首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Temperature sensitivity of digestive processes has important ramifications for digestive performance in ectothermic vertebrates. We conducted a comparative analysis of temperature effects on digestive processes [gut passage times (GPTs) and apparent digestive efficiencies (ADEs)] in five lacertid lizards occurring in insular (Podarcis erhardii, P. gaigeae), and mainland (P. muralis, P. peloponnesiaca, Lacerta graeca) Mediterranean environments. GPTs were negatively correlated to temperature with mainland taxa having 10–20% longer GPTs than island taxa. In contrast to previous studies that estimate ADEs using bomb calorimetry, we compare ADEs by analyzing discrete efficiencies for lipids, sugars and proteins at three temperature regimes (20, 25, and 30°C); each of these categories produces different results. ADEs for lipids and sugars showed a monotonic increase with temperature whereas ADEs for proteins decreased with temperature. Island taxa had consistently higher ADEs than their mainland counterparts for lipids and for proteins but not for sugars. They are characterized by superior energy acquisition abilities despite significantly shorter GPTs. Their increased digestive performance relative to the mainland species appears to allow them to maximize energy acquisition in unproductive island environments where food availability is spatially and seasonally clustered.  相似文献   

2.
Wrasse used as cleaner fish with farmed Atlantic salmon Salmo salar can be subjected to large and rapid temperature and salinity fluctuations in late autumn and early winter, when summer-warmed surface water is affected by early snowmelt episodes. Because of their containment in sea cages, wrasse which are essentially acclimated to summer temperatures may be rapidly exposed to winter conditions. Short-term tolerance of low temperature and low salinity by three species of wrasse, goldsinny Ctenolabrus rupestris rock cook Centrolabrus exoletus corkwing Crenilabrus melops caught during the summer, and winter-caught corkwing, was investigated. A 3–day period at 30 or 32‰ salinity and temperature 8, 6 or 4° C (for summer-caught fish; 4° C only for winter-caught) was followed by a decline in salinity to 24, 16 or 8‰ over c. 36 h, followed by a further 24 h at these salinities held constant, at each of the three temperatures. Controls in 30 or 32‰ were maintained at 8, 6 or 4° C. Mortality of summer-caught corkwing and rock cook was high at 4° C, whereas the influence of salinity on mortality was small. Mortality of goldsinny was low or zero in all treatments. Surviving corkwing and rock cook after 3 days at 4° C and 32‰ salinity had elevated plasma osmolality: in summer-caught corkwing, plasma [Cl°] and [Na+] were high, whereas in rock cook only [Na+] was high. Haematocrit was low in summer-caught corkwing, high in rock cook. In survivors of all three species at the end of the experiment, values of all these parameters were comparable with those of fish at the beginning of the experiment, except that survivors at low salinity (8, 16‰) had low plasma osmolality, at all temperatures, and in surviving rock cook in these treatments haematocrit was high and plasma [Cl?] was low. Winter-caught corkwing had higher osmolality, [Na+] and [Cl?] than summer-caught corkwing; there was no difference in haematocrit. Survival of wintercaught corkwing exposed to four salinities at 4° C was much higher than that of summercaught corkwing under the same conditions. Little change in blood physiology was recorded for winter-caught corkwing, with only fish subjected to 8‰ and 4° C showing signs of osmoregulatory stress. The interspecific and seasonal differences in survival and blood physiology at low temperature and low salinity are discussed in relation to wrasse survival over winter, both in the field and in salmon farms.  相似文献   

3.
西花蓟马Frankliniella occidentalis(Pergande)是危害蔬菜和观赏植物的一种重要害虫,其种群数量随季节的变化而波动。温度被认为是影响种群动态的重要因子。为探究不利温度对对西花蓟马的影响,本研究将3日龄成虫置于18或31℃下分别锻炼1,2,3d后,检测了其温度耐受性和繁殖力。结果表明,在18℃下的持续锻炼明显提高了西花蓟马的耐寒性与耐热性,这证实了高低温胁迫间存在交互抗性;虽然经31℃的锻炼明显提高了其耐热性,但耐寒性未得到相应的增强。经18℃锻炼后,西花蓟马的繁殖力显著下降,31℃锻炼对其繁殖力没有明显影响。本研究结果表明温度的交互抗性可能有利于昆虫在自然界的存活,但这种获得的耐受性是以繁殖力的降低为代价的。  相似文献   

4.
Body size of many animals increases with increasing latitude, a phenomenon known as Bergmann's rule (Bergmann clines). Latitudinal gradients in mean temperature are frequently assumed to be the underlying cause of this pattern because temperature covaries systematically with latitude, but whether and how temperature mediates selection on body size is unclear. To test the hypothesis that the "relative" advantage of being larger is greatest at cooler temperatures we compare the fitness of replicate lines of the seed beetle, Stator limbatus, for which body size was manipulated via artificial selection ("Large,"Control," and "Small" lines), when raised at low (22 degrees C) and high (34 degrees C) temperatures. Large-bodied beetles (Large lines) took the longest to develop but had the highest lifetime fecundity, and highest fitness (r(C)), at both low and high temperatures. However, the relative difference between the Large and Small lines did not change with temperature (replicate 2) or was greatest at high temperature (replicate 1), contrary to the prediction that the fitness advantage of being large relative to being small will decline with increasing temperature. Our results are consistent with two previous studies of this seed beetle, but inconsistent with prior studies that suggest that temperature-mediated selection on body size is a major contributor to the production of Bergmann clines. We conclude that other environmental and ecological variables that covary with latitude are more likely to produce the gradient in natural selection responsible for generating Bergmann clines.  相似文献   

5.
6.
There is pressing urgency to understand how tropical ectotherms can behaviorally and physiologically respond to climate warming. We examine how basking behavior and thermal environment interact to influence evolutionary variation in thermal physiology of multiple species of lygosomine rainforest skinks from the Wet Tropics of northeastern Queensland, Australia (AWT). These tropical lizards are behaviorally specialized to exploit canopy or sun, and are distributed across marked thermal clines in the AWT. Using phylogenetic analyses, we demonstrate that physiological parameters are either associated with changes in local thermal habitat or to basking behavior, but not both. Cold tolerance, the optimal sprint speed, and performance breadth are primarily influenced by local thermal environment. Specifically, montane lizards are more cool tolerant, have broader performance breadths, and higher optimum sprinting temperatures than their lowland counterparts. Heat tolerance, in contrast, is strongly affected by basking behavior: there are two evolutionary optima, with basking species having considerably higher heat tolerance than shade skinks, with no effect of elevation. These distinct responses among traits indicate the multiple selective pressures and constraints that shape the evolution of thermal performance. We discuss how behavior and physiology interact to shape organisms’ vulnerability and potential resilience to climate change.  相似文献   

7.
[目的]马铃薯甲虫Leptinotarsa decemlineata是我国重要的检疫性害虫,对茄科植物危害严重.本研究旨在明确出现倒春寒短时低温对马铃薯甲虫种群增长的影响.[方法]马铃薯甲虫卵在8℃下分别处理1,3和5d,以27℃下饲养的卵作为对照,调查卵孵化率及孵化后幼虫的生长发育和成虫繁殖情况,用种群参数评估短时低...  相似文献   

8.
  • 1 The emerald ash borer Agrilus planipennis (Coleoptera: Buprestidae) (EAB), an invasive wood‐boring beetle, has recently caused significant losses of native ash (Fraxinus spp.) trees in North America. Movement of wood products has facilitated EAB spread, and heat sanitation of wooden materials according to International Standards for Phytosanitary Measures No. 15 (ISPM 15) is used to prevent this.
  • 2 In the present study, we assessed the thermal conditions experienced during a typical heat‐treatment at a facility using protocols for pallet wood treatment under policy PI‐07, as implemented in Canada. The basal high temperature tolerance of EAB larvae and pupae was determined, and the observed heating rates were used to investigate whether the heat shock response and expression of heat shock proteins occurred in fourth‐instar larvae.
  • 3 The temperature regime during heat treatment greatly exceeded the ISPM 15 requirements of 56 °C for 30 min. Emerald ash borer larvae were highly tolerant of elevated temperatures, with some instars surviving exposure to 53 °C without any heat pre‐treatments. High temperature survival was increased by either slow warming or pre‐exposure to elevated temperatures and a recovery regime that was accompanied by up‐regulated hsp70 expression under some of these conditions.
  • 4 Because EAB is highly heat tolerant and exhibits a fully functional heat shock response, we conclude that greater survival than measured in vitro is possible under industry treatment conditions (with the larvae still embedded in the wood). We propose that the phenotypic plasticity of EAB may lead to high temperature tolerance very close to conditions experienced in an ISPM 15 standard treatment.
  相似文献   

9.
  1. Arctic animals inhabit some of the coldest environments on the planet and have evolved physiological mechanisms for minimizing heat loss under extreme cold. However, the Arctic is warming faster than the global average and how well Arctic animals tolerate even moderately high air temperatures (T a) is unknown.
  2. Using flow‐through respirometry, we investigated the heat tolerance and evaporative cooling capacity of snow buntings (Plectrophenax nivalis; ≈31 g, N = 42), a cold specialist, Arctic songbird. We exposed buntings to increasing T a and measured body temperature (T b), resting metabolic rate (RMR), rates of evaporative water loss (EWL), and evaporative cooling efficiency (the ratio of evaporative heat loss to metabolic heat production).
  3. Buntings had an average (±SD) T b of 41.3 ± 0.2°C at thermoneutral T a and increased T b to a maximum of 43.5 ± 0.3°C. Buntings started panting at T a of 33.2 ± 1.7°C, with rapid increases in EWL starting at T a = 34.6°C, meaning they experienced heat stress when air temperatures were well below their body temperature. Maximum rates of EWL were only 2.9× baseline rates at thermoneutral T a, a markedly lower increase than seen in more heat‐tolerant arid‐zone species (e.g., ≥4.7× baseline rates). Heat‐stressed buntings also had low evaporative cooling efficiencies, with 95% of individuals unable to evaporatively dissipate an amount of heat equivalent to their own metabolic heat production.
  4. Our results suggest that buntings’ well‐developed cold tolerance may come at the cost of reduced heat tolerance. As the Arctic warms, and this and other species experience increased periods of heat stress, a limited capacity for evaporative cooling may force birds to increasingly rely on behavioral thermoregulation, such as minimizing activity, at the expense of diminished performance or reproductive investment.
  相似文献   

10.
Abstract. In this study, the impact of acclimation (1 month at 15 °C vs. breeding at 30 °C) and fluctuating thermal regimes (daily transfers from low temperatures to various higher temperatures for 2 h) on the cold tolerance of the tropical beetle, Alphitobius diaperinus Panzer (Coleoptera: Tenebrionidae) was examined. Acclimation increased significantly the duration of survival (Lt50) at a constant 5 °C (7.7 ± 0.3 days to 9.7 ± 0.5 days). Survival of acclimated and nonacclimated beetles increased slightly at alternating temperatures of 5 °C/10 °C or 5 °C/15 °C. When daily transfer to 20 °C was applied, survival (Lt50) was improved markedly (nonacclimated: 15.5 ± 0.7 days, acclimated: 19.6 ± 0.6 days). The higher temperatures may allow progressive repair of injuries, and the effects of chilling may be repaired completely at 25 and 30 °C, a phenomenon recorded here for the first time. It is estimated that the theoretical upper threshold of chill injury (Th) of nonacclimated beetles is 15.1 °C whereas it is shifted down to 11.2 °C in acclimated beetles, which might enable this temperature to allow effective repair of injury.  相似文献   

11.
We studied the life cycle of the riffle beetle Leptelmis gracilis Sharp, 1888 from a population located in a river stream with lotic environments. Samples were collected monthly, between September 2018 and August 2019, from a tributary of the Hiikawa River in Izumo city, Shimane Prefecture, Honshu, Japan. Larvae were separated into five distinct groups based on size. The first and last instar larval sizes were identified through rearing methods. From these results, we determined that the larval stage of this species consists of five instars. From the monthly evaluations, the number of individuals corresponding to each instar period suggested that last-instar larvae were dominant in May and that new adults emerged from July to August. Landing and pupation were estimated to occur from May to June. Monthly observations revealed that mature eggs were present in the female abdomen from April to June, as well as from August to September. It is, therefore, predicted that overwintering adults mainly oviposit from spring to early summer, while new adults oviposit from late summer to early autumn.  相似文献   

12.
为了探讨苯丙氨酸解氨酶(PAL)在诱导黄瓜幼苗抗寒性中的作用,采用喷施特异抑制剂(AOPP)的方法控制PAL活性,测定幼苗抗寒性的变化.结果表明: 低温可以诱导黄瓜幼苗叶片中PAL的基因表达和活性升高;喷施AOPP显著抑制了叶片中PAL活性,减少了酚类和类黄酮物质的积累.低温对黄瓜幼苗造成显著伤害,AOPP预处理加剧了低温对幼苗的损伤,幼苗抗寒性降低.与对照相比,幼苗叶片中相对电解质渗漏率和丙二醛(MDA)含量显著升高,PSII最大光化学效率(Fv/Fm)降低,光化学猝灭参数Y(NO)升高,胁迫相关基因(PR1-1a、COR47、P5CS、HSP70)的诱导表达受到抑制.低温导致黄瓜幼苗叶片中H2O2积累,还原型抗坏血酸(AsA)含量降低,脱氢抗坏血酸(DHA)含量升高,AsA∶DHA减小;喷施AOPP的幼苗中抗氧化酶(过氧化氢酶CAT、抗坏血酸过氧化物酶APX)活性显著低于对照,H2O2过量积累,AsA∶DHA更低.施用H2O2清除剂可以有效缓解喷施AOPP引起的低温损伤加剧,而施用CAT抑制剂的幼苗对低温胁迫更敏感.表明低温诱导了PAL活性升高,促进了苯丙烷类次生代谢产物的合成,提高了胞内抗氧化酶活性,可有效清除活性氧分子,维持AsA氧化还原状态,缓解低温引起的光损伤和氧化损伤.  相似文献   

13.
ABSTRACT. Approximately fifteen gustatory sensilla are present on the galeae of adult Colorado potato beetle, Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae). In the SEM, these sensilla are not distinguishable morphologically, but some of them differ physiologically. All are sensitive to sucrose, while only a few respond to gamma amino butyric acid (GABA). One, called the alpha sensillum, is significantly more sensitive to GABA than the others. The same sensory cell predominates in the alpha sensillum responses to GABA and sucrose. This example of differential specificity among sensilla, in an apparently uniform sensory field, is discussed.  相似文献   

14.
Aim To identify biogeographical boundaries which are obscured by faunal overlap and habitat modification. Location KwaZulu-Natal in south-east, South Africa beyond the southern tip of the Moçambique Coastal Plain. Methods Species abundance data for dung beetles (Scarabaeidae: Scarabaeinae) were collected at six levels from the coastal escarpment (30°16′S – 500 m) to the top of the nearby Drakensberg (29°35′S – 2850 m). Cross-altitudinal boundaries were identified using clustering techniques, beta-diversity indices, and range edge analysis. Biogeographical data for the species were drawn from an extensive reference collection and used to classify the biogeographical affinities of the assemblages. Results Three discrete communities are defined (<10% similarity) from species abundance distributions. These communities occur in coastal forest (500 m), coastal to highveld grassland (500–1500 m), and montane grassland (1900–2850 m). Two of these communities are biogeographically homogeneous comprising >89% east coast endemics (coastal forest) or >84% South African montane endemics (montane grassland) in terms of abundance. The third community in coastal to highveld grassland is biogeographically more heterogeneous. Predominant biota of this community comprise both South African highveld endemics and elements with distributions extending into the tropics. At highveld levels (1500 m), there are proportionately more highveld endemics whereas at lowland levels (500 m), there are proportionately more tropical elements. At 1000 m, there was a change in the balance between these two groups across an anthropogenic gradient due to a decline in the proportion of endemics in favour of temperate/tropical generalists. This gradient from a natural grassland fragment to improved pastures of Kikuyu grass also parallels a decline in species richness and abundance. Species turnover analyses showed three different cross-altitudinal patterns. Range-edge analysis showed a trimodal pattern of species turnover (peaks in forest and the Drakensberg foothills as in the community analysis but also at 1000 m). Five beta-diversity indices showed either a bimodal pattern of turnover (forest/grassland and foothills/middle Drakensberg slopes) or a trimodal turnover pattern (forest/grassland, highveld/Drakensberg foothills, Drakensberg peaks). Main conclusions Clear altitudinal zonation is revealed by community and biogeographical analysis but one natural biogeographical boundary may be obscured by the process of habitat modification. This boundary at 1000 m is revealed by range-edge analysis and is supported by findings for plant communities. Beta-diversity, species turnover patterns diverged slightly from those suggested by the community and range-edge analyses.  相似文献   

15.
Summary We examined the movements of Chrysophtharta hectica, a eucalypt-feeding chrysomelid beetle in New South Wales, Australia, in relation to the beetle's sex, age and life-history, and to attributes of its Eucalyptus host plants. Beetle movements within the site were not influenced by beetle age or sex, but may be related to generation. Beetle distributions on the two host plant species, Eucalyptus stellulata and E. pauciflora, were generally clumped. Some of this clumping resulted from preference for E. stellulata over E. pauciflora. Clumping of beetles also occurred within host plant species; some plant individuals were consistently heavily used by beetles over the course of three years. We examined nutritional, spatial and biomass attributes of plants and found plant height and foliage production to be the best predictors of beetle numbers.  相似文献   

16.

Background and Aims

Despite general agreement regarding the adaptive importance of plasticity, evidence for the role of environmental resource availability in plants is scarce. In arid and semi-arid environments, the persistence and dominance of perennial species depends on their capacity to tolerate drought: tolerance could be given on one extreme by fixed traits and, on the other, by plastic traits. To understand drought tolerance of species it is necessary to know the plasticity of their water economy-related traits, i.e. the position in the fixed–plastic continuum.

Methods

Three conspicuous co-existing perennial grasses from a Patagonian steppe were grown under controlled conditions with four levels of steady-state water availability. Evaluated traits were divided into two groups. The first was associated with potential plant performance and correlated with fitness, and included above-ground biomass, total biomass, tillering and tiller density at harvest. The second group consisted of traits associated with mechanisms of plant adjustment to environmental changes and included root biomass, shoot/root ratio, tiller biomass, length of total elongated leaf, length of yellow tissue divided by time and final length divided by the time taken to reach final length.

Key Results and Conclusions

The most plastic species along this drought gradient was the most sensitive to drought, whereas the least plastic and slowest growing was the most tolerant. This negative relationship between tolerance and plasticity was true for fitness-related traits but was trait-dependent for underlying traits. Remarkably, the most tolerant species had the highest positive plasticity (i.e. opposite to the default response to stress) in an underlying trait, directly explaining its drought resistance: it increased absolute root biomass. The niche differentiation axis that allows the coexistence of species in this group of perennial dryland grasses, all limited by soil surface moisture, would be a functional one of fixed versus plastic responses.  相似文献   

17.
Bryothinusa spp. are common marine insect in Hong Kong. They occur in the intertidal zone of sandy shores between 0.6 and 1.2 m tide level. They emerge when the tide recedes, possibly to mate and feed, then burrow again at the advance of the incoming tide.Bryothinusa has a special respiratory apparatus for long submersions and therefore is able to inhabit the changeable intertidal zone where the competition with other living organisms is comparatively low.  相似文献   

18.

1. 1.Increased heat tolerance in FHM-cells from Pimephales promelas (Pisces) can be induced by culturing the cells at elevated temperatures (heat resistant acclimation) as well as by heat shock (heat hardening).

2. 2.After shift of culturing temperature (CT) from 16 to 32°C both effects are detectable with different temporal patterns.

3. 3.Cellular concentrations of heat-shock proteins correlate with the hardening effect but not with heat resistance acclimation.

4. 4.Several culturing temperature specific proteins were detected. The patterns of some enzymes are also altered by culturing temperature.

5. 5.Heat resistance acclimation is not caused by selection of a thermoresistant subpopulation of cells.

6. 6.Heat hardening and heat resistance acclimation must be distinguished as different phenomena in FHM-cells.

Author Keywords: Culturing temperature specific proteins; esterase isoenzymes; FHM-cells; heat hardening; heat-shock proteins; heat resistance acclimation; thermotolerance  相似文献   


19.
Most studies of phenotypic plasticity investigate the effects of an individual environmental factor on organism phenotypes. However, organisms exist in an ecologically complex world where multiple environmental factors can interact to affect growth, development and life histories. Here, using a multifactorial experimental design, we examine the separate and interactive effects of two environmental factors, rearing host species (Vigna radiata, Vigna angularis and Vigna unguiculata) and temperature (20, 25, 30 and 35°C), on growth and life history traits in two populations [Burkina Faso (BF) and South India (SI)] of the seed beetle, Callosobruchus maculatus. The two study populations of beetles responded differently to both rearing host and temperature. We also found a significant interaction between rearing host and temperature for body size, growth rate and female lifetime fecundity but not larval development time or larval survivorship. The interaction was most apparent for growth rate; the variance in growth rate among hosts increased with increasing temperature. However, the details of host differences differed between our two study populations; the degree to which V. unguiculata was a better host than V. angularis or V. radiata increased at higher temperatures for BF beetles, whereas the degree to which V. unguiculata was the worst host increased at higher temperatures for SI beetles. We also found that the heritabilities of body mass, growth rate and fecundity were similar among rearing hosts and temperatures, and that the cross-temperature genetic correlation was not affected by rearing host, suggesting that genetic architecture is generally stable across rearing conditions. The most important finding of our study is that multiple environmental factors can interact to affect organism growth, but the degree of interaction, and thus the degree of complexity of phenotypic plasticity, varies among traits and between populations.  相似文献   

20.
In temperate regions, an organism's ability to rapidly adapt to seasonally varying environments is essential for its survival. In response to seasonal changes in selection pressure caused by variation in temperature, humidity, and food availability, some organisms exhibit plastic changes in phenotype. In other cases, seasonal variation in selection pressure can rapidly increase the frequency of genotypes that offer survival or reproductive advantages under the current conditions. Little is known about the relative influences of plastic and genetic changes in short‐lived organisms experiencing seasonal environmental fluctuations. Cold hardening is a seasonally relevant plastic response in which exposure to cool, but nonlethal, temperatures significantly increases the organism's ability to later survive at freezing temperatures. In the present study, we demonstrate seasonal variation in cold hardening in Drosophila melanogaster and test the extent to which plasticity and adaptive tracking underlie that seasonal variation. We measured the post‐cold hardening freeze tolerance of flies from outdoor mesocosms over the summer, fall, and winter. We bred outdoor mesocosm‐caught flies for two generations in the laboratory and matched each outdoor cohort to an indoor control cohort of similar genetic background. We cold hardened all flies under controlled laboratory conditions and then measured their post‐cold hardening freeze tolerance. Comparing indoor and field‐caught flies and their laboratory‐reared G1 and G2 progeny allowed us to determine the roles of seasonal environmental plasticity, parental effects, and genetic changes on cold hardening. We also tested the relationship between cold hardening and other factors, including age, developmental density, food substrate, presence of antimicrobials, and supplementation with live yeast. We found strong plastic responses to a variety of field‐ and laboratory‐based environmental effects, but no evidence of seasonally varying parental or genetic effects on cold hardening. We therefore conclude that seasonal variation in post‐cold hardening freeze tolerance results from environmental influences and not genetic changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号