rates of whitebark pine mortality. Climatic variation during the cool PDO phase caused drought stress that may have predisposed trees to blister rust. Subsequent decline in snowpack and warming temperatures likely incited further climatic stress and with blister rust reduced tree resistance to bark beetles. Ultimately, bark beetles and blister rust contributed to tree death. Our findings suggest the complexity of whitebark pine decline and the importance of considering multiway drought–disease–insect interactions over various timescales when interpreting forest decline.  相似文献   

18.
  1. Plants interact with various organisms, aboveground as well as belowground. Such interactions result in changes in plant traits with consequences for members of the plant‐associated community at different trophic levels. Research thus far focussed on interactions of plants with individual species. However, studying such interactions in a community context is needed to gain a better understanding.
  2. Members of the aboveground insect community induce defences that systemically influence plant interactions with herbivorous as well as carnivorous insects. Plant roots are associated with a community of plant‐growth promoting rhizobacteria (PGPR). This PGPR community modulates insect‐induced defences of plants. Thus, PGPR and insects interact indirectly via plant‐mediated interactions.
  3. Such plant‐mediated interactions between belowground PGPR and aboveground insects have usually been addressed unidirectionally from belowground to aboveground. Here, we take a bidirectional approach to these cross‐compartment plant‐mediated interactions.
  4. Recent studies show that upon aboveground attack by insect herbivores, plants may recruit rhizobacteria that enhance plant defence against the attackers. This rearranging of the PGPR community in the rhizosphere has consequences for members of the aboveground insect community. This review focusses on the bidirectional nature of plant‐mediated interactions between the PGPR and insect communities associated with plants, including (a) effects of beneficial rhizobacteria via modification of plant defence traits on insects and (b) effects of plant defence against insects on the PGPR community in the rhizosphere. We discuss how such knowledge can be used in the development of sustainable crop‐protection strategies.
  相似文献   

19.
20.
The methylerythritol 4‐phosphate (MEP) pathway for the biosynthesis of the isoprenoid universal building blocks (isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP)) is present in most of human pathogens and is absent in animals, turning it into a promising therapeutic druggable pathway. Two different strategies, a pharmacophore‐directed virtual screening and a protein‐protein interaction (PPI)‐mimicking cyclic peptide were used to search for compounds that bind to the PPI surface of the 4‐(cytidine 5‐diphospho)‐2C‐methyl‐D‐erythritol kinase (CMK), which catalyzes the fourth step of the MEP pathway. A significant part of the pharmacophore hypothesis used in this study was designed by mimicking water‐mediated PPI relevant in the CMK homodimer complex stabilization. After database search and with the aid of docking and molecular dynamics (MD) simulations, a 7H‐furo[3,2‐g]chromen‐7‐one derivative and a cyclic peptide were chosen as candidates to be ligands of CMK. Their binding affinities were measured using surface plasmon resonance (SPR) technology. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号