首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The distribution patterns of reptiles in the Riff region, northern Morocco   总被引:1,自引:0,他引:1  
A biogeographical classification of reptiles in the Riff region (northern Morocco, Africa) was carried out to look for shared distribution patterns, here termed chorotypes. Baroni‐Urbani & Buser's similarity index was applied to the presence/absence data of reptiles in 10×10 km UTM (Universal Transverse Mercator) squares, and then UPGMA (Unweighted Pair‐Group Method using arithmetic average) was used to classify the species. A probabilistic method was employed to assess the statistical significance of the groups obtained. An ordination method, the Canonical Correspondence Analysis, was also used to study the distribution of the reptiles within a continuous framework.
A gradual longitudinal replacement of reptile species was found throughout the Riff, with no sharp discontinuities for the distributions of most of the species. This may be due to the biogeographical northward movement of the Saharan boundaries, which have not yet reached biogeographical equilibrium. Thus, Saharan reptiles enter the Riff region from the east, through the lower basin of the River Moulouya.
Seven reptile chorotypes were identified in the Riff, and these comprise Mediterranean species and others endemic to the Maghreb (the region that spans most of North‐western Africa, excluding the Sahara). These chorotypes have a western distribution, and are segregated from one another according to altitude. Historical and ecological processes can account for the distributions shared by these species, which have inhabited the Riff for longer than eastern reptiles.  相似文献   

3.
Aim To investigate the historical distribution of the Cerrado across Quaternary climatic fluctuations and to generate historical stability maps to test: (1) whether the ‘historical climate’ stability hypothesis explains squamate reptile richness in the Cerrado; and (2) the hypothesis of Pleistocene connections between savannas located north and south of Amazonia. Location The Cerrado, a savanna biome and a global biodiversity hotspot distributed mainly in central Brazil. Methods We generated occurrence datasets from 1000 presence points randomly selected from the entire distribution of the Cerrado, as determined by two spatial definitions. We modelled the potential Cerrado distribution by implementing a maximum‐entropy machine‐learning algorithm across four time projections: current, mid‐Holocene (6 ka), Last Glacial Maximum (LGM, 21 ka) and Last Interglacial (LIG, 120 ka). We generated historical stability maps (refugial areas) by overlapping presence/absence projections of all scenarios, and checked consistencies with qualitative comparisons with available fossil pollen records. We built a spatially explicit simultaneous autoregressive model to explore the relationship between current climate, climatic stability, and squamate species richness. Results Models predicted the LGM and LIG as the periods of narrowest and widest Cerrado distributions, respectively, and were largely corroborated by palynological evidence. We found evidence for two savanna corridors (eastern coastal during the LIG, and Andean during the LGM) and predicted a large refugial area in the north‐eastern Cerrado (Serra Geral de Goiás refugium). Variables related to climatic stability predicted squamate richness better than present climatic variables did. Main conclusions Our results indicate that Bolivian savannas should be included within the Cerrado range and that the Cerrado’s biogeographical counterparts are not Chaco and Caatinga but rather the disjunct savannas of the Guyana shield plateaus. Climatic stability is a good predictor of Cerrado squamate richness, and our stability maps could be used in future studies to test diversity patterns and genetic signatures of different taxonomic groups and as a higher‐order landscape biodiversity surrogate for conservation planning.  相似文献   

4.
Aim The study aimed to establish areas of endemism and distribution patterns for Neotropical species of the genus Piper in the Neotropical and Andean regions by means of parsimony analysis of endemicity (PAE) and track‐compatibility analysis. Location The study area includes the Neotropical region and the Northern Andean region (Páramo‐Punan subregion). Methods We used distribution information from herbarium specimens and recent monographic revisions for 1152 species of Piper from the Neotropics. First, a PAE was attempted in order to delimit the areas of endemism. Second, we performed a track‐compatibility analysis to establish distribution patterns for Neotropical species of Piper. Terminology for grouping Piper is based on recent phylogenetic analyses. Results The PAE yielded 104 small endemic areas for the genus Piper, 80 of which are in the Caribbean, Amazonian and Paranensis subregions of the Neotropical region, and 24 in the Páramo‐Punan subregion of the Andean region. Track‐compatibility analysis revealed 26 generalized tracks, one in the Páramo‐Punan subregion (Andean region), 19 in the Neotropical region, and six connecting the Andean and Neotropical regions. Both the generalized tracks and endemic areas indicate that distribution of Piper species is restricted to forest areas in the Andes, Amazonia, Chocó, Central America, the Guayana Shield and the Brazilian Atlantic coast. Main conclusions Piper should not be considered an Andean‐centred group as it represents two large species components with distributions centred in the Amazonian and Andean regions. Furthermore, areas of greater species richness and/or endemism are restricted to lowland habitats belonging to the Neotropical region. The distribution patterns of Neotropical species of Piper could be explained by recent events in the Neotropical region, as is the case for the track connecting Chocó and Central America, where most of the species rich groups of the genus are found. Two kinds of event could explain the biogeography of a large part of the Piper taxa with Andean–Amazonian distribution: pre‐Andean and post‐Andean events.  相似文献   

5.
6.
7.
8.
Aim  To document geographical interspecific patterns of body size of European and North American squamate reptile assemblages and explore the relationship between body size patterns and environmental gradients.
Location  North America and western Europe.
Methods  We processed distribution maps for native species of squamate reptiles to document interspecific spatial variation of body size at a grain size of 110 × 110 km. We also examined seven environmental variables linked to four hypotheses possibly influencing body size gradients. We used simple and multiple regression, evaluated using information theory, to identify the set of models best supported by the data.
Results  Europe is characterized by clear latitudinal trends in body size, whereas geographical variation in body size in North America is complex. There is a consistent association of mean body size with measures of ambient energy in both regions, although lizards increase in size northwards whereas snakes show the opposite pattern. Our best models accounted for almost 60% of the variation in body size of lizards and snakes within Europe, but the proportions of variance explained in North America were less than 20%.
Main conclusions  Although body size influences the energy balance of thermoregulating ectotherms, inconsistent biogeographical patterns and contrasting associations with energy in lizards and snakes suggest that no single mechanism can explain variation of reptile body size in the northern temperate zone.  相似文献   

9.
Aim The search for possible factors influencing the spatial variation of grass quality is an important step towards understanding the distribution of herbivores, as well as a step towards identifying crucial areas for conservation and restoration. A number of studies have shown that grass quality at a regional scale is influenced by climatic variables. At a local scale, site factors and their interaction are considered important. In this study, we aimed at examining environmental correlates of grass quality at a local scale. The study also sought to establish if biotic factors interact significantly with abiotic factors in influencing a variation in grass quality. Location The study area is located in the Kruger National Park of South Africa. The study area stretches from west (22°49′ S and 31°01′ E) to east, (22°44′ S and 31°22′ E) covering an area of about 25 × 6 km in the far northern region of the Kruger National Park. Methods We collected environmental data such as soil texture, percentage grass cover and biomass as well as grass samples for chemical analysis from specific locations in the study area. In addition, a digital elevation model (DEM) with a resolution of 5 m was used to derive elevation, slope and aspect using a geographic information system (GIS), which were related to grass quality. We used correlation analysis and anova to relate environmental variables to grass quality. Multivariate analysis techniques were used to simultaneously analyse and explore the complex interactions between variables. Results and conclusions Our results indicate that there is a significant relationship between grass quality parameters and site‐specific factors such as slope, altitude, percentage grass cover, aspect and soil texture. Relatively, percentage grass cover and soil texture were more critical in explaining a variation in grass quality. Plant characteristics such as species type interact significantly with slope, altitude and geology in influencing nutrient distribution. The results of this study may give a better insight on foliar nutrient distribution patterns at a landscape scale in savanna rangelands. Furthermore, the results of this study may help in the selection of ancillary information, which could be used in conjunction with other data such as remotely sensed data to map grass quality – an important step towards understanding the distribution and feeding patterns of wildlife. However, we acknowledge that this study is based on one seasonal snapshot, therefore some slightly different findings may be obtained during other times of the year. Nevertheless, the study has revealed that under the conditions experienced during the study period, nutrient distribution varies with varying biotic and abiotic factors.  相似文献   

10.
Given that land‐use change is the main cause of global biodiversity decline, there is widespread interest in adopting land‐use practices that maintain high levels of biodiversity, and in restoring degraded land that previously had high biodiversity value. In this study, we use ant taxonomic and functional diversity to examine the effects of different land uses (agriculture, pastoralism, silviculture and conservation) and restoration practices on Cerrado (Brazilian savanna) biodiversity. We also examine the extent to which ant diversity and composition can be explained by vegetation attributes that apply across the full land management spectrum. We surveyed vegetation attributes and ant communities in five replicate plots of each of 13 land‐use and restoration treatments, including two types of native vegetation as reference sites: cerrado sensu stricto and cerradão. Several land‐use and restoration treatments had comparable plot richness to that of the native reference habitats. Ant species and functional composition varied systematically among land‐use treatments following a gradient from open habitats such as agricultural fields to forested sites. Tree basal area and grass cover were the strongest predictors of ant species richness. Losses in ant diversity were higher in land‐use systems that transform vegetation structure. Among productive systems, therefore, uncleared pastures and old pine plantations had similar species composition to that occurring in cerrado sensu stricto. Restoration techniques currently applied to sites that were previously Cerrado have focused on returning tree cover, and have failed to restore ant communities typical of savanna. To improve restoration outcomes for Cerrado biodiversity, greater attention needs to be paid to the re‐establishment and maintenance of the grass layer, which requires frequent fire. At the broader scale, conservation planning in agricultural landscapes, should recognize the value of land‐use mosaics and the risks of homogenization.  相似文献   

11.
12.
Niche conservatism has been proposed as a mechanism influencing large‐scale patterns of taxonomic richness. We document the species richness patterns of five monophyletic squamate reptile groups (gekkonids, cordylids‐scincids, lacertids, chameleons and alethinophidian snakes) in eastern and southern Africa, and explore if observed patterns reflect niche conservatism processes. We quantified richness and its relationships with current climatic conditions by gridding species' range maps at 110 × 110 km. Also, dated phylogenies and palaeoclimatic reconstructions, coupled with evidence from the fossil record, were used to approximate the areas and climate characteristics in which each group originated and/or radiated. Mean species richness and geographically corrected confidence intervals in current climate types were calculated for each group in order to establish their climatic preferences. On average, the species richness of older groups (gekkonids, cordylids‐scincids and lacertids) was lower in equatorial climates and higher in arid and temperate conditions, whereas more recent groups (chameleons and alethinophidian snakes) were richer in equatorial and temperate climates and less rich in arid conditions. Across all groups, higher richness was associated with climatic characteristics similar to those prevailing at the time in which each group originated/radiated. The congruence of the current climates where reptile groups are richer and the past climates amidst which those groups originated is consistent with an explanation for their diversity gradients based on niche conservatism.  相似文献   

13.
Summary Species interactions, as revealed by historical introductions of predators and competitors, affect population densities and sometimes result in extinctions of island reptiles. Mongoose introductions to Pacific islands have diminished the abundance of diurnal lizards and in some cases have led to extinctions. Through these population level effects, biogeographic patterns are produced, such as the reciprocal co-occurrence pattern seen with the tuatara and its predator, the Polynesian rat, and with the tropical gecko competitorsHemidactylus frenatus andLepidodactylus lugubris in urban habitats in the Pacific. Although competition has led to changes in abundance and has caused habitat displacement and reduced colonization success, extinctions of established reptile populations usually occur only as a result of predation.These introductions, along with many manipulative experiments, demonstrate that present day competition and predation are potent forces shaping community structure and geographic distributions. The human introduction of species to islands can be viewed as an acceleration of the natural processes of range expansion and colonization. The immediate biotic consequences of these natural processes should be of the same intensity as those of the human introductions. Coevolution may subsequently act to ameliorate these interactions and reduce the dynamical response of one species to the other. The role played by coevolution in mediating interactions between competitors and predator and prey is highlighted by the susceptibility of predator-naive endemic species to introduced predators and the invalidity of species-poor communities.  相似文献   

14.
Aim To explain the relationship between topography, prevailing winds and precipitation in order to identify regions with contrasting precipitation regimes and then compare floristic similarity among regions in the context of climate change. Location Eastern slope of the tropical Andes, South America. Methods We used information sources in the public domain to identify the relationship between geology, topography, prevailing wind patterns and precipitation. Areas with contrasting precipitation regimes were identified and compared for their floristic similarity. Results We identify spatially separate super‐humid, humid and relatively dry regions on the eastern slope of the Andes and show how they are formed by the interaction of prevailing winds, diurnally varying atmospheric circulations and the local topography of the Andes. One key aspect related to the formation of these climatically distinct regions is the South American low‐level jet (SALLJ), a relatively steady wind gyre that flows pole‐ward along the eastern slopes of the Andes and is part of the gyre associated with the Atlantic trade winds that cross the Amazon Basin. The strongest winds of the SALLJ occur near the ‘elbow of the Andes’ at 18° S. Super‐humid regions with mean annual precipitation greater than 3500 mm, are associated with a ‘favourable’ combination of topography, wind‐flow orientation and local air circulation that favours ascent at certain hours of the day. Much drier regions, with mean annual precipitation less than 1500 mm, are associated with ‘unfavourable’ topographic orientation with respect to the mean winds and areas of reduced cloudiness produced by local breezes that moderate the cloudiness. We show the distribution of satellite‐estimated frequency of cloudiness and offer hypotheses to explain the occurrence of these patterns and to explain regions of anomalously low precipitation in Bolivia and northern Peru. Floristic analysis shows that overall similarity among all circumscribed regions of this study is low; however, similarity among super‐humid and humid regions is greater when compared with similarity among dry regions. Spatially separate areas with humid and super‐humid precipitation regimes show similarity gradients that are correlated with latitude (proximity) and precipitation. Main conclusions The distribution of precipitation on the eastern slope of the Andes is not simply correlated with latitude, as is often assumed, but is the result of the interplay between wind and topography. Understanding the phenomena responsible for producing the observed precipitation patterns is important for mapping and modelling biodiversity, as well as for interpreting both past and future climate scenarios and the impact of climate change on biodiversity. Super‐humid and dry regions have topographic characteristics that contribute to local climatic stability and may represent ancestral refugia for biodiversity; these regions are a conservation priority due to their unique climatic characteristics and the biodiversity associated with those characteristics.  相似文献   

15.
Aim  The study aimed to identify areas of endemism for aphids in the Qinghai-Tibetan Plateau and the Himalayas (QTPH), and to test congruence between patterns of endemism and patterns of overall species richness identified in a previous study.
Location  The QTPH.
Methods  A distribution data base of 326 endemic aphids in the QTPH was compiled. The study area was divided into a grid of 2°× 2° operative geographical units. Parsimony analysis of endemicity (PAE) was used to identify areas of endemism, and the diversity patterns of endemic species were then mapped using GIS.
Results  We identified 326 endemic species belonging to 138 genera within Adelgidae and 14 subfamilies of Aphididae. Five areas of endemism were found using PAE analysis: the eastern Himalayas, the western Himalayas, north-western Yunnan, southern Tibet and the eastern QTPH. Maps of patterns of endemism identified four major centres for endemic aphids, namely the western Himalayas, the eastern Himalayas (or Sikkim-Assam Himalayas), north-western Hengduan Mountains and the mountains of southern Gansu Province, and three minor centres, southern Tibet, south-eastern Tibet and the eastern Qinghai Province in the north-eastern QTPH.
Main conclusions  Our study identifies major centres of aphid endemism. Furthermore, there is a noticeable congruence between patterns of endemism and patterns of species richness. The patterns of endemism were most likely influenced by the recent uplift of the QTPH.  相似文献   

16.
Creating networks of nature reserves to protect areas rich in biodiversity from the adverse impacts of anthropogenic change is a critical and urgent task. We illustrate the skewed geographical and size distributions of protected areas in the Western Hemisphere. For instance, 811 of 1413 reserves in the Western Hemisphere are smaller than 10 km2, and 35% of the total area of these reserves is in Alaska. We compile ranges for all bats in the continental Western Hemisphere and find that 82% of threatened and small‐range species are not protected adequately. Many of the most vulnerable species occur in the areas of highest human density. We provide maps delineating areas where conservation investments may have the greatest impact in preventing biodiversity losses.  相似文献   

17.
The taxonomic composition and the abundance of two communities of snakes were studied in two different areas of southern Nigeria. One community was studied in a derived savanna area (environs of Ejule, 06°54N, 07°23E), and one community was studied in a moist rainforest area (environs of Eket, 04°50N, 07°59E). Both the specific diversity and the mean frequency of observation of snakes were significantly higher in the forest area than in the savanna area, and the dominance index was higher in the savanna than in the forest site. However, most of the species were found in only one of the two areas, depending on their habitat requirements (e.g. Gastropyxis smaragdina, Dispholidus typus, Thelotornis kirtlandii, Dendroaspis jamesoni, Bitis nasicornis, Causus maculatus, etc). The forest community housed a significant number of arboreal and semiaquatic taxa, but in both sites most of the species were terrestrial. The commonest species in the forest area was an oviparous, semiaquatic, batracophagous natricine snake (Afronatrix anoscopus), whereas the commonest species in the savanna area was an oviparous terrestrial lacertophagous psammophine snake (Psammophis phillipsi). Some conservation implications of our biodiversity analyses are presented. It is suggested that the moist rainforest represents a critically endangered habitat, and should deserve special attention by the international scientific community. Oil industry activity is especially dangerous for snake communities, especially in the southernmost regions of Nigeria.  相似文献   

18.
The recent paper by Bartolino et al. (Popul Ecol 53:351–359, 2011) presents a new method to objectively select hotspots using cumulative relative frequency distribution (CRFD) curves. This method is presented as being independent from the selection of any threshold and, therefore, less arbitrary than traditional approaches. We argue that this method, albeit mathematically sound, is based on likewise arbitrary decisions regarding threshold selection. Specifically, the use of the CRFD curve approach requires the occurrence of two criteria for the method to be applied correctly: the selection of a 45° tangent to the curve, and the need to consider the highest relative value of the study parameter corresponding to a 45° slope tangent to the curve. Using two case studies (dealing with species richness and abundance of a particular species), we demonstrate that these two criteria are really unrelated to the underlying causes that shape the spatial pattern of the phenomena under study, but rather related to sampling design and spatial scale; hence, one could likewise use different but valid criteria. Consequently, the CRFD curve approach is based on the selection of a pre-defined threshold that has little, if any, ecological justification, and that heavily influences the final hotspot selection. Therefore, we conclude that the CRFD curve approach itself is not necessarily better and more objective than any of the global methods typically used for hotspot identification. Indeed, mathematical and/or statistical approaches should not be viewed as a panacea to solve conservation problems, but rather used in combination with biological, practical, economic and social considerations.  相似文献   

19.
20.
Aims  To delimit areas of endemism in the Patagonian steppe using endemicity analysis (EA), which evaluates areas of endemism by means of an endemicity index, and to compare the resulting endemic areas with those proposed for the Patagonian steppe by previous authors.
Location  The Patagonian steppe, a region of South America found approximately below parallel 36° S to the east of the Andes Mountains.
Methods  Distributional data for 159 species of insects collected in the Patagonian steppe, and consisting of 1317 georeferenced samples were used to identify areas of endemism. A data grid of presence and absence (with cells of 1° × 1°) was constructed. Initially, two different types of EA were performed, seeking areas defined by 'four or more' species. A first analysis was performed without taking into consideration those quadrats where no species had been recorded (empty quadrats), which in many cases meant a discontinuous distribution. The second analysis was performed assuming a continuous distribution for each species. A third analysis, assuming continuous distributions, was performed using 'three or more' as the number of species necessary for an area to be identified as an endemic area.
Results  In the first two analyses, EA recognized the same five areas of endemism: western Patagonia, south-western Payunia, northern Suabandean, southern Subandean and Austral Patagonia. The results of the third analysis allowed the identification of three more areas of endemism: northern Payunia, Chubutian and Santacrucian.
Main conclusions  We identified five areas of endemism for the Patagonian steppe, some of which have been defined in previous contributions. These areas are: Western Patagonia, Payunia and Subandean Patagonia (which can be divided into septentrional and meridional), Central Patagonia (Chubutence and Santacrucense) and Austral Patagonia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号