首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent studies have found that copy number variations (CNVs) are widespread in human and animal genomes. CNVs are a significant source of genetic variation, and have been shown to be associated with phenotypic diversity. However, the effect of CNVs on genetic variation in horses is not well understood. In the present study, CNVs in 6 different breeds of mare horses, Mongolia horse, Abaga horse, Hequ horse and Kazakh horse (all plateau breeds) and Debao pony and Thoroughbred, were determined using aCGH. In total, seven hundred CNVs were identified ranging in size from 6.1 Kb to 0.57 Mb across all autosomes, with an average size of 43.08 Kb and a median size of 15.11 Kb. By merging overlapping CNVs, we found a total of three hundred and fifty-three CNV regions (CNVRs). The length of the CNVRs ranged from 6.1 Kb to 1.45 Mb with average and median sizes of 38.49 Kb and 13.1 Kb. Collectively, 13.59 Mb of copy number variation was identified among the horses investigated and accounted for approximately 0.61% of the horse genome sequence. Five hundred and eighteen annotated genes were affected by CNVs, which corresponded to about 2.26% of all horse genes. Through the gene ontology (GO), genetic pathway analysis and comparison of CNV genes among different breeds, we found evidence that CNVs involving 7 genes may be related to the adaptation to severe environment of these plateau horses. This study is the first report of copy number variations in Chinese horses, which indicates that CNVs are ubiquitous in the horse genome and influence many biological processes of the horse. These results will be helpful not only in mapping the horse whole-genome CNVs, but also to further research for the adaption to the high altitude severe environment for plateau horses.  相似文献   

2.
We compared the genetic diversity and distance among six German draught horse breeds to wild (Przewalski's Horse), primitive (Icelandic Horse, Sorraia Horse, Exmoor Pony) or riding horse breeds (Hanoverian Warmblood, Arabian) by means of genotypic information from 30 microsatellite loci. The draught horse breeds included the South German Coldblood, Rhenish German Draught Horse, Mecklenburg Coldblood, Saxon Thuringa Coldblood, Black Forest Horse and Schleswig Draught Horse. Despite large differences in population sizes, the average observed heterozygosity (H(o)) differed little among the heavy horse breeds (0.64-0.71), but was considerably lower than in the Hanoverian Warmblood or Icelandic Horse population. The mean number of alleles (N(A)) decreased more markedly with declining population sizes of German draught horse breeds (5.2-6.3) but did not reach the values of Hanoverian Warmblood (N(A) = 6.7). The coefficient of differentiation among the heavy horse breeds showed 11.6% of the diversity between the heavy horse breeds, as opposed to 21.2% between the other horse populations. The differentiation test revealed highly significant genetic differences among all draught horse breeds except the Mecklenburg and Saxon Thuringa Coldbloods. The Schleswig Draught Horse was the most distinct draught horse breed. In conclusion, the study demonstrated a clear distinction among the German draught horse breeds and even among breeds with a very short history of divergence like Rhenish German Draught Horse and its East German subpopulations Mecklenburg and Saxon Thuringa Coldblood.  相似文献   

3.
Population demarcation of eight horse breeds was investigated using genotype information of 306 horses from 26 microsatellite loci. The breeds include the indigenous Norwegian breeds Fjord Horse, Nordland/Lyngen Horse, Døle Horse and Coldblooded Trotter together with Icelandic Horse, Shetland Pony, Standardbred and Thoroughbred. Both phylogenetic analysis and a maximum likelihood method were applied to examine the potential for breed allocation of individual animals. The phylogenetic analysis utilizing simple allele sharing statistics revealed clear demarcation among the breeds; 95% of the individuals clustered together with animals of the same breed in the phylogenetic tree. Even breeds with a short history of divergence like Døle Horse and Coldblooded Trotter formed distinct clusters. Implementing the maximum likelihood method allocated 96% of the individuals to their source population, applying an assignment stringency of a log of the odds ratio larger than 2. Lower allocation stringency assigned nearly all the horses. Only three individuals were wrongly allocated a breed by both methods. In conclusion, the study demonstrates clear distinction among horse breeds, and by combining the two assignment methods breed allocation could be determined for more than 99% of the individuals.  相似文献   

4.
The estimation of genetic differentiation between 27 horses breeds originated in USSR, based on serum proteins polymorphism (loci Tf, Al, Es) is shown. Genetical variability among aborigine breeds is higher then among cultural ones. The erosion of gene pool of Przewalski's Horse is explained by special history of this population and a few horses in analyzing group. Genetic distances reflect the directions and intensity of breeding. High genetical distances between Przewalski's Horse, Shetland Pony and other horses obtained could be explained by overcoming the "bottle neck" of selections in breeding process. Results of investigation shown that 9 aborigine breeds of USSR are clustered in a special group, differed from foreign horse breeds, because their gene pool was quite unique.  相似文献   

5.
China is one of the principal origins of ponies in the world. We made a comprehensive analysis of genetic diversity and population structure of Chinese ponies based on 174 animals of five indigenous Chinese pony breeds from five provinces using 13 microsatellite markers. One hundred and forty-four alleles were detected; the mean number of effective alleles among the pony breeds ranged from 5.38 (Guizhou) to 6.78 (Sichuan); the expected heterozygosity ranged from 0.82 (Guizhou) to 0.85 (Debao, Sichuan). Although abundant genetic variation was found, the genetic differentiation was low between the ponies, with 6% total genetic variance among the different breeds. All the pairwise F(ST) values were significant; they varied from 0.0424 for the Sichuan-Yunnan pair to 0.0833 for the Guizhou-Sichuan pair. All five pony breeds deviated from Hardy-Weinberg equilibrium, except the Yunnan pony. Phylogenetic trees of the five pony breeds based on genetic distances were constructed using a neighbor-joining method. The Sichuan and Yunnan ponies were grouped into the same branch, with a high bootstrap support value (97%). Guizhou and Ningqiang ponies were clustered into the same branch with a bootstrap value of 56%, whereas the Debao pony was placed in a separate group, with a bootstrap value of 56%. This grouping pattern was supported by genetic structure analysis.  相似文献   

6.
The domestic horse (Equus caballus) was re-introduced to the Americas by Spanish explorers. Although horses from other parts of Europe were subsequently introduced, some New World populations maintain characteristics ascribed to their Spanish heritage. The southeastern United States has a history of Spanish invasion and settlement, and this influence on local feral horse populations includes two feral-recaptured breeds: the Florida Cracker and the Marsh Tacky, both of which are classified as Colonial Spanish horses. The feral Banker horses found on islands off the coast of North Carolina, which include, among others, the Shackleford Banks, the Corolla and the Ocracoke, are also Colonial Spanish horses. Herein we analyse 15 microsatellite loci from 532 feral and 2583 domestic horses in order to compare the genetic variation of these five Colonial Spanish Horse populations to 40 modern horse breeds. We find that the Corolla horse has very low heterozygosity and that both the Corolla and Ocracoke populations have a low mean number of alleles. We also find that the Florida Cracker population has a heterozygosity deficit. In addition, we find evidence of similarity of the Shackleford Banks, Marsh Tacky and Florida Cracker populations to New World Iberian horse breeds, while the origins of the other two populations are less clear.  相似文献   

7.
Information about genetic diversity and population structure among goat breeds is essential for genetic improvement, understanding of environmental adaptation as well as utilization and conservation of goat breeds. Here, we measured genetic diversity and population structure in multiple Chinese goat populations, namely, Nanjiang, Qinggeda, Arbas Cashmere, Jining Grey, Luoping Yellow and Guangfeng goats. A total of 193 individuals were genotyped for about 47 401 autosomal single nucleotide polymorphisms (SNPs). We found a high proportion of informative SNPs, ranging from 69.5% in the Luoping Yellow to 93.9% in the Jining Grey goat breeds with an average mean of 84.7%. Diversity, as measured by expected heterozygosity, ranged from 0.371 in Luoping Yellow to 0.405 in Jining Grey goat populations. The average estimated pair‐wise genetic differentiation (FST) among the populations was 8.6%, ranging from 0.2% to 16% and indicating low to moderate genetic differentiation. Principal component analysis, genetic structure and phylogenetic tree analysis revealed a clustering of six Chinese goat populations according to geographic distribution. The results from this study can contribute valuable genetic information and can properly assist with within‐breed diversity, which provides a good opportunity for sustainable utilization of and maintenance of genetic resource improvements in the Chinese goat populations.  相似文献   

8.
The horse has been a food source, but more importantly, it has been a means for transport. Its domestication was one of the crucial steps in the history of human civilization. Despite the archaeological and molecular studies carried out on the history of horse domestication, which would contribute to conservation of the breeds, the details of the domestication of horses still remain to be resolved. We employed 21 microsatellite loci and mitochondrial control region partial sequences to analyse genetic variability within and among four Anatolian native horse breeds, Ayvac?k Pony, Malakan Horse, H?n?s Horse and Canik Horse, as well as samples from indigenous horses of unknown breed ancestry. The aims of the study were twofold: first, to produce data from the prehistorically and historically important land bridge, Anatolia, in order to assess its role in horse domestication and second, to analyse the data from a conservation perspective to help the ministry improve conservation and management strategies regarding native horse breeds. Even though the microsatellite data revealed a high allelic diversity, 98% of the genetic variation partitioned within groups. Genetic structure did not correlate with a breed or geographic origin. High diversity was also detected in mtDNA control region sequence analysis. Frequencies of two haplogroups (HC and HF) revealed a cline between Asia and Europe, suggesting Anatolia as a probable connection route between the two continents. This first detailed genetic study on Anatolian horse breeds revealed high diversity among horse mtDNA haplogroups in Anatolia and suggested Anatolia’s role as a conduit between the two continents. The study also provides an important basis for conservation practices in Turkey.  相似文献   

9.
The genetic relationships of five Indian horse breeds, namely Marwari, Spiti, Bhutia, Manipuri and Zanskari were studied using microsatellite markers. The DNA samples of 189 horses of these breeds were amplified by polymerase chain reaction using 25 microsatellite loci. The total number of alleles varied from five to 10 with a mean heterozygosity of 0.58 ± 0.05. Spiti and Zansakari were the most closely related breeds, whereas, Marwari and Manipuri were most distant apart with Nei's DA genetic distance of 0.071 and 0.186, respectively. In a Nei's DA genetic distances based neighbour joining dendrogram of these breeds and a Thoroughbred horse outgroup, the four pony breeds of Spiti, Bhutia, Manipuri and Zanskari clustered together and then with the Marwari breed. All the Indian breeds clustered independently from Thoroughbreds. The genetic relationships of Indian horse breeds to each other correspond to their geographical/environmental distribution.  相似文献   

10.
Genetic variation of endangered Bi?goraj horses and two common Polish horse breeds was compared with the use of 12 microsatellite loci (AHT4, AHT5, ASB2, HMS2, HMS3, HMS6, HMS7, HTG4, HTG6, HTG7, HTG10, VHL20). Lower allelic diversity was detected in all investigated populations in comparison to other studies. Large differences in the frequencies of microsatellite alleles between Bi?goraj horses and two other horse breeds were discovered. In all polymorphic loci all investigated breeds were in the Hardy-Weinberg equilibrium. Mean Fis values and the results of a test for the presence of a recent bottleneck were non-significant in all studied populations. Comparable values of observed and expected gene diversity indicate no substantial loss of genetic variation in the Bi?goraj population and two other breeds. The lowest variability observed in the investigated group of Thoroughbred horses was confirmed. About 10% of genetic variation are explained by differences between breeds. Values of pairwise Fst and two measures of genetic distance demonstrated that Bi?goraj horses are distantly related to both common horse breeds.  相似文献   

11.
Yue XP  Qin F  Campana MG  Liu DH  Mao CC  Wang XB  Lan XY  Chen H  Lei CZ 《Animal genetics》2012,43(5):624-626
Previous mitochondrial DNA (mtDNA) D‐loop and microsatellite studies have shown that Chinese horses have multiple maternal origins and high genetic diversity. To better characterize maternal genetic origins and diversity of Chinese domestic horses, we conducted a comprehensive analysis of 407 complete 1140 bp sequences of the horse mitochondrially encoded cytochrome b (CYTB) gene, including 323 horses from 13 Chinese indigenous breeds and 84 reference sequences from GenBank. A total of 114 haplotypes were identified, of which 73 appeared among the 13 Chinese horse breeds. The high mitochondrially encoded cytochrome b haplotypic diversity suggests multiple maternal origins in Chinese horses.  相似文献   

12.
Partition of the genetic variability, genetic structure and relationships among seven Spanish Celtic horse breeds were studied using PCR amplification of 13 microsatellites on 481 random individuals. In addition, 60 thoroughbred horses were included. The average observed heterozygosity and the mean number of alleles were higher for the Atlantic horse breeds than for the Balearic Islands breeds. Only eight percentage of the total genetic variability could be attributed to differences among breeds (mean FST approximately 0.08; P < 0.01). Atlantic breeds clearly form a separate cluster from the Balearic Islands breeds and among the former only two form a clear clustering, while the rest of Atlantic breeds (Jaca Navarra, Caballo Gallego and Pottoka) are not consistently differentiated. Multivariate analysis showed that Asturcon populations, Losina and Balearic Islands breeds are clearly separated from each other and from the rest of the breeds. In addition to this, the use of the microsatellites proved to be useful for breed assignment.  相似文献   

13.
We used sequence polymorphism of the mitochondrial DNA D-loop (968 bp excluding the tandem repeat region) to determine genetic diversity of horses inhabiting Cheju (a southern island of Korea). Seventeen haplotypes with frequencies from 1.5 to 21.5% were found among 65 Cheju horse samples. Genetic diversity (h) of the 17 haplotypes was calculated to be 0.91, indicating that the extant Cheju horse population consists of diverse genetic groups in their maternal lineage. Phylogenetic analysis showed that 17 types of Cheju (D-loop sequences determined), 5 Mongolian, 6 Arabian, 3 Belgian, 2 Tsushima, 2 Yunnan, 1 Przewalskii, and 3 Thoroughbred horses (published sequences for the latter seven breeds) showed that Cheju horses were distributed into many different clusters in the tree. Four Mongolian horses clustered with separate Cheju horse groups, showing that some Cheju horses are clearly of Mongolian origin. The analysis of partial sequences (284 bp) of the D-loop of 109 horses showed that Thoroughbred, Mongolian, Lipizzan, and Arabian breeds are as diverse as Cheju horses. Our data together with others' suggest that most horse breeds tested with reasonably sufficient numbers of samples are diverse in their maternal lineages and also are not uniquely different from each other.  相似文献   

14.
Genetic variations has been analyzed using five microsatellite markers (AHT4, HTG10, ABS2, ABS23 and CA245) in three horse breeds in Egypt (Arabian, Thoroughbred and Egyptian Native). All the microsatellites typed in this study can be considered informative they produced a number of alleles ranged from eight alleles for the microsatellites ABS23, CA245 to 13 alleles for the microsatellite HTG10. The most polymorphic microsatellite was HTG10. The values of He for the five microsatellite studied were: 0.754, 0.829 and 0.807 for the breeds Arabian, Thoroughbred and Egyptian Native, respectively. The highest He value for all markers was detected in Thoroughbred breed, then The Egyptian Native and lastly in The Arabian breed. The mean values of PIC which obtained from the present study ranged from 0.686 to 0.764. Fst value may indicate the presence of gene flow between horse breeds. The values of genetic distances and phylogeny tree proved that Arabian and Native horses are coming from one ancestor while the Thoroughbred is coming from another ancestor. The values obtained for allele diversity, heterozygosity, inbreeding measurements and gene diversity showed that horse breeds understudy, moreover the present study results points to the usefulness of evaluations of diversity using molecular markers for the choice of breeds worthy of conservation.  相似文献   

15.
Eight horse breeds—Hokkaido, Kiso, Misaki, Noma, Taishu, Tokara, Miyako and Yonaguni—are native to Japan. Although Japanese native breeds are believed to have originated from ancient Mongolian horses imported from the Korean Peninsula, the phylogenetic relationships among these breeds are not well elucidated. In the present study, we compared genetic diversity among 32 international horse breeds previously evaluated by the Equine Genetic Diversity Consortium, the eight Japanese native breeds and Japanese Thoroughbreds using genome‐wide SNP genotype data. The proportion of polymorphic loci and expected heterozygosity showed that the native Japanese breeds, with the exception of the Hokkaido, have relatively low diversity compared to the other breeds sampled. Phylogenetic and cluster analyses demonstrated relationships among the breeds that largely reflect their geographic distribution in Japan. Based on these data, we suggest that Japanese horses originated from Mongolian horses migrating through the Korean Peninsula. The Japanese Thoroughbreds were distinct from the native breeds, and although they maintain similar overall diversity as Thoroughbreds from outside Japan, they also show evidence of uniqueness relative to the other Thoroughbred samples. This is the first study to place the eight native Japanese breeds and Japanese Thoroughbred in context with an international sample of diverse breeds.  相似文献   

16.
E Bailey  T L Lear 《Animal genetics》1994,25(Z1):105-108
We compared pools of DNA from 10 Thoroughbred horses and 10 Arabian horses for the presence of randomly amplified polymorphic DNA (RAPD) markers which might be useful in distinguishing between the breeds. Using 212 decamer oligonucleotides and our polymerase chain reaction (PCR) conditions, 173 of the primers produced scoreable bands. The number of bands ranged from 0 to 9 with an average of 3·6. In family studies using 11 arbitrarily selected primers, five of the 11 primers produced polymorphic bands which exhibited Mendelian inheritance as dominant markers. When comparing the pooled DNA from Thoroughbred and Arabian horses we found 10 primers which identified markers present in the pooled DNA from one breed but absent in the pool from the other breed. Testing individual horses revealed that only two markers were wholly absent for one group while being present among members of the other. Primer UBC-85 (5′-GTGCTCGTGC-3′) detected a pair of markers absent in Thoroughbred horses but present among 11 of 31 Arabian horses. These markers were 1500 and 1700 base pairs (bp) long and designated UBC-85C and UBC-85D, respectively. Primer UBC-126 (5′-CTTTCGTGCT-3′) detected a 1000 bp marker (designated UBC-126C) absent in 20 of 20 Thoroughbred horses but present in 31 of 31 Arabian horses. UBC-126C would be particularly effective for breed comparisons, especially if the DNA band were cloned, sequenced and an allelic marker present in Thoroughbred horses but rare or absent among Arabian horses was identified. The distribution of such markers among other horse breeds might be useful to infer relationships among breeds. These kinds of markers may also be useful in detecting unwanted crossbreeding between two horse breeds.  相似文献   

17.
Blood samples of 561 Lipizzan horses from subpopulations (studs) of seven European countries representing a large fraction of the breed's population were used to examine the genetic diversity, population subdivision and gene flow in the breed. DNA analysis based on 18 microsatellite loci revealed that genetic diversity (observed heterozygosity = 0.663, gene diversity = 0.675 and the mean number of alleles = 7.056) in the Lipizzan horse is similar to other horse breeds as well as to other domestic animal species. The genetic differentiation between Lipizzan horses from different studs, although moderate, was apparent (pairwise F(ST) coefficients ranged from 0.021 to 0.080). Complementary findings explaining the genetic relationship among studs were revealed by genetic distance and principal component analysis. One genetic cluster consisted of the subpopulations of Austria, Italy and Slovenia, which represent the classical pool of Lipizzan horse breeding. A second cluster was formed by the Croatian, Hungarian and Slovakian subpopulations. The Romanian subpopulation formed a separate unit. The largest genetic differentiation was found between the Romanian and Italian subpopulation. Genetic results are consistent with the known breeding history of the Lipizzan horse. Correct stud assignment was obtained for 80.9% and 92.1% of Lipizzan horses depending on the inclusion or exclusion of migrant horses, respectively. The results of the present study will be useful for the development of breeding strategies, which consider classical horse breeding as well as recent achievements of population and conservation genetics.  相似文献   

18.
Seven novel KIT mutations in horses with white coat colour phenotypes   总被引:2,自引:0,他引:2  
White coat colour in horses is inherited as a monogenic autosomal dominant trait showing a variable expression of coat depigmentation. Mutations in the KIT gene have previously been shown to cause white coat colour phenotypes in pigs, mice and humans. We recently also demonstrated that four independent mutations in the equine KIT gene are responsible for the dominant white coat colour phenotype in various horse breeds. We have now analysed additional horse families segregating for white coat colour phenotypes and report seven new KIT mutations in independent Thoroughbred, Icelandic Horse, German Holstein, Quarter Horse and South German Draft Horse families. In four of the seven families, only one single white horse, presumably representing the founder for each of the four respective mutations, was available for genotyping. The newly reported mutations comprise two frameshift mutations (c.1126_1129delGAAC; c.2193delG), two missense mutations (c.856G>A; c.1789G>A) and three splice site mutations (c.338-1G>C; c.2222-1G>A; c.2684+1G>A). White phenotypes in horses show a remarkable allelic heterogeneity. In fact, a higher number of alleles are molecularly characterized at the equine KIT gene than for any other known gene in livestock species.  相似文献   

19.
Sanfratellano is a native Sicilian horse breed, mainly reared in the north east of the Island, developed in the 19th century from local dams and sires with a restricted introgression of Oriental, African and, more recently, Maremmano stallions. In this study, the genetic relationships and admixture among Sanfratellano, the other two Sicilian autochthonous breeds and Maremmano breed were assessed using a set of microsatellites. The main goals were to infer the impact of Maremmano breed in the current Sanfratellano horse and to provide genetic information useful to improve the selection strategies of the Sanfratellano horse. The whole sample included 384 horses (238 Sanfratellano, 50 Sicilian Oriental Purebred, 30 Sicilian Indigenous and 66 Maremmano), chosen avoiding closely related animals. A total of 111 alleles from 11 microsatellite loci were detected, from four at HTG7 to 15 at ASB2 locus. The mean number of alleles was the lowest in Oriental Purebred (6.7), the highest in Sanfratellano (8.3). All the breeds showed a high level of gene diversity (He) ranging from 0.71 ± 0.04 in Sicilian Oriental Purebred to 0.81 ± 0.02 in Sicilian Indigenous. The genetic differentiation index was low; only about 6% of the diversity was found among breeds. Nei's standards (DS) and Reynolds' (DR) genetic distances reproduced the same population ranking. Individual genetic distances and admixture analysis revealed that: (a) nowadays Maremmano breed does not significantly influence the current Sanfratellano breed; (b) within Sanfratellano breed, it is possible to distinguish two well-defined groups with different proportions of Indigenous blood.  相似文献   

20.
Manipuri pony is the geographically distant breed of horse from the five recognized horse breeds found in the Indian subcontinent. The phylogenetic relationship of Manipuri pony with the other breeds is unknown. The diversity in the mitochondrial (mt) DNA D-loop region is employed as an important tool to understand the origin and genetic diversification of domestic horses and to examine genetic relationships among breeds around the world. This study was carried out to understand the maternal lineages of Manipuri pony using the 247 bp region of the mtDNA D-loop. The dataset comprised of eleven numbers of self developed sequences of Manipuri pony, 59 and 35 number of retrieved sequences of Indian horse breeds and other worldwide breeds respectively. A total of 35 haplotypes was identified with a high level of genetic diversity in the Indian breeds. A total of seven major mtDNA haplogroups (A–G) was identified in the Indian horse breeds that indicated the abundance of mtDNA diversity and multiple origins of maternal lineages in them. The majority of the studied sequences of Indian breeds (33.3 %) were grouped into haplogroup D and least (3.9 %) in haplogroup E. The Manipuri breed showed the least FST distance (0.03866) with the most diverged Indian breeds and with Thoroughbred horse among the worldwide. This study indicated a close association between Manipuri pony and Thoroughbred.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号