首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two diploid taxa, Grindelia procera and G. camporum, and 3 tetraploid ones, G. camporum, G. hirsutula, and G. stricta, have been studied to ascertain their interrelationships. Meiosis in diploid parental strains was regular, the common chromosome configuration being 5 rod bivalents and 1 ring bivalent. The average chiasmata frequency per chromosome was 0.60. Pollen fertility was about 90% in all strains examined. Diploid interspecific hybrids had normal meiosis with an average chiasmata frequency of 0.56 per chromosome. No heterozygosity for inversions or interchanges was detected, and pollen fertility was above 85%. Meiosis in parental tetraploid strains was characterized by the presence of quadrivalents in addition to a complementary number of bivalents. The average chiasmata frequency per chromosome was 0.59 and pollen fertility was generally about 80%. Tetraploid interspecific hybrids also had quadrivalents, normal meiosis, and high pollen fertility. Close genetic relationships between the diploids and between the tetraploids are indicated, and geographical, ecological, and seasonal barriers to gene exchange exist. Attempts to obtain hybrids between diploids and tetraploids were successful in a few cases. The hybrids were tetraploid and had normal meiosis and fertility similar to parental and F1 tetraploids. Their origin was by the union of unreduced gametes of the diploid female parent and normal pollen from the tetraploid parent. On the basis of chromosome homology, normal meiosis, plus high fertility exhibited in the diploid, tetraploid, and diploid X tetraploid interspecific hybrids, these species of Grindelia are considered to be a part of an autopolyploid complex. Gene exchange between diploids and diploids, tetraploids and tetraploids, and diploids and tetraploids is possible. Tetraploid G. camporum may have originated by hybridization between G. procera and diploid G. camporum with subsequent doubling of chromosomes and selection for the combined characteristics of the diploids.  相似文献   

2.
Polyploidy is one of the most important evolutionary processes in plants. In natural populations, polyploids usually emerge from unreduced gametes which either fuse with reduced ones, resulting in triploid offspring (triploid bridge), or with other unreduced gametes, resulting in tetraploid embryos. The frequencies of these two pathways, and male versus female gamete contributions, however, are largely unexplored. Ranunculus kuepferi occurs with diploid, triploid and autotetraploid cytotypes in the Alps, whereby diploids are mostly sexual, while tetraploids are facultative apomicts. To test for the occurrence of polyploidization events by triploid bridge, we investigated 551 plants of natural populations via flow cytometric seed screening. We assessed ploidy shifts in the embryo to reconstruct female versus male gamete contributions to polyploid embryo and/or endosperm formation. Seed formation via unreduced egg cells (BIII hybrids) occurred in all three cytotypes, while only in one case both gametes were unreduced. Polyploids further formed seeds with reduced, unfertilized egg cells (polyhaploids and aneuploids). Pollen was highly variable in diameter, but only pollen >27 μm was viable, whereby diploids produced higher proportions of well-developed pollen. Pollen size was not informative for the formation of unreduced pollen. These results suggest that a female triploid bridge via unreduced egg cells is the major pathway toward polyploidization in R. kuepferi, maybe as a consequence of constraints of endosperm development. Triploids resulting from unreduced male gametes were not observed, which explains the lack of obligate sexual tetraploid individuals and populations. Unreduced egg cell formation in diploids represents the first step toward apomixis.  相似文献   

3.
? Premise of the study: Most plants are polyploid and have more than two copies of the genome. The evolutionary success of polyploids is often attributed to their potential to harbor increased genetic variation, but it is poorly understood how polyploids can attain such variation. Because of their formation bottleneck, newly formed tetraploids start out with little variation. Tetraploids may attain genetic variation through a combination of new mutations, recurrent formation, and gene exchange with diploid ancestors or related tetraploid species. We explore the role of gene exchange and introgression in autotetraploid Rorippa amphibia, a species that harbors more genetic variation than its diploid ancestors. ? Methods: We crossed autotetraploid R. amphibia to diploid conspecifics and tetraploid R. sylvestris and backcrossed resulting F(1) hybrids. We used flow cytometry to determine the ploidy of all progeny. ? Key results: Tetraploids of R. amphibia and R. sylvestris were interfertile; F(1) hybrids were fertile and could backcross. Crosses between diploids and tetraploids yielded a small number of viable, often tetraploid progeny. This indicates that unreduced gametes can facilitate gene flow from diploids to tetraploids. We detected a frequency of unreduced gametes of around 2.7 per 1000, which was comparable between diploids and tetraploids. ? Conclusions: Introgression from tetraploid R. sylvestris provides a realistic source of variation in autotetraploid R. amphibia. Only in a scenario where other compatible partners are absent, for example immediately after tetraploidization, gene flow through unreduced gametes from diploids could be an important source of genetic variation for tetraploids.  相似文献   

4.
A natural nonaploid hybrid (2n = 63) from fusion of a reduced F. vesca male gamete with an unreduced F. chiloensis gamete, and a partially fertile natural hexaploid hybrid (2n = 42) from fusion of an unreduced F. vesca (2n = 14) male gamete with a reduced F. chiloensis (2n = 56) gamete were discovered in separate mixed colonies along with over 20 additional pentaploid hybrids (2n = 35). Plants of all hybrids aggressively compete with F. chiloensis. This relatively high percentage of hybrids from unreduced gametes may mean that they have higher survival value than pentaploids, since some evidence indicates that unreduced gametes may not function that often in successful F. chiloensis × F. vesca hybridization. The partial fertility of the hexaploid shows that intermediate fertile levels of ploidy need not be derived exclusively from lower ploidy species, and unreduced gametes from such hybrids should produce a high percentage of decaploid offspring in natural backcrossing to F. chiloensis. The successful functioning of unreduced vesca and chiloensis gametes in natural hybridization justifies the postulation that other euploid levels also may occur naturally, including triploids, tetraploids, decaploids, 12 ploids, and 16 ploids. Of these, the even multiples—tetraploids, decaploids, 12 ploids, and 16 ploids—should be at least partially fertile.  相似文献   

5.
Detailed ecological, morphological and molecular analyses were performed in mixed populations of diploid and autotetraploid Dactylorhiza maculata s.l. in Scandinavia. Comparisons were made with pure populations of either diploid ssp. fuchsii or tetraploid ssp. maculata. It was shown that mixed populations are the result of secondary contact between ssp. fuchsii and ssp. maculata. No patterns of recent and local autopolyploidization were found. Morphology and nuclear DNA markers (internal transcribed spacers of nuclear ribosomal DNA) showed that diploids and tetraploids from mixed populations have similar levels of differentiation to diploids and tetraploids from pure populations. Vegetation analyses, as well as analyses of environmental variables, revealed that diploid and tetraploid individuals in mixed populations are ecologically well differentiated on a microhabitat level. Diploids and tetraploids in pure populations have wider ecological amplitudes than they do in mixed populations. Triploid hybrids grew in intermediate microhabitats between diploids and tetraploids in the mixed populations. Plastid DNA markers indicated that both diploids and tetraploids may act as the maternal parent. Based on morphology and nuclear markers triploids are more similar to tetraploids than to diploids. There were indications of introgressive gene flow between ploidy levels. Plastid markers indicated that gene flow from diploid to tetraploid level is most common, but nuclear markers suggested that gene flow in opposite direction also may occur. Similar patterns of differentiation and gene flow appeared in localities that represented contrasting biogeographic regions. Disturbance and topography may explain why hybridization was slightly more common and the differentiation patterns somewhat less clear in the Scandinavian mountains than in the coastal lowland. An erratum to this article can be found at  相似文献   

6.
Experimental crosses between diploids, triploids and tetraploids ofHieracium echioides were made to examine mating interactions. Specifically, cytotype diversity in progeny from experimental crosses, intercytotype pollen competition as a reproductive barrier between diploids and tetraploids, and differences in seed set between intra- and intercytotype crosses were studied. Only diploids were found in progeny from 2x × 2x crosses. The other types of crosses yielded more than one cytotype in progeny, but one cytotype predominated in each cross type: diploids (92%) in 2x × 3x crosses, tetraploids (88%) in 3x × 2x crosses, triploids (96%) in 2x × 4x crosses, triploids (90%) in 4x × 2x crosses, tetraploids (60%) in 3x × 3x crosses, pentaploids (56%) in 3x × 4x crosses, triploids (80%) in 4x × 3x crosses and tetraploids (88%) in 4x × 4x crosses. No aneuploids have been detected among karyologically analyzed plants. Unreduced egg cell production was detected in triploids and tetraploids, but formation of unreduced pollen was recorded only in two cases in triploids. Triploid plants produced x, 2x and 3x gametes: in male gametes x (92%) gametes predominated whereas in female gametes 3x (88%) gametes predominated. Cytotype diversity in progeny from crosses where diploids and tetraploids were pollinated by mixture of pollen from diploid and tetraploid plants suggested intercytotype pollen competition to serve as a prezygotic reproductive barrier. No statistically significant difference in seed set obtained from intra- and intercytotype crosses between diploids and tetraploids was observed, suggesting the absence of postzygotic reproductive barriers among cytotypes.  相似文献   

7.
Polyploidization is an important mechanism of sympatric speciation, but few studies have addressed breeding barriers between polyploids and their diploid progenitors in the field, and the available data have been mainly obtained from diploid-tetraploid contact zones. In contrast to diploid-tetraploid complexes, hybridization between diploid and hexaploid individuals may lead to viable fertile tetraploid offspring, and thus the interactions between these ploidy levels can be more complex. We investigated the breeding barriers operating between diploid and hexaploid individuals of Aster amellus at a contact zone in Central Europe to understand the absence of hybrids (i.e., tetraploids) and mixed populations. Phenological segregation, assortative mating mediated by pollinators and crossing ability were assessed under natural and controlled conditions in diploid and hexaploid populations growing in close proximity. The results revealed low levels of reproductive isolation (RI) due to flowering phenology (RI = 11–45%) and pollinator behavior (RI = 17%), so that pollen transfer between diploids and hexaploids is possible. In contrast, almost complete reproductive isolation was observed due to a series of post-pollination barriers that significantly reduced the production of offspring from inter-cytotype crosses (RI = 99.9%), even though some tetraploids were detected in seeds and seedlings. We conclude that the absence of tetraploids at the contact zone is probably due to a combination of several factors, including spatial segregation, strong post-pollination barriers (such as gametic isolation, low viability of tetraploid seeds and/or inability of tetraploid plants to reach the flowering stage), and to a lesser extent, temporal and behavioral segregation. Future studies should explore the fitness of tetraploids and the effect of different traits on the reproductive success and fitness of each cytotype. This will enable a fuller understanding of the dynamics and mechanisms acting in contact zones.  相似文献   

8.
Establishment of polyploid individuals within diploid populations is theoretically unlikely unless polyploids are reproductively isolated, pre-zygotically, through assortative pollination. Here, we quantify the contribution of pollinator diversity and foraging behaviour to assortative pollen deposition in three mixed-ploidy populations of Chamerion angustifolium (Onagraceae). Diploids and tetraploids were not differentiated with respect to composition of insect visitors. However, foraging patterns of the three most common insect visitors (all bees) reinforced assortative pollination. Bees visited tetraploids disproportionately often and exhibited higher constancy on tetraploids in all three populations. In total, 73% of all bee flights were between flowers of the same ploidy (2x–2x, 4x–4x); 58% of all flights to diploids and 83% to tetraploids originated from diploid and tetraploid plants, respectively. Patterns of pollen deposition on stigmas mirrored pollinator foraging behaviour; 73% of all pollen on stigmas (70 and 75% of pollen on diploid and tetraploid stigmas, respectively) came from within-ploidy pollinations. These results indicate that pollinators contribute to high rates of pre-zygotic reproductive isolation. If patterns of fertilization track pollen deposition, pollinator–plant interactions may help explain the persistence and spread of tetraploids in mixed-ploidy populations.  相似文献   

9.
Speciation requires the evolution of barriers to gene exchange between descendant and progenitor populations. Cryptic reproductive barriers in plants arise after pollination but before fertilization as a result of pollen competition and interactions between male gametophytes and female reproductive tissues. We tested for such gametic isolation between the polyploid Chamerion angustifolium and its diploid progenitor by conducting single (diploid or tetraploid) and mixed ploidy (1 : 1 diploid and tetraploid) pollinations on both cytotypes and inferring siring success from paternity analysis and pollen-tube counts. In mixed pollinations, polyploids sired most (79%) of their own seeds as well as those of diploids (61%) (correcting for triploid block, siring success was 70% and 83%, respectively). In single donor pollinations, pollen tubes from tetraploids were more numerous than those from diploids at four different positions in each style and for both diploid and tetraploid pollen recipients. The lack of a pollen donor x recipient interaction indicates that the tetraploid siring advantage is a result of pollen competition rather than pollen-pistil interactions. Such unilateral pollen precedence results in an asymmetrical pattern of isolation, with tetraploids experiencing less gene flow than diploids. It also enhances tetraploid establishment in sympatric populations, by maximizing tetraploid success and simultaneously diminishing that of diploids through the production of inviable triploid offspring.  相似文献   

10.
Polyploidy may promote diversification by generating reproductive isolation between ploidy levels, but this reproductive barrier may not be absolute. Several recent analyses of diploid–tetraploid contact zones have found evidence for hybridization. In these cases, inter‐cytotype gene flow is often associated with morphologically intergrading populations. In this study, we combine cytological, fitness and population genetic data to examine the evolutionary role of a morphologically intergrading population at a contact zone between species with different ploidy levels in Dodecatheon. Diploid D. frenchii and tetraploid D. meadia are usually distinguished by leaf‐shape characters. In southern Illinois, where these taxa occur in parapatry, a morphologically intergrading population includes the first documented tetraploid with D. frenchii morphology. Most plants in this intergrading population are fertile, and a nearby typical population of D. meadia has plastid DNA haplotypes that only occur in D. frenchii elsewhere in southern Illinois. These results suggest that fit neo‐tetraploids in this intergrading population have facilitated local introgression between ploidy levels. Similar patterns in other regions where these taxa co‐occur may explain weak range‐wide genetic differentiation between these species. © 2011 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, 168 , 91–100.  相似文献   

11.
Reproductive behaviour and the pathways of gene flow among ploidy levels were studied experimentally inTaraxacum sect.Ruderalia. Diploid, triploid and tetraploid individuals were sampled from mixed diploid — polyploid natural populations. 136 experimental hybridizations between the plants of different ploidy levels were performed. Seeds resulting from these crosses, those obtained from isolated anthodia as well as from open pollinated anthodia (both from cultivated and wild plants) were subjected to the flow-cytometric seed screening (FCSS) to determine ploidy levels in the progeny and to infer breeding behaviour of maternal plants. Three possible pathways of the gene flow were studied: (A) fertilization of sexuals by pollen of apomicts, (B) BIII hybrid formation, (C) facultative apomixis. Diploid maternal plants when experimentally crossed with triploid pollen donors produced diploids and polyploid progeny, while when pollinated with a mixture of the pollen of diploids and triploids or insect pollinated, no polyploids were discovered. It seems that in the mixture with the pollen of diploids, the pollen of triploids is ineffective. Tetraploids produce hybrids much easier with diploid mothers and their role in wild populations requires further study. Triploid mothers, even those with subregular pollen did not show traces of facultative apomixis. BIII hybrids were present in the progeny of both triploids and tetraploids, in tetraploids in quite high percentages (up to 50% of the progeny in some crosses).  相似文献   

12.
Theory suggests that the evolution of autotetraploids within diploid populations will be opposed by a minority-cytotype mating disadvantage. The role of triploids in promoting autotetraploid establishment is rarely considered, yet triploids are often found in natural populations and are formed in experimental crosses. Here, I evaluate the effects of triploids on autotetraploid evolution using computer simulations and by synthesizing research on the evolutionary dynamics of mixed-ploidy populations in Chamerion angustifolium (Onagraceae). Simulations show that the fate of a tetraploid in a diploid population varies qualitatively depending on the relative fitness of triploids, the ploidy of their gametes and the fitness of diploids relative to tetraploids. In general, even partially fit triploids can increase the likelihood of diploid–tetraploid coexistence and, in some cases, facilitate tetraploid fixation. Within the diploid–tetraploid contact zone of C. angustifolium , mixed populations are common (43%), and often (39%) contain triploids. Greenhouse and field studies indicate that triploid fitness is low (9% of diploids) but variable. Furthermore, euploid gametes produced by triploids can be x , 2 x or 3 x and contribute the majority (62%) of new polyploids formed in each generation (2.3 × 10−3). Although triploid bridge, alone, may not account for the evolution of autotetraploidy in C. angustifolium , it probably contributes to the prevalence of mixed-ploidy populations in this species. Therefore, in contrast to hybrids in homoploid species, triploids may actually facilitate rather than diminish the fixation of tetraploids by enhancing the rate of formation.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 82 , 537–546.  相似文献   

13.
Isogenic diploid and tetraploid alfalfa (Medicago sativa L.) was studied with molecular markers to help understand why diploid performance and breeding behavior does not always predict that of tetraploids. In a previous study of partially heterozygous alfalfa genotypes, we detected a low correlation between yields of isogenic diploid (2x) and tetraploid (4x) single-cross progenies, and genetic distances were more highly correlated with yields of tetraploids than diploids. These differences may be related to the level of RFLP heterozygosity expected among progenies derived from heterozygous parents at the two ploidy levels. The objectives of this study were to determine the relationships among genetic distance, forage yield and heterozygosity in isogenic 2 x and 4 x alfalfa populations. Four diploid genotypes were chromosome doubled to produce corresponding isogenic autotetraploids, and these genotypes were mated in 4 × 4 diallels to produce 6 single-cross families at each ploidy level for field evaluation. Allele compositions of parents were determined at 33 RFLP loci by monitoring segregation of homologous restriction fragments among individuals within progenies, and these were used to estimate RFLP heterozygosity levels for all single-cross progenies at both ploidy levels. RFLP heterozygosity rankings were identical between progenies of isogenic diploid and tetraploid parents; but significant associations (P < 0.05) between estimated heterozygosity levels and forage yield were detected only at the tetraploid level. Since tetraploid families were nearly 25% more heterozygous than the corresponding diploid families, inconsistencies in the association between molecular marker diversity and forage yields of isogenic 2 x and 4 x single crosses may be due to recessive alleles that are expressed in diploids but masked in tetraploids. The gene action involved in heterosis may be the same at both ploidy levels; however, tetraploids benefit from greater complementary gene interactions than are possible for equivalent diploids. Present address: AgResearch Grasslands, New Zealand Pastoral Agriculture Research Institute, Palmerston North, New Zealand  相似文献   

14.

Premise

Strong postzygotic reproductive isolating barriers are usually expected to limit the extent of natural hybridization between species with contrasting ploidy. However, genomic sequencing has revealed previously overlooked examples of natural cross-ploidy hybridization in some flowering plant genera, suggesting that the phenomenon may be more common than once thought. We investigated potential cross-ploidy hybridization in British eyebrights (Euphrasia, Orobanchaceae), a group from which 13 putative cross-ploidy hybrid combinations have been reported based on morphology.

Methods

We analyzed a contact zone between diploid Euphrasia rostkoviana and tetraploid E. arctica in Wales. We sequenced part of the internal transcribed spacer (ITS) of nuclear ribosomal DNA and used genotyping by sequencing (GBS) to look for evidence of cross-ploidy hybridization and introgression.

Results

Common variant sites in the ITS region were fixed between diploids and tetraploids, indicating a strong barrier to hybridization. Clustering analyses of 356 single-nucleotide polymorphisms (SNPs) generated using GBS clearly separated samples by ploidy and revealed strong genetic structure (FST = 0.44). However, the FST distribution across all SNPs was bimodal, indicating potential differential selection on loci between diploids and tetraploids. Demographic inference suggested potential gene flow, limited to around one or fewer migrants per generation.

Conclusions

Our results suggest that recent cross-ploidy hybridization is rare or absent in a site of secondary contact in Euphrasia. While a strong ploidy barrier prevents hybridization over ecological timescales, such hybrids may form in stable populations over evolutionary timescales, potentially allowing cross-ploidy introgression to take place.  相似文献   

15.
The Actinidia chinensis complex, a group of commercially important fruits (kiwifruit), is a complex of functionally dioecious lianas of variable ploidy. To understand the cytogeography better and to facilitate breeding in this complex, we examined the ploidy and morphological variations in 16 natural populations of A. chinensis var. chinensis and A. chinensis var. deliciosa across an ecogeographical gradient. Four ploidy levels were found, var. chinensis consisting of diploids and tetraploids and var. deliciosa consisting of tetraploids, pentaploids and hexaploids. Hexaploids were centred in the western Yun‐Gui plateau, tetraploids coexisted with hexaploids or diploids in the middle Yun‐Gui plateau and the Wuling‐Xuefeng mountains, and diploids occurred in the eastern Wuling‐Xuefeng mountains and the Hunan foothills. These findings indicate a gradual, clinal transition from hexaploid to diploid across the elevational and longitudinal gradient. The clear geographical segregation of diploids and hexaploids may have arisen from their differential ecological adaptation in response to altitude and climate, whereas the coexistence of cytotypes (2x–4x, 4x–6x and 4x–5x–6x) might be a result of reproductive barriers, with a particular contribution from the postzygotic reproductive isolation between ploidy races. The geographical pattern and morphological variation of cytotypes suggest a hybrid zone between the varieties in the Wuling‐Xuefeng mountains. The differences in cytotypes which have arisen as a result of ecological adaptation, distribution and morphological characteristics will provide important baseline data for the selection of germplasm and the breeding of kiwifruit. © 2010 The Linnean Society of London, Botanical Journal of the Linnean Society, 2010, 164 , 72–83.  相似文献   

16.
A population of Centaurea weldeniana was discovered recently near Wien (Vienna). The species is reported from Austria for the first time. Determination is confirmed by morphometric analysis of Central European and additional Balkan material of the C. jacea agg. and karyological data. All sampled populations of C. weldeniana are diploid, while only tetraploids have been reported from Central Europe within the C. jacea agg. so far. Detailed morphometric analysis of the newly discovered C. weldeniana population revealed several hybrids with tetraploid C. jacea. The hybrids are tetraploid and originate from unreduced gametes of diploids. No triploids were found. Indeed, the incidence of hybridization is surprisingly low. The population was probably discovered already in 1886 (determined as C. bracteata) and was described as a new species C. argyrolepis in 1901, but these data were lost. However, this isolated diploid population has survived for at least 125?years, which provides a good example of the strength of inter-cytotype reproductive barriers in Centaurea sect. Jacea.  相似文献   

17.
Background and Aims Polyploidization, the doubling of chromosome sets, is common in angiosperms and has a range of evolutionary consequences. Newly formed polyploid lineages are reproductively isolated from their diploid progenitors due to triploid sterility, but also prone to extinction because compatible mating partners are rare. Models have suggested that assortative mating and increased reproductive fitness play a key role in the successful establishment and persistence of polyploids. However, little is known about these factors in natural mixed-ploidy populations. This study investigated floral traits that can affect pollinator attraction and efficiency, as well as reproductive success in diploid and tetraploid Gymnadenia conopsea (Orchidaceae) plants in two natural, mixed-ploidy populations.Methods Ploidy levels were determined using flow cytometry, and flowering phenology and herbivory were also assessed. Reproductive success was determined by counting fruits and viable seeds of marked plants. Pollinator-mediated floral isolation was measured using experimental arrays, with pollen flow tracked by means of staining pollinia with histological dye.Key Results Tetraploids had larger floral displays and different floral scent bouquets than diploids, but cytotypes differed only slightly in floral colour. Significant floral isolation was found between the two cytotypes. Flowering phenology of the two cytotypes greatly overlapped, and herbivory did not differ between cytotypes or was lower in tetraploids. In addition, tetraploids had higher reproductive success compared with diploids.Conclusions The results suggest that floral isolation and increased reproductive success of polyploids may help to explain their successful persistence in mixed-ploidy populations. These factors might even initiate transformation of populations from pure diploid to pure tetraploid.  相似文献   

18.
Using flow cytometry and amplified fragment length polymorphism (AFLP), we explored the cytogeography and phylogeography of Hieracium intybaceum, a silicicolous species distributed in the Alps and spatially isolated in the Vosges Mountains and the Schwarzwald Mountains. We detected two ploidies, diploid and tetraploid, but no triploid or mixed‐ploidy populations. Whereas diploids are sexual and distributed all across the Alps, tetraploids are apomictic and seem to be confined to the western Alps and the Vosges. We detected a low level of genetic variation. Bayesian clustering identified four clusters/genetic groups, which are partly congruent with the ploidal pattern. The first two groups consisting exclusively of diploids dominate the whole distribution range in the Alps and show east–west geographical separation with a diffuse borderline running from eastern Switzerland to the eastern part of North Tyrol. The third genetic group lacks a defined geographical range and includes diploid and tetraploid plants. The last genetic group comprises tetraploid plants in the French Alps and the Vosges. We suppose that diploids colonized the deglaciated areas from source populations most likely located mainly in the southern part of the recent distribution range and occasionally also in the western Alps. Gene flow and further differentiation likely took place. Apomictic tetraploids most likely originated in the western Alps or in the refugium at the south‐western foot of the Alps. Their rather limited geographical range (partly contrasting with the theory of geographical parthenogenesis) can be explained by their rather recent origin. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 179 , 487–498.  相似文献   

19.
Survival of polyploids in nature depends on several factors, including competition from diploid relatives and increased genetic diversity. Unlike other reported Centaurea polyploid complexes, diploid Centaurea aspera and tetraploid Centaurea seridis coexist in hybrid zones with frequent triploid individuals. The polyploid origin of C. seridis, the genetic diversity and population structure of the three cytotypes, and the degree of genetic differentiation among them were analyzed in seven mixed‐ploidy zones, involving different subspecies and ecological conditions. Ploidy was determined by flow cytometry. Microsatellite data suggested an allopolyploid origin of C. seridis. In the contact zones, diploids and tetraploids were genetically differentiated. When compared with the related C. aspera, a low genetic diversity was observed in C. seridis, which is uncommon in tetraploids. Furthermore, although diploid individuals were grouped in a single widespread genetic cluster, tetraploids were grouped in two highly differentiated clusters and showed significant isolation by distance. This genetic pattern in C. seridis may be related to a minimal gene flow with diploid relatives and/or other genetic factors, such as rare polyploidization events, founder effects or an increased selfing rate. Neither taxonomic assignment at subspecies level, nor ecological conditions could explain the genetic differentiation between tetraploid clusters. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 176 , 82–98.  相似文献   

20.
Phylogenetic relationships between sympatric, morphologically indistinguishable diploid and tetraploid plants ofDactylis glomerata L. (Gramineae) in Galicia (Spain) were assessed using allozyme markers for 6 distinct systems. The study exploited recent introduction in Galicia and subsequent hybridization of an alien 4xDactylis subspecies possessing distinct allozymes from those of all the native plants. Opportunities for gene exchanges between the ploidies were estimated from in situ observations of flowering, examination of progenies in 2x/4x natural and experimental crosses, and enzyme analyses. Results show a high genetic similarity between the Galician diploids and tetraploids, which possess peculiar alleles in common. Although the ploidy levels usually have distinct flowering periods, interploidal crosses do occasionally occur. Gene flow is likely much more important from the diploid to the tetraploid level. A good genetic intermixing occurs between the Galician and the alien tetraploid entities which have simultaneous flowering. Autopolyploidization of the diploids followed by various rates of hybridization is proposed as one very probable origin of natural tetraploids inDactylis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号