首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
1. Abrasive material in the diet of herbivorous organisms comes from a variety of sources, including crystalline silica or calcium in plant tissues, accidentally ingested soil while digging or grazing, and entrapped substrate on the surfaces of plants. A wide variety of plants entrap substrate, usually with glandular trichomes. 2. A previous study demonstrated that entrapped sand provided resistance to herbivory in the field. In this study, the following questions were addressed: how does entrapped sand on Abronia latifolia (Nyctaginaceae) leaves and stems affect preference and performance of a common herbivore, the large‐bodied caterpillar Hyles lineata (Sphingidae); does this effect differ from those experienced by an internally feeding leaf miner? 3. Using a combination of experimental and observational approaches, it was found that sand comprised ~4–5% of ingested weight during normal feeding of H. lineata caterpillars. This entrapped sand caused extensive wear to their mandibles, they avoided sand‐covered plants when given the choice, and the sand negatively impacted performance metrics, including pupal weight, development time, and growth rate. In contrast, a leaf‐mining caterpillar did not have a preference for or against feeding on sandy plants. 4. These results are similar to studies on mandibular wear due to grasses, and herbivorous insects that feed on these two plant groups may have similar morphologies. It is hypothesised that increased wear potential may be a convergent solution to abrasive plants in both mammals (hypsodonty) and insects.  相似文献   

2.
1. Maternal preference is a dynamic process and interactions between preference and performance are fundamental for understanding evolutionary ecology and host association in insect–plant interactions. In the present study, the hypothesis of preference–performance was tested by offering solanaceous specialist Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae) larvae and adult females four plant congeners that ranged in suitability. 2. Larval feeding, development, oviposition, plant glycoalkaloids, and headspace volatiles in the four plant species were analysed to examine the extent of variation, which might explain performance–preference differences. 3. It was found that larval performance was mismatched with adult oviposition preferences. Adults laid more eggs on Solanum immite Dunal plants, which were poor hosts for larval development, feeding, and survival, compared to the other three Solanum species. 4. Chemical plant defenses, in general, did not correlate with performance or preference, but some plant volatiles may have played a role in resolving female choice. Glycoalkaloids such as solanine and chaconine were detected in similar amounts in preferred and non‐preferred hosts, but there was significantly more limonene in the headspace of S. immite than in S. tuberosum L. 5. The present findings suggest that we must consider the risk‐spreading hypothesis in cases where preference and performance are not positively correlated, particularly in specialist herbivores that can feed on a diversity of congener plants and may attempt to expand their exploits to other solanaceae species.  相似文献   

3.
Studying antagonistic coevolution between host plants and herbivores is particularly relevant for polyphagous species that can experience a great diversity of host plants with a large range of defenses. Here, we performed experimental evolution with the polyphagous spider mite Tetranychus urticae to detect how mites can exploit host plants. We thus compared on a same host the performance of replicated populations from an ancestral one reared for hundreds of generations on cucumber plants that were shifted to either tomato or cucumber plants. We controlled for maternal effects by rearing females from all replicated populations on either tomato or cucumber leaves, crossing this factor with the host plant in a factorial design. About 24 generations after the host shift and for all individual mites, we measured the following fitness components on tomato leaf fragments: survival at all stages, acceptance of the host plant by juvenile and adult mites, longevity, and female fecundity. The host plant on which mite populations had evolved did not affect the performance of the mites, but only affected their sex ratio. Females that lived on tomato plants for circa 24 generations produced a higher proportion of daughters than did females that lived on cucumber plants. In contrast, maternal effects influenced juvenile survival, acceptance of the host plant by adult mites and female fecundity. Independently of the host plant species on which their population had evolved, females reared on the tomato maternal environment produced offspring that survived better on tomato as juveniles, but accepted less this host plant as adults and had a lower fecundity than did females reared on the cucumber maternal environment. We also found that temporal blocks affected mite dispersal and both female longevity and fecundity. Taken together, our results show that the host plant species can affect critical parameters of population dynamics, and most importantly that maternal and environmental conditions can facilitate colonization and exploitation of a novel host in the polyphagous T. urticae, by affecting dispersal behavior (host acceptance) and female fecundity.  相似文献   

4.
Defense priming is defined as increased readiness of defense induction. A growing body of literature indicates that plants (or intact parts of a plant) are primed in anticipation of impending environmental stresses, both biotic and abiotic, and upon the following stimulus, induce defenses more quickly and strongly. For instance, some plants previously exposed to herbivore‐inducible plant volatiles (HIPVs) from neighboring plants under herbivore attack show faster or stronger defense activation and enhanced insect resistance when challenged with secondary insect feeding. Research on priming of antiherbivore defense has been limited to the HIPV‐mediated mechanism until recently, but significant advances were made in the past three years, including non‐HIPV‐mediated defense priming, epigenetic modifications as the molecular mechanism of priming, and others. It is timely to consider the advances in research on defense priming in the plant–insect interactions.  相似文献   

5.
Overcompensation is a plant tolerance response in which plants have higher fitness after herbivory than without damage. Although it has been demonstrated that plants are able to simultaneously express resistance and tolerance traits, it remains unclear whether overcompensating plants are also inducing resistance‐mediating secondary metabolite production and how herbivores perform on plants that overcompensate. Our previous work has shown that a potato variety [Solanum tuberosum L. cv. Pastusa Suprema (Solanaceae)] from Colombia can express overcompensatory responses to damage by larvae of the Guatemalan potato moth, Tecia solanivora Povolny (Lepidoptera: Gelechiidae). Here we investigated (1) whether potatoes that express overcompensatory responses also induce resistance traits and (2) how the previous damage affects Guatemalan potato moth preference and performance. Our results show that larval feeding not only systemically induces higher tuber biomass but also an increased production of resistance‐related compounds, such as phenolics and proteinase inhibitors. Pupal mass increased with increasing tuber size, whereas changes in tuber secondary metabolism did not correlate with any metric of larval performance. Oviposition preference did not change between induced and undamaged plants. Our data show that potato plants expressing overcompensatory responses also induce secondary compounds known to increase resistance against herbivores. However, the induced response was relatively small, reducing the opportunities for a negative effect on the herbivore. Hypotheses for why larvae perform better in larger tubers and are not affected by the secondary metabolism are discussed. From an ecological and agricultural point of view, our results suggest that the expression of overcompensatory traits could have positive effects on herbivore performance.  相似文献   

6.
7.
8.
1. When herbivores of distinct feeding guilds, such as phloem feeders and leaf chewers, interact, the outcome of these interactions often shows facilitation. However, whether this facilitation turns into competition at stronger herbivory pressure remains unknown. 2. Using an integrative approach that links ecological processes (behavioural choices of insects) with physiological plant mechanisms (nutrient and phytohormone levels) for the wild crucifer Brassica nigra (L.) Koch., this study evaluates preferences of leaf chewers for plants previously infested with several densities of the specialist aphid Brevicoryne brassicae L. (Hemiptera, Aphididae). As leaf chewers, four species of caterpillars (Lepidoptera) were selected that differ in their degree of specialisation in crucifers. 3. These results show that, whereas at low and medium aphid densities caterpillars displayed a preference for aphid‐infested plants or no preference, at high aphid infestation density, all four species of caterpillar preferred uninfested plants, with a significant difference for Pieris rapae and Mamestra brassicae. 4. In contrast to our expectation, the consistent preference for uninfested plants at a high aphid density could not be associated with a decrease in plant nutrition. However, while jasmonate concentrations [i.e. 12‐oxo‐phytodienoic acid and jasmonic acid (JA)] at medium aphid‐density infestation decreased compared with low levels of infestation, at high infestation level, the jasmonates JA as well as JA conjugated with the amino acid isoleucine were present at higher levels compared with low‐infestation treatments. 5. This work provides evidence that positive interactions observed in herbivore communities can be transient, leading to negative interactions mediated by changes in plant defences rather than in plant nutrition.  相似文献   

9.
We compared the effects of a sesquiterpene (ST, cacalol) and a pyrrolizidine alkaloid (PA, seneciphylline), both occurring in Adenostyles alliariae, on food choice and performance of specialist and generalist insect herbivores which are all known to feed or live on A. alliariae. In choice experiments we investigated whether the compounds were preferred, deterrent or had no effect. All specialist species Aglaostigma discolor (Hymenoptera, Tenthredinidae), Oreina cacaliae (Coleoptera, Chrysomelidae) and O. speciosissima avoided feeding when confronted with the combination of compounds. Only larvae of A. discolor avoided the single ST treatment as well. Larvae of the generalist species Callimorpha dominula (Lepidoptera, Arctiidae), Cylindrotoma distinctissima (Diptera, Tipulidae) and Miramella alpina (Caelifera, Acrididae) generally avoided feeding from PA, ST and PAST treatments. The only exception were caterpillars of C. dominula which were indiscriminate towards PA when naive, and preferred to feed on the PA treatment when they had experienced the compound before. Performance, measured as the growth of larvae on the different treatments in a no choice situation over a period of 10–17 days, was not different between treatments in the specialist leaf beetles O. cacaliae and O. speciosissima. Their avoidance of the combination treatment in the choice experiments had no obvious effect on growth when forced to feed from the treatment. In the generalist C. dominula only the high concentration combination treatment (PAST) reduced growth of the larvae due to decreased consumption. In C. distinctissima we found reduced growth in all treatments except one (PA3%). Poor growth performance in C. distinctissima was due to postingestive physiological effects of all treatments and additionally to consumption reduction in high‐dose ST treatments. Genetic variability (broad sense heritability) of growth performance metabolism varied in accordance with the specialization degree of the species. O. cacaliae, the most specialized species, had no significant heritability; O. speciosissima, the less specialized specialist, had a heritability of 0.46; C. dominula, the PA adapted generalist species, had a heritability of 0.64; C. distinctissima, the generalist with no apparent adaptations, had a heritability of 0.84.  相似文献   

10.
Pollinator‐mediated evolutionary divergence has seldom been explored in generalist clades because it is assumed that pollinators in those clades exert weak and conflicting selection. We investigate whether pollinators shape floral diversification in a pollination generalist plant genus, Erysimum. Species from this genus have flowers that appeal to broad assemblages of pollinators. Nevertheless, we recently reported that it is possible to sort plant species into pollination niches varying in the quantitative composition of pollinators. We test here whether floral characters of Erysimum have evolved as a consequence of shifts among pollination niches. For this, we quantified the evolutionary lability of the floral traits and their phylogenetic association with pollination niches. As with pollination niches, Erysimum floral traits show weak phylogenetic signal. Moreover, floral shape and color are phylogenetically associated with pollination niche. In particular, plants belonging to a pollination niche dominated by long‐tongued large bees have lilac corollas with parallel petals. Further analyses suggest, however, that changes in color preceded changes in pollination niche. Pollinators seem to have driven the evolution of corolla shape, whereas the association between pollination niche and corolla color has probably arisen by lilac‐flowered Erysimum moving toward certain pollination niches for other adaptive reasons.  相似文献   

11.
Climate change and insect outbreaks are key factors contributing to regional and global patterns of increased tree mortality. While links between these environmental stressors have been established, our understanding of the mechanisms by which elevated temperature may affect tree–insect interactions is limited. Using a forest warming mesocosm, we investigated the influence of elevated temperature on phytochemistry, tree resistance traits, and insect performance. Specifically, we examined warming effects on forest tent caterpillar (Malacosoma disstria) and host trees aspen (Populus tremuloides) and birch (Betula papyrifera). Trees were grown under one of three temperature treatments (ambient, +1.7 °C, +3.4 °C) in a multiyear open‐air warming experiment. In the third and fourth years of warming (2011, 2012), we assessed foliar nutrients and defense chemistry. Elevated temperatures altered foliar nitrogen, carbohydrates, lignin, and condensed tannins, with differences in responses between species and years. In 2012, we performed bioassays using a common environment approach to evaluate plant‐mediated indirect warming effects on larval performance. Warming resulted in decreased food conversion efficiency and increased consumption, ultimately with minimal effect on larval development and biomass. These changes suggest that insects exhibited compensatory feeding due to reduced host quality. Within the context of observed phytochemical variation, primary metabolites were stronger predictors of insect performance than secondary metabolites. Between‐year differences in phytochemical shifts corresponded with substantially different weather conditions during these two years. By sampling across years within an ecologically realistic and environmentally open setting, our study demonstrates that plant and insect responses to warming can be temporally variable and context dependent. Results indicate that elevated temperatures can alter phytochemistry, tree resistance traits, and herbivore feeding, but that annual weather variability may modulate warming effects leading to uncertain consequences for plant–insect interactions with projected climate change.  相似文献   

12.
We analyzed geographic differentiation in oviposition preference in the anise swallowtail butterfly, Papilio zelicaon Lucas, which is one of the most widely distributed and polyphagous butterflies in western North America. Among 13 populations that span 1200 km of the range of P. zelicaon in the Pacific Northwest of North America, the overall oviposition preference hierarchy has not diverged significantly, even though these populations differ in the plant species they use in the field. The results indicate that differences in host availability and use have not favored major reorganizations in the preference hierarchy of ovipositing females. Instead, this butterfly has a conserved preference hierarchy that varies within a narrow range among populations. All populations ranked the four test plant species in the same overall relative order, even though these populations differ in the plant species they use in the field. Received: 9 February 1996 / Accepted: 24 February 1997  相似文献   

13.
The effect of host plant dissimilarity on insect preference and performance was tested using two morphological forms of Chromolaena odorata (L.) King & Robinson (Asteraceae) (one from Florida, USA, another from South Africa), and a specialist herbivore, Pareuchaetes insulata (Walker) (Lepidoptera: Erebidae: Arctiinae) from Florida, USA, that was introduced as a biological control agent in South Africa. Although this insect did establish at one site, of some 21 sites at which over 800 000 individuals were released, its population level in the field has remained low after an initial outbreak in 2006. To explain the poor performance of P. insulata, we hypothesised that P. insulata larvae prefer Floridian C. odorata to the southern African C. odorata, which is morphologically and probably genetically distinct, and that larvae reared on Floridian C. odorata should have higher fitness and performance. We tested this by comparing insect performance metrics on each of the two plant forms in laboratory experiments. Apart from pupal mass, which was significantly greater on southern African C. odorata, P. insulata performance metrics were similar on both plant forms; there were no significant differences in total leaf area consumed, egg and larval development, immature survival rates, feeding index, host suitability index, growth index, and fecundity between the Floridian and southern African C. odorata plants. In sum, we could not demonstrate that differences in plant forms in C. odorata are responsible for the poor performance of P. insulata in South Africa.  相似文献   

14.
15.
The main selective force driving floral evolution and diversity is plant–pollinator interactions. Pollinators use floral signals and indirect cues to assess flower reward, and the ensuing flower choice has major implications for plant fitness. While many pollinator behaviors have been described, the impact of parasites on pollinator foraging decisions and plant–pollinator interactions have been largely overlooked. Growing evidence of the transmission of parasites through the shared‐use of flowers by pollinators demonstrate the importance of behavioral immunity (altered behaviors that enhance parasite resistance) to pollinator health. During foraging bouts, pollinators can protect themselves against parasites through self‐medication, disease avoidance, and grooming. Recent studies have documented immune behaviors in foraging pollinators, as well as the impacts of such behaviors on flower visitation. Because pollinator parasites can affect flower choice and pollen dispersal, they may ultimately impact flower fitness. Here, we discuss how pollinator immune behaviors and floral traits may affect the presence and transmission of pollinator parasites, as well as how pollinator parasites, through these immune behaviors, can impact plant–pollinator interactions. We further discuss how pollinator immune behaviors can impact plant fitness, and how floral traits may adapt to optimize plant fitness in response to pollinator parasites. We propose future research directions to assess the role of pollinator parasites in plant–pollinator interactions and evolution, and we propose better integration of the role of pollinator parasites into research related to pollinator optimal foraging theory, floral diversity and agricultural practices.  相似文献   

16.
17.
The longstanding biotic interactions hypothesis predicts that herbivore pressure declines with latitude, but the evidence is mixed. To address gaps in previous studies, we measured herbivory and defence in the same system, quantified defence with bioassays, and considered effects of leaf age. We quantified herbivory and defence of young and mature leaves along a continental gradient in eastern North America in the native herb Phytolacca americana L. Herbivory in the field declined with latitude and was strongly correlated with lepidopteran abundance. Laboratory bioassays revealed that leaf palatability was positively correlated with latitude of origin. Young leaves were more damaged than mature leaves at lower latitudes in the field, but less palatable in bioassays. Both defence and palatability displayed non‐linear latitudinal patterns, suggesting potential mechanisms based on biological or climatic thresholds. In sum, observational and experimental studies find patterns consistent with high herbivore pressure and stronger plant defences at lower latitudes.  相似文献   

18.
Local adaptation of interacting species to one another indicates geographically variable reciprocal selection. This process of adaptation is central in the organization and maintenance of genetic variation across populations. Given that the strength of selection and responses to it often vary in time and space, the strength of local adaptation should in theory vary between generations and among populations. However, such spatiotemporal variation has rarely been explicitly demonstrated in nature and local adaptation is commonly considered to be relatively static. We report persistent local adaptation of the short‐lived herbivore Abrostola asclepiadis to its long‐lived host plant Vincetoxicum hirundinaria over three successive generations in two studied populations and considerable temporal variation in local adaptation in six populations supporting the geographic mosaic theory. The observed variation in local adaptation among populations was best explained by geographic distance and population isolation, suggesting that gene flow reduces local adaptation. Changes in herbivore population size did not conclusively explain temporal variation in local adaptation. Our results also imply that short‐term studies are likely to capture only a part of the existing variation in local adaptation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号