首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Flow dynamics is a major determinant of riparian plant communities. Therefore, flow regulation may heavily affect riparian ecosystems. Despite the large number of dams worldwide, little specific information is available on the longitudinal impacts of dams on vegetation, for example how far downstream and at what degree of regulation a dam on a river can influence riparian woodlands. 2. We quantified the long‐term responses of riparian trees and shrubs to flow regulation by identifying their lateral distribution and habitat conditions along a boreal river in northern Sweden that has been regulated by a single dam since 1948. The regulation has reduced annual flow fluctuations, this effect being largest at the dam, downstream from which it progressively decreases following the entrance of free‐flowing tributaries. 3. We related changes in the distribution patterns, composition, abundance and richness of tree and shrub species to the degree of regulation along the river downstream from the dam. Regulation has triggered establishment of trees and shrubs closer to the channel, making it possible to measure ecological impacts of flow regulation as differences in vegetation attributes relative to the positions of tree and shrub communities established before and after regulation. 4. Trees and shrubs had migrated towards the mid‐channel along the entire study reach, but the changes were largest immediately downstream of the dam. Shrubs were most impacted by flow regulation in terms of lateral movement, but the effect on trees extended furthest downstream. 5. The species composition of trees progressively returned to its pre‐regulation state with distance downstream, but entrance of free‐flowing tributaries and variation in channel morphology and substratum caused local deviations. Species richness after regulation increased for trees but decreased for shrubs. The changes in species composition and richness of trees and shrubs showed no clear downstream patterns, suggesting that other factors than the degree of regulation were more important in governing life form.  相似文献   

2.
Abstract Riparian environments are subject to the scouring and depositional effects of floods. Riparian vegetation and substrates are scoured during high flows, while litter and sediment is deposited downstream. In the Prosser and Little Swanport River catchments in south‐east Tasmania, vascular plant species were surveyed in large riparian relevés. Within these relevés, 1 × 1 m subplots were placed in both flood‐scoured and depositional environments. Species composition was compared between these three datasets, to investigate the importance of floods in determining species richness and species composition of riparian vegetation. Species richness and diversity were highest in areas experiencing flood scour. Herbs appear particularly reliant on the creation of gaps for colonization, and some major riparian shrub species may also require disturbance to maintain their abundance. The depositional environment tended to favour shrubs and graminoids. Given that differences in species composition are related to flood‐induced features of the riparian environment, the regulation of these rivers might reduce the diversity of the riparian vegetation downstream of dams.  相似文献   

3.
Climate change is expected to alter the magnitude and variation of flow in streams and rivers, hence providing new conditions for riverine communities. We evaluated plant ecological responses to climate change by transplanting turfs of riparian vegetation to new elevations in the riparian zone, thus simulating expected changes in water‐level variation, and monitored the results over 6 years. Turfs moved to higher elevations decreased in biomass and increased in species richness, whereas turfs transplanted to lower elevations gained biomass but lost species. Transplanted plant communities responded slowly to the new hydrologic conditions. After 6 years, biomass of transplanted turfs was statistically indistinguishable from target level controls, but species richness and species composition of transplants were intermediate between original and target levels. By using projections of future stream flow according to IPCC climate change scenarios, we predict likely changes to riparian vegetation in boreal rivers. Climate‐driven hydrologic changes are predicted to result in narrower riparian zones along the studied Vindel River in northern Sweden towards the end of the 21st century. Present riparian plant communities are projected to be replaced by terrestrial communities at high elevations as a result of lower‐magnitude spring floods, and by amphibious or aquatic communities at low elevations as a result of higher autumn and winter flows. Changes to riparian vegetation may be larger in other boreal climate regions: snow melt fed spring floods are predicted to disappear in southern parts of the boreal zone, which would result in considerable loss of riparian habitat. Our study emphasizes the importance of long‐term ecological field experiments given that plant communities often respond slowly and in a nonlinear fashion to external pressures.  相似文献   

4.
1. Riparian vegetation in dry regions is influenced by low‐flow and high‐flow components of the surface and groundwater flow regimes. The duration of no‐flow periods in the surface stream controls vegetation structure along the low‐flow channel, while depth, magnitude and rate of groundwater decline influence phreatophytic vegetation in the floodplain. Flood flows influence vegetation along channels and floodplains by increasing water availability and by creating ecosystem disturbance. 2. On reference rivers in Arizona's Sonoran Desert region, the combination of perennial stream flows, shallow groundwater in the riparian (stream) aquifer, and frequent flooding results in high plant species diversity and landscape heterogeneity and an abundance of pioneer wetland plant species in the floodplain. Vegetation changes on hydrologically altered river reaches are varied, given the great extent of flow regime changes ranging from stream and aquifer dewatering on reaches affected by stream diversion and groundwater pumping to altered timing, frequency, and magnitude of flood flows on reaches downstream of flow‐regulating dams. 3. As stream flows become more intermittent, diversity and cover of herbaceous species along the low‐flow channel decline. As groundwater deepens, diversity of riparian plant species (particularly perennial species) and landscape patches are reduced and species composition in the floodplain shifts from wetland pioneer trees (Populus, Salix) to more drought‐tolerant shrub species including Tamarix (introduced) and Bebbia. 4. On impounded rivers, changes in flood timing can simplify landscape patch structure and shift species composition from mixed forests composed of Populus and Salix, which have narrow regeneration windows, to the more reproductively opportunistic Tamarix. If flows are not diverted, suppression of flooding can result in increased density of riparian vegetation, leading in some cases to very high abundance of Tamarix patches. Coarsening of sediments in river reaches below dams, associated with sediment retention in reservoirs, contributes to reduced cover and richness of herbaceous vegetation by reducing water and nutrient‐holding capacity of soils. 5. These changes have implications for river restoration. They suggest that patch diversity, riparian plant species diversity, and abundance of flood‐dependent wetland tree species such as Populus and Salix can be increased by restoring fluvial dynamics on flood‐suppressed rivers and by increasing water availability in rivers subject to water diversion or withdrawal. On impounded rivers, restoration of plant species diversity also may hinge on restoration of sediment transport. 6. Determining the causes of vegetation change is critical for determining riparian restoration strategies. Of the many riparian restoration efforts underway in south‐western United States, some focus on re‐establishing hydrogeomorphic processes by restoring appropriate flows of surface water, groundwater and sediment, while many others focus on manipulating vegetation structure by planting trees (e.g. Populus) or removing trees (e.g. Tamarix). The latter approaches, in and of themselves, may not yield desired restoration outcomes if the tree species are indicators, rather than prime causes, of underlying changes in the physical environment.  相似文献   

5.
Almost all large rivers worldwide are fragmented by dams, and their impacts have been modeled using the serial discontinuity concept (SDC), a series of predictions regarding responses of key biotic and abiotic variables. We evaluated the effects of damming on anuran communities along a 245‐km river corridor by conducting repeated, time‐constrained anuran calling surveys at 42 locations along the Broad and Pacolet Rivers in South Carolina, USA. Using a hierarchical Bayesian analysis, we test the biodiversity prediction of the SDC (modified for floodplain rivers) by evaluating anuran occupancy and species diversity relative to dams and degree of urbanized land use. The mean response of the anuran community indicated that occupancy and species richness were maximized when sites were farther downstream from dams. Sites at the farthest distances downstream of dams (47.5 km) had an estimated ~3 more species than those just below dams. Similarly, species‐specific occupancy estimates showed a trend of higher occupancy downstream from dams. Therefore, using empirical estimation within the context of a 245‐km river riparian landscape, our study supports SDC predictions for a meandering river. We demonstrate that with increasing distance downstream from dams, riparian anuran communities have higher species richness. Reduced species richness immediately downstream of dams is likely driven by alterations in flow regime that reduce or eliminate flows which sustain riparian wetlands that serve as anuran breeding habitat. Therefore, to maintain anuran biodiversity, we suggest that flow regulation should be managed to ensure water releases inundate riparian wetlands during amphibian breeding seasons and aseasonal releases, which can displace adults, larvae, and eggs, are avoided. These outcomes could be achieved by emulating pre‐dam seasonal discharge data, mirroring discharge of an undammed tributary within the focal watershed, or by basing real‐time flow releases on current environmental conditions.  相似文献   

6.
Question: How important is hydrochory for dispersing propagules along riverbanks and to what extent do the quantity and species composition of deposited propagules reflect the riparian vegetation, represent “new” species that are not present in the vegetation, and vary with river flow and season? Location: River Frome, Dorset, UK. Methods: Over 13 consecutive 6‐week time periods, during which river water levels were continuously monitored, aerial inputs of propagules to riverbanks were sampled using funnels, hydrochorous propagule transport was sampled using drift nets, and deposition across the riverbanks was sampled using astroturf mats. A survey of the riparian vegetation enabled comparison between samples and the standing vegetation, so that “new” species could be identified. Differences in propagule abundance and diversity between sampling methods, time periods and locations were tested using Mann‐Whitney U‐tests and Kruskall‐Wallis ANOVA. DCA established contrasts in the floristic composition of all deposited propagules and “new” propagules between different sample types, time periods and locations. Results: Aerial seed fall generated few propagules of low species richness. Hydrochory introduced large numbers of propagules and new species, resulting in high propagule deposition on the riverbank. The number and diversity of deposited propagules was governed by seasonal patterns of seed release and the hydrological regime. Propagule deposition was significantly greater on the most frequently inundated parts of the riverbank and autumn floods were particularly important for transporting “new” species to the study site and for remobilizing previously released propagules. Conclusions: The abundance and diversity of propagules deposited along riverbanks is dependent upon high river flows, which facilitates connectivity between the channel and the riparian zone.  相似文献   

7.
1. Riparian plant communities are primarily structured by the hydrological regime of the stream. Models of climate change predict increased temperatures and changed patterns of precipitation that will alter the flow of rivers and streams with consequences for riparian communities. In boreal regions of Europe, stream flows will exhibit earlier spring‐flood peaks of lower magnitude, lower summer flows and higher flows in autumn and winter. We quantified the effects of predicted hydrological change on riparian plant species richness, using four different scenarios for the free‐flowing Vindel River in northern Sweden. 2. We calculated the hydrological niche of vegetation belts by relating the occurrence of species and vegetation belts to data on flood duration for 10 years preceding the vegetation survey. We then used the flood duration predicted for 2071–2100 to estimate expected changes in the extent of each vegetation belt. Using species accumulation curves, we then predicted changes in plant species richness as a result of changes in extent. 3. The two most species‐rich vegetation belts, riparian forest and willow shrub, were predicted to decrease most in elevational extent, up to 39 and 32%, respectively. The graminoid belt below the shrub belt will mainly shift upwards in elevation while the amphibious vegetation belt at the bottom of the riparian zone increases in size. 4. In the Vindel River, the riparian forest and willow shrub zone will lose most species, with reductions of 5–12% and 1–13% per site, respectively, depending on the scenario. The predicted loss from the entire riparian zone is lower, 1–9%, since many species occur in more than one vegetation belt. More extensive species losses are expected in the southern boreal zone for which much larger spring‐flood reductions are projected. 5. With an expected reduction in area of the most species‐rich belts, it becomes increasingly important to manage and protect riparian zones to alleviate other threats, thus minimising the risk of species losses. Restoring river and stream reaches degraded by other impacts to gain riparian habitat is another option to avoid species losses.  相似文献   

8.
The Segura River Basin is one of the most arid and regulated zones in the Mediterranean as well as Europe that includes four hydrologic river types, according to their natural flow regime: main stem rivers, stable streams, seasonal streams and temporary streams. The relationships between flow regime and fluvial and riparian habitats were studied at reference and hydrologically altered sites for each of the four types. Flow regime alteration was assessed using two procedures: (1) an indirect index, derived from variables associated with the main hydrologic pressures in the basin, and (2) reference and altered flow series analyses using the Indicators of Hydrologic Alteration (IHA) and the Indicators of Hydrologic Alteration in Rivers (IAHRIS). Habitats were characterized using the River Habitat Survey (RHS) and its derived Habitat Quality Assessment (HQA) score, whereas riparian condition was assessed using the Riparian Quality Index (RQI) and an inventory of riparian native/exotic species. Flow stability and magnitude were identified as the main hydrologic drivers of the stream habitats in the Segura Basin. Hydrologic alterations were similar to those described in other Mediterranean arid and semiarid areas where dams have reduced flow magnitude and variability and produced the inversion of seasonal patterns. Additionally, the Segura Basin presented two general trends: an increase in flow torrentiality in main stems and an increase in temporality in seasonal and temporary streams. With the indirect alteration index, main stems presented the highest degree of hydrologic alteration, which resulted in larger channel dimensions and less macrophytes and mesohabitats. However, according to the hydrologic analyses, the seasonal streams presented the greatest alteration, which was supported by the numerous changes in habitat features. These changes were associated with a larger proportion of uniform banktop vegetation as well as reduced riparian native plant richness and mesohabitat density. Both stream types presented consequent reductions in habitat and riparian quality as the degree of alteration increased. However, stable streams, those least impacted in the basin, and temporary streams, which are subject to great hydrologic stress in reference conditions, showed fewer changes in physical habitat due to hydrologic alteration. This study clarifies the relationships between hydrologic regime and physical habitat in Mediterranean basins. The hydrologic and habitat indicators that respond to human pressures and the thresholds that imply relevant changes in habitat and riparian quality presented here will play a fundamental role in the use of holistic frameworks when developing environmental flows on a regional scale.  相似文献   

9.
Spatial and temporal patterns of species richness in a riparian landscape   总被引:6,自引:0,他引:6  
Aim To test for control of vascular plant species richness in the riparian corridor by exploring three contrasting (although not mutually exclusive) hypotheses: (1) longitudinal patterns in riparian plant species richness are governed by local, river‐related processes independent of the regional species richness, (2) riparian plant species richness is controlled by dispersal along the river (longitudinal control), and (3) the variation in riparian plant species richness mirrors variation in regional richness (lateral control). Location The riparian zones of the free‐flowing Vindel River and its surrounding river valley, northern Sweden. Methods We used data from three surveys, undertaken at 10‐year intervals, of riparian reaches (200‐m stretches of riverbank) spanning the entire river. In addition, we surveyed species richness of vascular plants in the uplands adjacent to the river in 3.75‐km2 large plots along the same regional gradient. We explored the relationship between riparian and upland flora, and various environmental variables. We also evaluated temporal variation in downstream patterns of the riparian flora. Results Our results suggest that local species richness in boreal rivers is mainly a result of local, river‐related processes and dispersal along the corridor. The strongest correlation between species richness and the environment was a negative one between species number and soil pH, but pH varied within a narrow range. We did not find evidence for a correlation between species richness on regional and local scales. We found that the local patterns of species richness for naturally occurring vascular plants were temporally variable, probably in response to large‐scale disturbance caused by extreme floods. Most previous studies have found a unimodal pattern of species richness with peaks in the middle reaches of a river. In contrast, on two of three occasions corresponding to major flooding events, we found that the distribution of species richness of naturally occurring vascular plants resembled that of regional diversity: a monotonic decrease from headwater to coast. We also found high floristic similarity between the riparian corridor and the surrounding landscape. Main conclusions These results suggest that local processes control patterns of riparian species richness, but that species composition is also highly dependent on the regional species pool. We argue that inter‐annual variation in flood disturbance is probably the most important factor producing temporal variability of longitudinal species richness patterns.  相似文献   

10.
11.
Riparian zones support some of the most dynamic and species‐rich plant communities in cold regions. A common conception among plant ecologists is that flooding during the season when plants are dormant generally has little effect on the survival and production of riparian vegetation. We show that winter floods may also be of fundamental importance for the composition of riverine vegetation. We investigated the effects of ice formation on riparian and in‐stream vegetation in northern Sweden using a combination of experiments and observations in 25 reaches, spanning a gradient from ice‐free to ice‐rich reaches. The ice‐rich reaches were characterized by high production of frazil and anchor ice. In a couple of experiments, we exposed riparian vegetation to experimentally induced winter flooding, which reduced the dominant dwarf‐shrub cover and led to colonization of a species‐rich forb‐dominated vegetation. In another experiment, natural winter floods caused by anchor‐ice formation removed plant mimics both in the in‐stream and in the riparian zone, further supporting the result that anchor ice maintains dynamic plant communities. With a warmer winter climate, ice‐induced winter floods may first increase in frequency because of more frequent shifts between freezing and thawing during winter, but further warming and shortening of the winter might make them less common than today. If ice‐induced winter floods become reduced in number because of a warming climate, an important disturbance agent for riparian and in‐stream vegetation will be removed, leading to reduced species richness in streams and rivers in cold regions. Given that such regions are expected to have more plant species in the future because of immigration from the south, the distribution of species richness among habitats can be expected to show novel patterns.  相似文献   

12.
Ice dynamics is an important factor affecting vegetation in high‐altitude and high‐latitude streams and rivers. During the last few decades, knowledge about ice in streams and rivers has increased significantly and a respectable body of literature is now available. Here we review the literature on how ice dynamics influence riparian and aquatic vegetation. Traditionally, plant ecologists have focused their studies on the summer period, largely ignoring the fact that processes during winter also impact vegetation dynamics. For example, the freeze‐up period in early winter may result in extensive formation of underwater ice that can restructure the channel, obstruct flow, and cause flooding and thus formation of more ice. In midwinter, slow‐flowing reaches develop a surface‐ice cover that accumulates snow, protecting habitats under the ice from formation of underwater ice but also reducing underwater light, thus suppressing photosynthesis. Towards the end of winter, ice breaks up and moves downstream. During this transport, ice floes can jam up and cause floods and major erosion. The magnitudes of the floods and their erosive power mainly depend on the size of the watercourse, also resulting in different degrees of disturbance to the vegetation. Vegetation responds both physically and physiologically to ice dynamics. Physical action involves the erosive force of moving ice and damage caused by ground frost, whereas physiological effects – mostly cell damage – happen as a result of plants freezing into the ice. On a community level, large magnitudes of ice dynamics seem to favour species richness, but can be detrimental for individual plants. Human impacts, such as flow regulation, channelisation, agriculturalisation and water pollution have modified ice dynamics; further changes are expected as a result of current and predicted future climate change. Human impacts and climate change can both favour and disfavour riverine vegetation dynamics. Restoration of streams and rivers may mitigate some effects of anticipated climate change on ice and vegetation dynamics by, for example, slowing down flows and increasing water depth, thus reducing the potential for massive formation of underwater ice.  相似文献   

13.
1. Drylands worldwide are typified by extreme variability in hydrologic processes, which structures riparian communities at various temporal and spatial scales. One key question is how underlying differences in hydrology over the length of interrupted perennial rivers influence spatial and temporal patterns in species richness and species composition. 2. We examined effects of differences in dry season hydrology on species richness, composition and cover of herbaceous plant communities in the streamside zone (the zone influenced directly by low flows in the channel). Data were collected at ephemeral, intermittent and perennial flow reaches on three rivers of the desert Southwest (Arizona, U.S.A.): Lower Cienega Creek, Hassayampa River and Lower San Pedro River. 3. Patterns of species richness varied with temporal scale of analysis, that is between single‐year and multi‐year time frames. At the annual timescale, quadrat species richness (m?2) and herbaceous cover were higher at sites with perennial flow than at either intermittent or ephemeral sites. In contrast to this single‐year pattern, the highest long‐term richness occurred at intermittent sites. 4. Quadrat species richness, total species richness at a site (per 18 1‐m2 plots) and cover were more variable year to year at non‐perennial sites than at perennial flow sites. On two of the three rivers, ephemeral sites had the highest inter‐annual compositional variance, while the perennial sites had the lowest. 5. Compositional differences between the hydrologic site types were dominated by species turnover, not nestedness. The perennial sites had more wetland and perennial species than the other two site types. The intermittent sites had more annual species than did the other two types. 6. High long‐term species richness and distinct species composition of intermittent sites are probably sustained by pronounced temporal variability in environmental conditions (i.e. frequent and persistent flow events, and dry periods). Plants at these sites take advantage of greater moisture than those at ephemeral sites and also experience less competition from resident species than those at perennial sites. 7. Conservation of desert riparian diversity depends upon the protection of consistently wet conditions at perennial flow sites, as well as the maintenance of the processes that cause fluctuations in environmental conditions at non‐perennial sites.  相似文献   

14.
1. Differing responses in riparian species richness and composition to disturbance have been reported as a possible explanation for the differences along and between rivers. This paper explores the role of physical disturbance in shaping landscape‐scale patterns of species distribution in riparian vegetation along a free‐flowing river in northern Sweden. 2. To test whether sensitivity to disturbance varies across large landscapes, we experimentally disturbed riparian vegetation along an entire, free‐flowing river by scouring the soil and the vegetation turf, cutting vegetation, applying waterborne plant litter, and after a period of recovery we measured vegetation responses. The experiment was repeated for two consecutive years. 3. We found no significant effect of disturbance on species composition, but all three forms of disturbance significantly reduced species richness. There was no downstream variation in community responses to disturbance but morphological groups of species responded differently to different kinds of disturbance. Graminoids were most resistant, suppressed only by litter burial. All forms of disturbance except cutting reduced the density of herbaceous species, and species density of trees + shrubs and dwarf shrubs was negatively affected by both scouring and cutting. We also evaluated the effects of disturbance in relation to varying levels of species richness. In nearly all cases, responses were significantly negatively correlated with control plot species richness, and relative responses indicated that species‐rich plots were less resistant to scouring and cutting. 4. Our results suggest that although all disturbance treatments had an effect on species richness, variation in sensitivity to disturbance is not the most important factor shaping landscape‐scale patterns of riparian plant species richness along rivers.  相似文献   

15.
Remnants of native riparian vegetation on the floodplain of the Hawkesbury–Nepean River near Sydney, have significant conservation value, but contain a large component of weeds (i.e. exotic species that have become naturalized). A proposal for the introduction of environmental flows required an assessment of potential impacts on 242 native and 128 exotic species recorded along 215 km of the river. The likely effects of frequency, season, depth and duration of inundation were considered in relation to habitat, dispersal season and tolerance to waterlogging. Overseas studies provided only limited information applicable to the study area; however, comparisons with similarly highly modified riparian habitats in New Zealand were instructive. Depth and season of inundation appear to be the variables with the greatest potential for differential effects on weeds and native plants. Because of likely spread of propagules and enhancement of growth under the present nutrient‐enriched conditions, environmental flows that would cause more frequent flooding to higher levels of the riparian zone were judged to be of more benefit to weed species than native species, unless supported by bushland management including weeding. Predictions were limited by incomplete data on Hawkesbury–Nepean species, but two types of environmental flow were judged to be potentially beneficial for native water‐edge plants, and worth testing and monitoring: first, flows that maintain continuous low‐level flow in the river, and second, higher level environmental flows restricted to the river‐edge habitat in autumn (the season in which a greater proportion of native species than weed species are known to disperse propagules). In summary, the presence of environmental weeds in riparian vegetation constrain the potential for environmental flows to improve river health. However, with ongoing monitoring, careful choice of water level and season of flow may lead to environmental flows that add to our knowledge, and benefit riparian vegetation along with other river system components.  相似文献   

16.
17.
1. Water abstraction strongly affects streams in arid and semiarid ecosystems, particularly where there is a Mediterranean climate. Excessive abstraction reduces the availability of water for human uses downstream and impairs the capacity of streams to support native biota. 2. We investigated the flow regime and related variables in six river basins of the Iberian Peninsula and show that they have been strongly altered, with declining flows (autoregressive models) and groundwater levels during the 20th century. These streams had lower flows and more frequent droughts than predicted by the official hydrological model used in this region. Three of these rivers were sometimes dry, whereas there were predicted by the model to be permanently flowing. Meanwhile, there has been no decrease in annual precipitation. 3. We also investigated the fish assemblage of a stream in one of these river basins (Tordera) for 6 years and show that sites more affected by water abstraction display significant differences in four fish metrics (catch per unit effort, number of benthic species, number of intolerant species and proportional abundance of intolerant individuals) commonly used to assess the biotic condition of streams. 4. We discuss the utility of these metrics in assessing impacts of water abstraction and point out the need for detailed characterisation of the natural flow regime (and hence drought events) prior to the application of biotic indices in streams severely affected by water abstraction. In particular, in cases of artificially dry streams, it is more appropriate for regulatory agencies to assign index scores that reflect biotic degradation than to assign ‘missing’ scores, as is presently customary in assessments of Iberian streams.  相似文献   

18.
An exceptionally powerful storm struck southwestern Washington in December 2007 causing large debris flows in two adjacent streams. The two affected streams had been studied prior to the storm, providing a rare opportunity to examine ecosystem recovery. We monitored the streams and their riparian zones for six years after the disturbances to determine whether recovery rates of biota, physical habitat, and water temperature differed, and if so, what factors affected resilience. Along both streams, the debris flows removed wide swaths of soil, rock, and coniferous riparian forests, widening the active channel and increasing solar exposure and summer water temperatures. Initially depauperate of vegetation, after four years red alder trees dominated the riparian plant communities. The warmer water, greater solar radiation, and unstable substrates likely contributed to variable benthic insect and tailed frog tadpole densities over time, although benthic insect communities became more similar after three years. The debris flows also decreased channel slopes and removed channel step barriers such that cutthroat trout were able to rapidly occupy habitats far upstream, but sculpins were slower to recolonize and both fish species exhibited some differences in recovery between the two streams. Crayfish were severely impacted by the debris flows; this may be due to attributes of their life history and the timing of the flows. Overall, we found that recolonizing aquatic species exhibited varying levels of resilience and recovery after the disturbances being related to the influence of physical habitat conditions, species dispersal ability, and the presence of nearby source populations.  相似文献   

19.
1. A 7‐year study was conducted in three hydrologically distinct sections within the highly regulated, lowland Campaspe River to investigate the influence of hydrology on temporal and spatial patterns in fish composition, abundance and recruitment. One section had 6 months, one section 2 months and one section no months of increased flow due to storage releases. The fish fauna of the less regulated, nearby Broken River served as a reference to which that of the Campaspe River was compared for the last 3 years of the study to allow insight into the relative effects of hydrology, barriers to movement and other environmental characteristics. The study included one high‐flow year, a moderate‐flow year and five low‐flow years. 2. A total of 16 fish species – 10 native and six alien – were caught in the Campaspe River, although of the native species, only three are considered to have self‐sustaining populations. The remaining species are either itinerants or a result of stocking. Alien species comprised approximately 64% of the total biomass of all fish caught. 3. Overall composition of the fish fauna did not differ significantly by year, but did by section of river. Species richness and the abundance of most of the dominant species also differed significantly by river section, but there was little inter‐annual variation in the abundance of any species, except for European perch and for common carp; the latter showing an increase in abundance following a high‐flow event during the spring of 2000 as a result of recruitment. 4. Overall faunal composition was not influenced by hydrology. However, multiple regression indicated that species richness, abundance of the dominant species and abundance of young‐of‐year (YOY) of golden perch, European perch and common carp all were influenced significantly by hydrological variables. The nature of the relationships was dependent on river section and hydrological season (‘winter’ or ‘spring/summer’). Of note was the result that the total abundance of fish and that of YOY common carp were significantly positively related to the number of spells above the threshold for movement upstream through the lower two weirs in the Campaspe River. Only one significant relationship between hydrological and fish‐related variables was found for the upper river section, whereas seven and five were found for the lower and middle sections respectively. 5. Comparisons with fish collected in the Broken River over 3 years suggest that the fauna of the Broken River is in a more natural state than that of the Campaspe River. Since the two rivers do not differ substantially in water quality, and since both contain significant weirs, which act as barriers to movement of fish, flow regulation is most likely to be the major reason for the poor state of the fauna in the Campaspe River.  相似文献   

20.
Preservation of biodiversity depends on restoring the full range of historic environmental variation to which organisms have evolved, including natural disturbances. Lotic ecosystems have been fragmented by dams causing a reduction in natural levels of environmental variation (flow and temperature) and consequently a reduction of biodiversity in downstream communities. We conducted a long‐term study of the macroinvertebrate communities before and after natural flood disturbances in an unregulated reference site (natural flows and temperatures), a regulated site (regulated flows and temperatures), and a partially regulated reference site (regulated flows and natural temperatures) on the upper Colorado River downstream from a deep‐release storage reservoir. We aimed to test the hypothesis that floods and temperature restoration would cause an increase in macroinvertebrate diversity at the regulated site. Over the short term, macroinvertebrate richness decreased at the regulated site when compared to pre‐flood levels, whereas total macroinvertebrate density remained unchanged. Over the long term (1 and 10 years after the floods), macroinvertebrate diversity and community structure at the regulated site returned to pre‐flood levels without increasing to reference conditions. Occasional floods did not restore biodiversity in this system. As long as the physical state variables remain altered beyond a threshold, the community will return to its altered regulated condition. However, temperature restoration at the partially regulated site resulted in an increase in macroinvertebrate diversity. Our results indicate that restoration of the natural temperature regime will have a stronger effect on restoring biodiversity than occasional channel‐forming floods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号