首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  • 1 Two experiments were performed to determine the extent to which ash species (black, green and white) and larval developmental stage (second, third and fourth instar) affect the efficiency of phloem amino acid utilization by emerald ash borer (EAB) Agrilus planipennis Fairmaire (Coleoptera: Buprestidae) larvae.
  • 2 EAB larvae generally utilized green ash amino acids more efficiently than those of the other two species. For example, the concentrations of only six (two essential) and seven (two essential) amino acids were lower in frass from EAB that fed upon black and white ash than in the corresponding phloem, respectively. By contrast, concentrations of 16 (eight essential) amino acids were lower in the frass from EAB that fed upon green ash than in the phloem. In addition, in green ash, the frass : phloem ratios of 13 amino acids were lower than their counterparts in black and white ash.
  • 3 The concentrations of non‐essential amino acids glycine and hydroxylproline were greater in frass than in phloem when EAB fed on black ash, although not when EAB fed on green or white ash.
  • 4 The concentration of total phenolics (a group of putative defensive compounds to EAB, expressed as antioxidant activity of acetone extraction) was high in EAB frass but even higher in the phloem samples when the data were pooled across ash species and EAB larval stages. This suggests EAB larvae may eliminate phenolics through a combination of direct excretion and enzymatic conversion of phenolics to nonphenolics before excretion. Because the ratio of frass total phenolics to phloem total phenolics in white ash was lower than the ratios in black and green ash, the ability to destroy phenolics or convert them to nonphenolics was greater when EAB larvae fed on white ash.
  • 5 Fourth‐instar EAB extracted phloem amino acids, including threonine, more efficiently than third‐instar EAB. The different larval developmental stages of EAB did not differ in their apparent ability to destroy phenolics or convert them to nonphenolics.
  相似文献   

2.
The exotic wood-boring pest, emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), has been threatening North American ash (Fraxinus spp.) resources, this being recognized since its first detection in Michigan, USA and Ontario, Canada in 2002. Ash trees are killed by larval feeding in the cambial region, which results in disruption of photosynthate and nutrient translocation. In this study, changes in volatile and non-volatile foliar phytochemicals of potted 2-yr-old black ash, Fraxinus nigra Marshall, seedlings were observed in response to EAB larval feeding in the main stem. EAB larval feeding affected levels of six compounds [hexanal, (E)-2-hexenal, (Z)-3-hexenyl acetate, (E)-β-ocimene, methyl salicylate, and (Z,E)-α-farnesene] with patterns of interaction depending upon compounds of interest and time of observation. Increased methyl salicylate emission suggests similarity in responses induced by EAB larval feeding and other phloem-feeding herbivores. Overall, EAB larval feeding suppressed (Z)-3-hexenyl acetate emission, elevated (E)-β-ocimene emission in the first 30 days, but emissions leveled off thereafter, and generally increased the emission of (Z,E)-α-farnesene. Levels of carbohydrates and phenolics increased overall, while levels of proteins and most amino acids decreased in response to larval feeding. Twenty-three amino acids were consistently detected in the foliage of black ash. The three most abundant amino acids were aspartic acid, glutamic acid, glutamine, while the four least abundant were α-aminobutyric acid, β-aminoisobutyric acid, methionine, and sarcosine. Most (16) foliar free amino acids and 6 of the 9 detected essential amino acids decreased with EAB larval feeding. The ecological consequences of these dynamic phytochemical changes on herbivores harbored by ash trees and potential natural enemies of these herbivores are discussed.  相似文献   

3.
4.
Many natural enemies employ plant‐ and/or herbivore‐derived signals for host/prey location. The larval parasitoid Tetrastichus planipennisi Yang (Hymenoptera: Eulophidae) is 1 of 3 biocontrol agents currently being released in an effort to control the emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coloeptera: Burprestidae) in North America. To enhance its efficiency, allelochemicals that attract it need to be assessed. In this study, ash phloem volatile organic compounds (VOCs) of black, green, and white ash, and EAB larval frass were compared. Foraging behavior of T. planipennisi females in response to VOCs of white ash or frass from EAB larvae feeding on white ash phloem was tested using a Y‐tube olfactometer. Results indicated that the 3 ash species had similar VOC profiles. EAB larval frass generally contained greater levels of VOCs than phloem. Factor analysis indicated that the 11 VOCs could be broadly divided into 2 groups, with α‐bisabolol, β‐caryophyllene, (E)‐2‐hexenal, (Z)‐3‐hexenal, limonene, methyl benzoate, methyl indole‐3‐acetic acid, methyl jasmonate, methyl salicylate as the first group and the rest (i.e., methyl linoleate and methyl linolenate) as a second. Abundance of VOCs in white ash phloem tissue and frass, nevertheless, did not attract T. planipennisi females. The concealed feeding of EAB larvae might explain the selection for detectable and reliable virbrational signals, instead of undetectable and relatively unreliable VOC cues from phloem and frass, in short‐range foraging by T. planipennisi. Alternatively, it is possible that T. planipennisi is not amenable to the Y‐tube olfactometer assay employed.  相似文献   

5.
Invasive species are widely recognized as altering species and community dynamics, but their impacts on biogeochemical cycling and ecosystem processes are less understood. The emerald ash borer (Agrilus planipennis Fairmaire) is a phloem feeding beetle that was inadvertently introduced to the US in the 1990s and relies solely on ash trees (Fraxinus spp.) to complete its life cycle. Ash trees have a wide geographic distribution and are an important component of many different forest types in the US. The larval feeding behavior of the emerald ash borer (EAB) effectively girdles the tree’s phloem tissue resulting in tree mortality in as little as 2 years and stand mortality in as little as 5 years. Using the forest inventory and analysis database, we found that forest lands in the lower 48 states hold approximately 8.7 billion ash trees and saplings, which represent ~2.5 % of the aboveground forest carbon mass. Furthermore, we measured tree growth in 7 EAB impacted and 5 non-EAB impacted temperate forests in the Midwestern United States to quantify the impacts of EAB induced tree mortality on tree growth. We hypothesized that the initial C lost would be partly compensated for by the enhanced non-ash tree growth in EAB-impacted regions relative to non-EAB impacted regions. The EAB disturbance enhanced growth of non-ash trees in the EAB impacted region relative to the non-EAB impacted region. Results also indicate that in EAB impacted areas, growth of trees from the genera Acer and Ulmus responded most positively. Finally, we quantified annual biometric net primary productivity of the EAB impacted forests and compared these quantities to modeled growth of these forests in the absence of EAB and found that large scale ash tree mortality has reduced short term regional forest productivity. The loss of ash biometric net primary productivity is, in part compensated by enhanced growth of non-ash species. As expected, EAB disturbance severity was greater in forests with higher basal areas of ash. This study illustrates the ecosystem and regional scale impacts of invasive pest-induced disturbance on biogeochemical cycling and forest species composition.  相似文献   

6.
The emerald ash borer (EAB; Agrilus planipennis Fairmaire) is causing widespread mortality of ash (Fraxinus spp.) in North America. To date, no mechanisms of host resistance have been identified against this pest. Methyl jasmonate was applied to susceptible North American and resistant Asian ash species to determine if it can elicit induced responses in bark that enhance resistance to EAB. In particular, phenolic compounds, lignin, and defense-related proteins were quantified, and compounds associated with resistance were subsequently tested directly against EAB larvae in bioassays with artificial diet. MeJA application decreased adult emergence in susceptible ash species, comparable to levels achieved by insecticide application. Concentration of the phenolic compound verbascoside sharply increased after MeJA application to green and white ash. When incorporated in an artificial diet, verbascoside decreased survival and growth of EAB neonates in a dose-dependent fashion. Lignin and trypsin inhibitors were also induced by MeJA, and analogs of both compounds reduced growth of EAB larvae in artificial diets. We conclude that the application of MeJA prior to EAB attack has the ability to enhance resistance of susceptible ash trees by inducing endogenous plant defenses, and report evidence that induction of verbascoside is a mechanism of resistance to EAB.  相似文献   

7.
中国白蜡窄吉丁研究进展   总被引:1,自引:0,他引:1  
白蜡窄吉丁Agrilus planipennis Fairmaire是近年来发生和影响比较严重的国际性检疫害虫,主要危害白蜡属(Fraxinus spp.)树木。它以幼虫在树木的韧皮部、形成层和木质部浅层蛀食,从而切断树木的营养输导组织,导致树木衰弱死亡。为了深入了解该害虫,探索合理的治理策略,本文对国内外有关白蜡窄吉丁的生物学特性,包括生活习性、生活史、分布与危害、寄主范围等方面以及防治技术的研究进展进行了系统总结,并讨论了白蜡窄吉丁今后的研究方向和研究趋势。  相似文献   

8.
The emerald ash borer (EAB), Agrilus planipennis, is an invasive beetle that has killed millions of ash trees (Fraxinus spp.) since it was accidentally introduced to North America in the 1990s. Understanding how predators such as woodpeckers (Picidae) affect the population dynamics of EAB should enable us to more effectively manage the spread of this beetle, and toward this end we combined two experimental approaches to elucidate the relative importance of woodpecker predation on EAB populations. First, we examined wild populations of EAB in ash trees in New York, with each tree having a section screened to exclude woodpeckers. Second, we established experimental cohorts of EAB in ash trees in Maryland, and the cohorts on half of these trees were caged to exclude woodpeckers. The following spring these trees were debarked and the fates of the EAB larvae were determined. We found that trees from which woodpeckers were excluded consistently had significantly lower levels of predation, and that woodpecker predation comprised a greater source of mortality at sites with a more established wild infestation of EAB. Additionally, there was a considerable difference between New York and Maryland in the effect that woodpecker predation had on EAB population growth, suggesting that predation alone may not be a substantial factor in controlling EAB. In our experimental cohorts we also observed that trees from which woodpeckers were excluded had a significantly higher level of parasitism. The lower level of parasitism on EAB larvae found when exposed to woodpeckers has implications for EAB biological control, suggesting that it might be prudent to exclude woodpeckers from trees when attempting to establish parasitoid populations. Future studies may include utilizing EAB larval cohorts with a range of densities to explore the functional response of woodpeckers.  相似文献   

9.
Emerald ash borer (Agrilus planipennis Fairmaire) (EAB), an alien invasive wood-boring buprestid beetle, is causing large-scale decline and mortality of the most widely distributed species of ash (Fraxinus spp.) trees endemic to eastern North America. We determined which arthropod species that are associated with ash may become threatened, endangered, and co-extinct with the demise of ash as a dominant tree species. A literature survey revealed that 43 native arthropod species in six taxonomic groups (Arachnida: Acari; Hexapoda: Coleoptera, Diptera, Hemiptera, Hymenoptera, and Lepidoptera) are known to be associated only with ash trees for either feeding or breeding purposes, and thus face high risk of endangerment. Most of these species are gall-formers followed by folivores, subcortical phloem/xylem feeders, sap feeders, and seed predators. Another 30 arthropod species are associated with 1–2 host plants in addition to ash, and herbivory on these hosts may increase as these arthropods shift from declining ash trees. Extirpation of arthropods dependent upon ash may unleash multiple extinctions of affiliated species with which they may be inextricably linked. The demise of North American ash species due to EAB is expected to lead to biotic loss with cascading ecological impacts and altered processes within forested ecosystems.  相似文献   

10.
Duncan  Reavey 《Journal of Zoology》1992,227(2):277-297
There is striking variation in egg size among Lepidoptera. Part of the explanation could be a link between egg size and larval feeding ecology.
The relationship between absolute egg size and aspects of feeding ecology for different Lepidoptera families from different temperate regions is examined. Species that overwinter in the egg stage have larger eggs. There are significant differences in egg size with respect to feeding specificity but different families show different patterns. Woody plant feeders have larger eggs than herb feeders. There is little effect of proximity of the egg to the plant part that is eaten.
Patterns in the behaviour and survival of newly hatched larvae of 42 spp. of British Lepidoptera and their relationship to egg and larval size and to food plant characteristics are examined. Patterns in egg size with respect to feeding ecology are similar to those described above. There is a strong correlation between egg size and the size of newly hatched larvae. Newly hatched larvae survived for a mean of 1–20 days without food. Survival is not correlated with larval weight. Grass feeders survive longer than herb and woody plant feeders; the species surviving the longest feeds on lichens. Newly hatched larvae moved at a mean speed of 0.7-267.8 cm h-1. Speed is not correlated with larval weight or survival time. Grass feeders move faster than woody plant feeders which, in turn, move faster than herb feeders. Woody plant feeders tend to move upwards, grass feeders downwards and herb feeders both upwards and downwards. The proportion of larvae silking is negatively correlated with larval weight.
The strong links between egg size and larval feeding ecology and between feeding ecology and larval behaviour are discussed. It is surprising that larval body size does not appear to constrain the speed of movement, nor tolerance to starvation.  相似文献   

11.
12.
Evolution of pollen feeding in Heliconius has allowed exploitation of rich amino acid sources and dramatically reorganized life‐history traits. In Heliconius, eggs are produced mainly from adult‐acquired resources, leaving somatic development and maintenance to larva effort. This innovation may also have spurred evolution of chemical defence via amino acid‐derived cyanogenic glycosides. In contrast, nonpollen‐feeding heliconiines must rely almost exclusively on larval‐acquired resources for both reproduction and defence. We tested whether adult amino acid intake has an immediate influence on cyanogenesis in Heliconius. Because Heliconius are more distasteful to bird predators than close relatives that do not utilize pollen, we also compared cyanogenesis due to larval input across Heliconius species and nonpollen‐feeding relatives. Except for one species, we found that varying the amino acid diet of an adult Heliconius has negligible effect on its cyanide concentration. Adults denied amino acids showed no decrease in cyanide and no adults showed cyanide increase when fed amino acids. Yet, pollen‐feeding butterflies were capable of producing more defence than nonpollen‐feeding relatives and differences were detectable in freshly emerged adults, before input of adult resources. Our data points to a larger role of larval input in adult chemical defence. This coupled with the compartmentalization of adult nutrition to reproduction and longevity suggests that one evolutionary consequence of pollen feeding, shifting the burden of reproduction to adults, is to allow the evolution of greater allocation of host plant amino acids to defensive compounds by larvae.  相似文献   

13.
Gypsy moth, Lymantria dispar L., rate of larval development, molting, pupal weight and survival were studied on an artificial diet containing different concentrations of green ash ethyl acetate extractables (EtOAc Exts). Insects were reared on experimental diets from egg to pupa. Addition of EtOAc Exts to artificial diet significantly prolonged larval development and reduced their survival compared to larvae reared on control diet. Weights of pupae were significantly reduced when larvae were reared on diet containing the lowest dosage of EtOAc Exts (i.e., 0.01%) versus on control diet. EtOAc Exts in diet (e.g., 0.01, 0.06 and 0.2%) frequently caused incomplete ecdysis which invariably resulted in larval death. Impaired feeding, locomotion and excretion are likely causes of death. The combination of these results with our earlier findings of repellents and feeding deterrents against gypsy moth larvae (GML) in green ash foliage shows that the non-host status of green ash to the highly polyphagous GML involves three orders of chemical defense: repellents, feeding deterrents and inhibitors of nutritional and developmental physiology. As the insect becomes sequentially exposed to these orders of defense, it incurs higher costs because the adverse effects become less reversible.  相似文献   

14.
白蜡窄吉丁幼虫及其天敌在空间格局上的关系   总被引:7,自引:0,他引:7  
调查了白蜡窄吉丁幼虫与其寄生性天敌白蜡吉丁柄腹茧蜂和捕食性天敌啄木鸟啄食白蜡窄吉丁的啄痕在空间格局上的规律.结果表明,在林间水平方向上,白蜡窄吉丁幼虫呈聚集分布,白蜡吉丁柄腹茧蜂和啄木鸟的啄痕也表现为聚集分布;在垂直方向上,白蜡窄吉丁幼虫分布于地面至3.37m以下的树干,主要集中于1.0m左右的主干,天敌也集中在此范围内活动.  相似文献   

15.
The free‐living nematode Panagrellus redivivus has been recommended as a suitable food source for first‐feeding fish. A new technology for mass production of P. redivivus enables fish hatchery operators to rely on an inexpensive, standardized and permanently available live food for first‐feeding fish larvae. The proximate composition, and the fatty acid and amino acid profiles of nematodes mass produced on oat‐based and purified ingredient media were determined. The quality of nematodes was significantly influenced by the culture medium used. The lipid content and fatty acid composition of nematodes could be modified by using lipid‐enriched media. Mass‐produced nematodes were tested on first‐feeding common carp (Cyprinus carpio L.) and whitefish (Coregonus lavaretus) larvae. Carp larvae, grown on nematodes cultured on oat medium enriched with sunflower oil, showed a higher survival rate (87.1%) than the control group fed frozen zooplankton (82.9%) at the end of the 1‐week feeding experiment. Differences in larval mass between the treatments disappeared after subsequent feeding of a dry diet for 2 weeks. Whitefish larvae can be reared exclusively on a dry diet; here, the initial feeding of nematodes had no effect on final biomass and survival of larvae.  相似文献   

16.
Females ofSpodoptera littoralis Boisd. (Lepidoptera: Noctuidae) with different feeding experiences during their larval development were tested for their ovipositional response to methanol extracts of larval frass and semisynthetic diets. The effect of the following frass, diet and diet component extracts was tested: (a) frass fromS. littoralis orAgrotis segetum larvae fed on a potato-based diet; (b) frass fromS. littoralis larvae fed on a wheat germ-based diet; (c) potato and wheat germ-based diets; and (d) potatoes and wheat germ. Ovipositing females without prior experience of the potato diet were deterred by extracts of: (1) larval frass from either species fed on potato diet; (2) the potato-based diet; (3) potato. Also females with experience of the potato diet during only a part of their larval development were deterred from oviposition by frass of larvae reared on the potato diet and by the diet itself. However, for females reared on the potato diet for their entire larval development, oviposition was no longer deterred by either of the three extracts listed above. Extracts of: (1) frass from larvae of either species reared on wheat germ diet: (2) the wheat germ diet; or (3) wheat germ did not significantly affect oviposition. Females with ablated antennae were still deterred by frass extracts from larvae fed on potato diet, when they had been reared on the wheat germ diet. In feeding experiments, larvae of larval stage one and of larval stage three-four reared on either of the two diets preferred to feed on the wheat germ diet. However, the preference was significantly stronger for larvae with no prior contact with the potato diet. The effect of larval experience on the loss of oviposition-deterring activity by extracts of larval frass, diets and diet components is discussed in view of induction and selection.  相似文献   

17.
The invasive emerald ash borer (EAB) beetle is a significant threat to the survival of North American ash. In previous work, we identified putative biochemical and molecular markers of constitutive EAB resistance in Manchurian ash, an Asian species co‐evolved with EAB. Here, we employed high‐throughput high‐performance liquid chromatography with photodiode array detection and mass spectrometry (HPLC‐PDA‐MS) to characterize the induced response of soluble phloem phenolics to EAB attack in resistant Manchurian and susceptible black ash under conditions of either normal or low water availability, and the effects of water availability on larval performance. Total larval mass per tree was lower in Manchurian than in black ash. Low water increased larval numbers and mean larval mass overall, but more so in Manchurian ash. Low water did not affect levels of phenolics in either host species, but six phenolics decreased in response to EAB. In both ashes, pinoresinol A was induced by EAB, especially in Manchurian ash. Pinoresinol A and pinoresinol B were negatively correlated with each other in both species. The higher accumulation of pinoresinol A in Manchurian ash after attack may help explain the resistance of this species to EAB, but none of the responses measured here could explain increased larval performance in trees subjected to low water availability.  相似文献   

18.
The emerald ash borer (EAB), Agrilus planipennis (Coleoptera: Buprestidae), is an invasive wood boring beetle that is decimating North America's ash trees (Fraxinus spp.). To find effective and safe indigenous biocontrol agents to manage EAB, we conducted a survey in 2008-2009 of entomopathogenic fungi (EPF) infecting EAB in five outbreak sites in southwestern Ontario, Canada. A total of 78 Beauveria spp. isolates were retrieved from dead and mycosed EAB cadavers residing in the phloem tissues of dead ash barks, larval frass extracted from feeding galleries under the bark of dead trees. Molecular characterization using sequences of the ITS, 5' end of EF1-α and intergenic Bloc region fragments revealed that Beauveria bassiana and Beauveria pseudobassiana were commonly associated with EAB in the sampled sites. Based on phylogenetic analysis inferred from ITS sequences, 17 of these isolates clustered with B. bassiana, which further grouped into three different sub-clades. However, the combined EF1-α and Bloc sequences detected five genotypes among the three sub-clades. The remaining 61 isolates clustered with B. pseudobassiana, which had identical ITS sequences but were further subdivided into two genotypes by variation in the EF1-α and Bloc regions. Initial virulence screening against EAB adults of 23 isolates representing the different clades yielded 8 that produced more than 90% mortality in a single concentration assay. These isolates differed in virulence based on LC(50) values estimated from multiple concentration bioassay and based on mean survival times at a conidia concentration of 2×10(6) conidia/ml. B. bassiana isolate L49-1AA was significantly more virulent and produced more conidia on EAB cadavers compared to the other indigenous isolates and the commercial strain B. bassiana GHA suggesting that L49-1AA may have potential as a microbiological control agent against EAB.  相似文献   

19.
How nutritionally imbalanced is phloem sap for aphids?   总被引:8,自引:0,他引:8  
Aphids harbour intracellular symbionts (Buchnera) that provide their host with amino acids present in low amounts in their diet, phloem sap. To find out the extent to which aphids depend on their symbionts for synthesis of individual essential amino acids, we have evaluated how well phloem sap amino acid composition matches the aphids' needs. Amino acid compositions of the ingested phloem sap were compared to amino acids in aphid body proteins and also to available information about optimal diet composition for other plant feeding insects. Phloem sap data from severed stylets of two aphid species, Rhopalosiphum padi (L.) (Homoptera: Aphididae) feeding on wheat, and Uroleucon sonchi (L.) (Homoptera: Aphididae) feeding on Sonchus oleraceus (L.), together with published information on phloem sap compositions from other plant species were used.Phloem sap has in general only around 20% essential amino acids, with a range from 15–48%. Aphid body proteins and optimal diets for two other plant feeding insects have around 50%. The phloem sap of early flowering S. oleraceus ingested by U. sonchi contained 48%, which seems to be exceptional. Aphids feeding on different plants appear to be very differently dependent on their symbionts for their overall essential amino acid synthesis, due to the large variation in proportion of essential amino acids in phloem sap from different plants.The profile of the essential amino acids in phloem sap from different plant species corresponds rather well to profiles of both aphid body proteins and optimal diets determined for plant feeding insects. However, methionine and leucine in phloem sap are in general low in these comparisons, suggesting a higher dependence on the symbiont for synthesis of these amino acids. Concentrations of several essential amino acids in phloem from different plant species seem to vary together, suggesting that levels of symbiont provisioning of different amino acids are adjusted in parallel.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号