首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increased reactive atmospheric N deposition has been implicated in floristic changes in species‐rich acidic and calcareous grasslands, but the fate of this pollutant N in these ecosystems is unknown. This paper reports the first analysis of N budgets and N fluxes for two grasslands in the White Peak area of Derbyshire, one of the most heavily N‐polluted locations in the UK. N fluxes were monitored in lysimeter cores (retaining the original turfs) taken from field plots of unimproved acidic and calcareous grasslands that had received (in addition to ambient N deposition) simulated enhanced N deposition treatments of 3.5 and 14 g N m?2 yr?1 for 6 years. The influence of reducing phosphorus limitation was assessed by factorial additions of P. Seasonal leached losses of nitrate, ammonia and organic N were monitored in detail along with estimates of N removal through simulated grazing and gaseous losses through denitrification and volatilization. The rates of N fluxes by these pathways were used to create N budgets for the grasslands. Both grasslands were found to be accumulating much of the simulated additional N deposition: up to 89% accumulated in the calcareous grassland and up to 38% accumulated in the acidic grassland. The major fluxes of N loss from these grasslands were by simulated grazing and leaching of soluble organic N (constituting 90% of leached N under ambient conditions). Leached inorganic N (mainly nitrate) contributed significantly to the output flux of N under the highest N treatment only. Loss of N through ammonia volatilization accounted for less than 6% of the N added as simulated deposition, while denitrification contributed significantly to output fluxes only in the acidic grassland during winter. The implications of the results for ecosystem N balances and the likely consequences of N accumulation on these grasslands are discussed.  相似文献   

2.
The effects of increased reactive nitrogen (N) deposition in forests depend largely on its fate in the ecosystems. However, our knowledge on the fates of deposited N in tropical forest ecosystems and its retention mechanisms is limited. Here, we report the results from the first whole ecosystem 15N labeling experiment performed in a N‐rich old‐growth tropical forest in southern China. We added 15N tracer monthly as 15NH415NO3 for 1 year to control plots and to N‐fertilized plots (N‐plots, receiving additions of 50 kg N ha?1 yr?1 for 10 years). Tracer recoveries in major ecosystem compartments were quantified 4 months after the last addition. Tracer recoveries in soil solution were monitored monthly to quantify leaching losses. Total tracer recovery in plant and soil (N retention) in the control plots was 72% and similar to those observed in temperate forests. The retention decreased to 52% in the N‐plots. Soil was the dominant sink, retaining 37% and 28% of the labeled N input in the control and N‐plots, respectively. Leaching below 20 cm was 50 kg N ha?1 yr?1 in the control plots and was close to the N input (51 kg N ha?1 yr?1), indicating N saturation of the top soil. Nitrogen addition increased N leaching to 73 kg N ha?1 yr?1. However, of these only 7 and 23 kg N ha?1 yr?1 in the control and N‐plots, respectively, originated from the labeled N input. Our findings indicate that deposited N, like in temperate forests, is largely incorporated into plant and soil pools in the short term, although the forest is N‐saturated, but high cycling rates may later release the N for leaching and/or gaseous loss. Thus, N cycling rates rather than short‐term N retention represent the main difference between temperate forests and the studied tropical forest.  相似文献   

3.
Relations among nitrogen load, soil acidification and forest growth have been evaluated based on short‐term (<15 years) experiments, or on surveys across gradients of N deposition that may also include variations in edaphic conditions and other pollutants, which confound the interpretation of effects of N per se. We report effects on trees and soils in a uniquely long‐term (30 years) experiment with annual N loading on an un‐polluted boreal forest. Ammonium nitrate was added to replicated (N=3) 0.09 ha plots at two doses, N1 and N2, 34 and 68 kg N ha?1 yr?1, respectively. A third treatment, N3, 108 kg N ha?1 yr?1, was terminated after 20 years, allowing assessment of recovery during 10 years. Tree growth initially responded positively to all N treatments, but the longer term response was highly rate dependent with no gain in N3, a gain of 50 m3 ha?1 stemwood in N2 and a gain of 100 m3 ha?1 stemwood in excess of the control (N0) in N1. High N treatments caused losses of up to 70% of exchangeable base cations (Ca2+, Mg2+, K+) in the mineral soil, along with decreases in pH and increases in exchangeable Al3+. In contrast, the organic mor‐layer (forest floor) in the N‐treated plots had similar amounts per hectare of exchangeable base cations as in the N0 treatment. Magnesium was even higher in the mor of N‐treated plots, providing evidence of up‐lift by the trees from the mineral soil. Tree growth did not correlate with the soil Ca/Al ratio (a suggested predictor of effects of soil acidity on tree growth). A boron deficiency occurred on N‐treated plots, but was corrected at an early stage. Extractable NH4+ and NO3?were high in mor and mineral soils of on‐going N treatments, while NH4+ was elevated in the mor only in N3 plots. Ten years after termination of N addition in the N3 treatment, the pH had increased significantly in the mineral soil; there were also tendencies of higher soil base status and concentrations of base cations in the foliage. Our data suggest the recovery of soil chemical properties, notably pH, may be quicker after removal of the N‐load than predicted. Our long‐term experiment demonstrated the fundamental importance of the rate of N application relative to the total amount of N applied, in particular with regard to tree growth and C sequestration. Hence, experiments adding high doses of N over short periods do not mimic the long‐term effects of N deposition at lower rates.  相似文献   

4.
Urban areas are expanding rapidly in tropical regions, with potential to alter ecosystem dynamics. In particular, exotic grasses and atmospheric nitrogen (N) deposition simultaneously affect tropical urbanized landscapes, with unknown effects on properties like soil carbon (C) storage. We hypothesized that (H1) soil nitrate (NO3?) is elevated nearer to the urban core, reflecting N deposition gradients. (H2) Exotic grasslands have elevated soil NO3? and decreased soil C relative to secondary forests, with higher N promoting decomposer activity. (H3) Exotic grasslands have greater seasonality in soil NO3? vs. secondary forests, due to higher sensitivity of grassland soil moisture to rainfall. We predicted that NO3? would be positively related to dissolved organic C (DOC) production via changes in decomposer activity. We measured six paired grassland/secondary forest sites along a tropical urban‐to‐rural gradient during the three dominant seasons (hurricane, dry, and early wet). We found that (1) soil NO3? was generally elevated nearer to the urban core, with particularly clear spatial trends for grasslands. (2) Exotic grasslands had lower soil C than secondary forests, which was related to elevated decomposer enzyme activities and soil respiration. Unexpectedly, soil NO3? was negatively related to enzyme activities, and was lower in grasslands than forests. (3) Grasslands had greater soil NO3? seasonality vs. forests, but this was not strongly linked to shifts in soil moisture or DOC. Our results suggest that exotic grasses in tropical regions are likely to drastically reduce soil C storage, but that N deposition may have an opposite effect via suppression of enzyme activities. However, soil NO3? accumulation here was higher in urban forests than grasslands, potentially related to of aboveground N interception. Net urban effects on C storage across tropical landscapes will likely vary depending on the mosaic of grass cover, rates of N deposition, and responses by local decomposer communities.  相似文献   

5.
Productivity in boreal ecosystems is primarily limited by available soil nitrogen (N), and there is substantial interest in understanding whether deposition of anthropogenically derived reactive nitrogen (Nr) results in greater N availability to woody vegetation, which could result in greater carbon (C) sequestration. One factor that may limit the acquisition of Nr by woody plants is the presence of bryophytes, which are a significant C and N pool, and a location where associative cyanobacterial N‐fixation occurs. Using a replicated stand‐scale N‐addition experiment (five levels: 0, 3, 6, 12, and 50 kg N ha?1 yr?1; n=6) in the boreal zone of northern Sweden, we tested the hypothesis that sequestration of Nr into bryophyte tissues, and downregulation of N‐fixation would attenuate Nr inputs, and thereby limit anthropogenic Nr acquisition by woody plants. Our data showed that N‐fixation per unit moss mass and per unit area sharply decreased with increasing N addition. Additionally, the tissue N concentrations of Pleuorzium schreberi increased and its biomass decreased with increasing N addition. This response to increasing N addition caused the P. schreberi N pool to be stable at all but the highest N addition rate, where it significantly decreased. The combined effects of changed N‐fixation and P. schreberi biomass N accounted for 56.7% of cumulative Nr additions at the lowest Nr addition rate, but only a minor fraction for all other treatments. This ‘bryophyte effect’ can in part explain why soil inorganic N availability and acquisition by woody plants (indicated by their δ15N signatures) remained unchanged up to N addition rates of 12 kg ha?1 yr?1 or greater. Finally, we demonstrate that approximately 71.8% of the boreal forest experiences Nr deposition rates at or below 3 kg ha?1 yr?1, suggesting that bryophytes likely limit woody plant acquisition of ambient anthropogenic Nr inputs throughout a majority of the boreal forest.  相似文献   

6.
Anthropogenic nitrogen (N) deposition effects on soil organic carbon (C) decomposition remain controversial, while the role of plant species composition in mediating effects of N deposition on soil organic C decomposition and long‐term soil C sequestration is virtually unknown. Here we provide evidence from a 5‐year grassland field experiment in Minnesota that under elevated atmospheric CO2 concentration (560 ppm), plant species determine whether N deposition inhibits the decomposition of soil organic matter via inter‐specific variation in root lignin concentration. Plant species producing lignin‐rich litter increased stabilization of soil C older than 5 years, but only in combination with elevated N inputs (4 g m?2 year?1). Our results suggest that N deposition will increase soil C sequestration in those ecosystems where vegetation composition and/or elevated atmospheric CO2 cause high litter lignin inputs to soils.  相似文献   

7.
In a mosaic landscape in N‐Belgium (W‐Europe), consisting of forest, grassland, and wooded pasture on former agricultural land, we assessed nitrogen redistribution by free‐ranging cattle (±0.2 animal units ha?1 yr?1). We examined if the spatial redistribution of nitrogen among habitats by cattle could restore nutrient‐poor conditions in preferred foraging habitats, and conversely whether such translocation could lead to extreme eutrophication in preferred resting habitats. We used nitrogen content of different diet classes, habitat use, foraging and defecation behavior, weight gain, and nitrogen losses in the actual situation to explore four different habitat proportion scenarios and two different foraging strategies to calculate a net nitrogen balance per habitat. An atmospheric deposition of 30 kg N ha?1 yr?1 with varying interception factors according to the habitat types was included in an integrated nitrogen balance. All scenarios showed a net nitrogen transport from grassland and wooded pasture to forest habitat. We found that nitrogen redistribution strongly depends on habitat proportion. Nitrogen losses from preferred grassland habitat can be high, given its proportion is small. Depletion is only to be expected at excretion‐free areas and probably is of minor importance to trigger the establishment of woody species. In general, nitrogen transported by cattle was much lower than input by atmospheric deposition, but grazing can compensate for high N inputs in excretion‐free areas and maintain grassland types that support critical loads of 20–25 kg N ha?1 yr?1. In none of the scenarios, N transport by cattle resulted in the exceeding of critical nitrogen loads to vulnerable forest ground vegetation.  相似文献   

8.
Ozone (O3) and nitrogen (N) deposition affect plant carbon (C) dynamics and may change ecosystem C‐sink/‐source properties. We studied effects of increased background [O3] (up to [ambient] × 2) and increased N deposition (up to +50 kg ha?1 a?1) on mature, subalpine grassland during the third treatment year. During 10 days and 13 nights, distributed evenly over the growth period of 2006, we measured ecosystem‐level CO2 exchange using a static cuvette. Light dependency of gross primary production (GPP) and temperature dependency of ecosystem respiration rates (Reco) were established. Soil temperature, soil water content, and solar radiation were monitored. Using Reco and GPP values, we calculated seasonal net ecosystem production (NEP), based on hourly averages of global radiation and soil temperature. Differences in NEP were compared with differences in soil organic C after 5 years of treatment. The high [O3] had no effect on aboveground dry matter productivity (DM), but seasonal mean rates of both Reco and GPP decreased ca. 8%. NEP indicated an unaltered growing season CO2–C balance. High N treatment, with a +31% increase in DM, mean Reco increased ca. 3%, but GPP decreased ca. 4%. Consequently, seasonal NEP yielded a 53.9 g C m?2 (±22.05) C loss compared with control. Independent of treatment, we observed a negative NEP of 146.4 g C m?2 (±15.3). Carbon loss was likely due to a transient management effect, equivalent to a shift from pasture to hay meadow and a drought effect, specific to the 2006 summer climate. We argue that this resulted from strongly intensified soil microbial respiration, following mitigation of nutrient limitation. There was no interaction between O3 and N treatments. Thus, during the 2006 growing season, the subalpine grassland lost >2% of total topsoil organic C as respired CO2, with increased N deposition responsible for one‐third of that loss.  相似文献   

9.
Intra‐ and interannual variability of precipitation can lead to major modifications of grassland production and carbon storage capacity. Greater understanding of how climatic variability affects net CO2 exchange [i.e. net ecosystem exchange (NEE)] of grazed grasslands is important to adapt grassland management and reduce risks of carbon losses. Since 2002, we continuously measured NEE (i.e. eddy covariance technique) on an upland grassland site (7 ha), divided in two paddocks grazed by heifers (intensive: 1 LSU ha?1 yr?1, 213 kg N ha?1 yr?1 and extensive: 0.5 LSU ha?1 yr?1, no fertilization). For years with dry and warm growing seasons (i.e. 2003, 2005 and 2008), absolute annual NEE was higher in the intensive paddock compared with the extensive paddock. The opposite was observed during years of ample seasonal rainfall and soil moisture (i.e. 2004, 2006 and 2007). Contrasted management led to two distinct plant communities being different in leaf area index (LAI), soil bulk density and soil water holding capacity. Differences in annual NEEs could thus be assigned to interactions between in carbon and water fluxes during dry and wet growth periods. Dry growth periods led to a reduction in weekly gross primary productivity (GPP) in the extensively managed paddock, whereas the GPP was maintained in the intensive paddock. In turn, during wet growth periods, GPP was similar in both paddocks, whereas N amendment and frequent defoliation significantly increased ecosystem respiration in the intensive paddock, presumably through a higher heterotrophic respiration following on a better C substrate quality and availability (rhizodeposition and senescent fine roots). In the extensive paddock, where plant cover was denser (reducing soil temperature) and less decomposable, C losses through heterotrophic respiration were comparatively smaller under wet conditions. Our results demonstrate that grassland subjected to a moderately intensive management could be more resilient in terms of carbon storage during drought and heat waves, presumably because of a trade‐off between heterotrophic and autotrophic respiration.  相似文献   

10.
Atmospheric nitrogen (N) deposition is a global and increasing threat to biodiversity and ecosystem function. Much of our current understanding of N deposition impacts comes from field manipulation studies, although interpretation may need caution where simulations of N deposition (in terms of dose, application rate and N form) have limited realism. Here, we review responses to simulated N deposition from the UKREATE network, a group of nine experimental sites across the UK in a diversity of heathland, grassland, bog and dune ecosystems which include studies with a high level of realism and where many are also the longest running globally on their ecosystem type. Clear responses were seen across the sites with the greatest sensitivity shown in cover and species richness of bryophytes and lichens. Productivity was also increased at sites where N was the limiting nutrient, while flowering also showed high sensitivity, with increases and declines seen in dominant shrub and forb species, respectively. Critically, these parameters were responsive to some of the lowest additional loadings of N (7.7–10 kg ha?1 yr?1) showing potential for impacts by deposition rates seen in even remote and ‘unpolluted’ regions of Europe. Other parameters were less sensitive, but nevertheless showed response to higher doses. These included increases in soil %N and ‘plant available’ KCl extractable N, N cycling rates and acid–base status. Furthermore, an analysis of accumulated dose that quantified response against the total N input over time suggested that N impacts can ‘build up’ within an ecosystem such that even relatively low N deposition rates can result in ecological responses if continued for long enough. Given the responses have important implications for ecosystem structure, function, and recovery from N loading, the clear evidence for impacts at relatively low N deposition rates across a wide range of habitats is of considerable concern.  相似文献   

11.
Empirical evidence based on grazing exclusion at the scale of years to decades shows that grazing modifies carbon (C) and nitrogen (N) cycling. However, long‐term effects at the scale of centuries are less known, yet highly relevant to understand local and global impacts of grazing. Additionally, most studies have focused on the isolated response of C and N, with little understanding of their interactions. Using CENTURY, a process‐based biogeochemical model, we analyzed the impacts of 370 years of livestock grazing (i.e. long term, from early European colonization to present) in 11 sites across the Río de la Plata grasslands and compared them with those resulting from two decades of grazing (i.e. mid‐term, typical exclosure experiment). In the long term, livestock grazing primarily altered the N cycle through faster N returns to the soil via urine and dung, which were offset by uninterrupted N outputs by volatilization and leaching. As a result, soil organic N decreased by ?880 kg ha?1 or ?19%. Higher N outputs (mainly as NH3) opened the N cycle, potentially decreasing N2O and NOx emissions and increasing N depositions over the region. These greater outputs of N constrained C accumulation in soils, reducing soil organic C by ?21 200 kg ha?1 (?22%, a reduction of ?1.5 Pg of C for the whole region) and net primary production by ?2192 kg ha?1 yr?1 (?24%). Mid‐term simulations showed that the effects of livestock introduction in a decadal time scale were substantially different both in magnitude and direction from long‐term responses. Long‐term results were not substantially affected when atmospheric CO2 content, species composition and fire regime were changed within plausible ranges, but highlighted fire‐grazing interactions as a major constraint of long‐term C and N dynamics in these grasslands.  相似文献   

12.
In this study we investigate the impact of nitrogen (N) deposition on the diversity of three different vegetation functional groups – forbs, grasses and mosses – using a field survey of acid grasslands across Great Britain. Our aim is to identify the vegetation types that are most vulnerable to enhanced N deposition, and to shed light on the mechanisms that may be driving N‐initiated species changes in the UK. Sixty‐eight randomly selected grasslands belonging to the UK National Vegetation Classification group U4 (Festuca ovina–Agrostis capillaris–Galium saxatile grassland) were studied along a gradient of atmospheric N deposition ranging from 6 to 36 kg N ha?1 yr?1. At each site, vegetation was surveyed and samples were taken from the topsoil and subsoil. Aboveground plant material was collected from three species: a forb, grass and moss. Both the species richness and cover of forbs declined strongly with increasing N deposition, from greater than eight species/20% cover per m2 quadrat at low levels of N to fewer than two species/5% cover at the highest N deposition levels. Grasses showed a weak but significant decline in species richness, and a trend toward increasing cover with increasing N input. Mosses showed no trends in either species richness or cover. Most of the decline in plant species richness could be accounted for by the level of ammonium deposition. Soil KCl‐extractable ammonium concentration showed a significant positive correlation with N input, but there was no relationship between N deposition and extractable nitrate. In the soil O/A horizon, there was no relationship between N deposition and %N, and only a very weak positive relationship between the level of N deposition and the C : N ratio. Finally, in the vegetation, there was no relationship between N deposition and either shoot tissue N concentration or N : P ratio for any of the three reference species. Combining our regional survey with the results of published N‐addition experiments provides compelling evidence that there has been a significant decline in the species richness and cover of forbs across Great Britain, and that the primary cause is competition due to an increase in the cover of grasses in response to enhanced deposition of reactive N, primarily NH4+.  相似文献   

13.
Enhanced sequestration of plant‐carbon (C) inputs to soil may mitigate rising atmospheric carbon dioxide (CO2) concentrations and related climate change but how this sequestration will respond to anthropogenic nitrogen (N) and phosphorous (P) deposition is uncertain. We couple isotope, soil C fractionation and mesocosm techniques to assess the sequestration of plant‐C inputs, and their partitioning into C pools with different sink potentials, under an experimental gradient of N and P deposition (0, 10, 30, 60 and 100 kg N ha?1 yr?1; and 0, 2, 6, 12 and 20 kg P ha?1 yr?1). We hypothesized that N deposition would increase sequestration, with the majority of the C being sequestered in faster cycling soil pools because N deposition has been shown to accelerate the turnover of these pools while decelerating the turnover of slower cycling pools. In contrast to this hypothesis, sequestration into all soil C pools peaked at intermediate levels of N deposition. Given that P amendment has been shown to cause a net loss of soil C, we postulated that P deposition would decrease sequestration. This expectation was not supported by our data, with sequestration generally being greater under P deposition. When soils were amended simultaneously with N and P, neither the shape of the sequestration relationship across the deposition gradient, nor the observed sequestration at the majority of the deposition rates, was statistically predictable from the effects of N and P in isolation. The profound nonlinearities we observed, both for total sequestration responses and the partitioning of C into soil pools with different sink potentials, suggests that the rates of N and P deposition to ecosystems will be the critical determinant of whether they enhance or decrease the long‐term sequestration of fresh plant‐C inputs to soils.  相似文献   

14.
Global maize production alters an enormous soil organic C (SOC) stock, ultimately affecting greenhouse gas concentrations and the capacity of agroecosystems to buffer climate variability. Inorganic N fertilizer is perhaps the most important factor affecting SOC within maize‐based systems due to its effects on crop residue production and SOC mineralization. Using a continuous maize cropping system with a 13 year N fertilizer gradient (0–269 kg N ha?1 yr?1) that created a large range in crop residue inputs (3.60–9.94 Mg dry matter ha?1 yr?1), we provide the first agronomic assessment of long‐term N fertilizer effects on SOC with direct reference to N rates that are empirically determined to be insufficient, optimum, and excessive. Across the N fertilizer gradient, SOC in physico‐chemically protected pools was not affected by N fertilizer rate or residue inputs. However, unprotected particulate organic matter (POM) fractions increased with residue inputs. Although N fertilizer was negatively linearly correlated with POM C/N ratios, the slope of this relationship decreased from the least decomposed POM pools (coarse POM) to the most decomposed POM pools (fine intra‐aggregate POM). Moreover, C/N ratios of protected pools did not vary across N rates, suggesting little effect of N fertilizer on soil organic matter (SOM) after decomposition of POM. Comparing a N rate within 4% of agronomic optimum (208 kg N ha?1 yr?1) and an excessive N rate (269 kg N ha?1 yr?1), there were no differences between SOC amount, SOM C/N ratios, or microbial biomass and composition. These data suggest that excessive N fertilizer had little effect on SOM and they complement agronomic assessments of environmental N losses, that demonstrate N2O and NO3 emissions exponentially increase when agronomic optimum N is surpassed.  相似文献   

15.
Although the effects of atmospheric nitrogen deposition on species composition are relatively well known, the roles of the different forms of nitrogen, in particular gaseous ammonia (NH3), have not been tested in the field. Since 2002, we have manipulated the form of N deposition to an ombrotrophic bog, Whim, on deep peat in southern Scotland, with low ambient N (wet + dry = 8 kg N ha?1 yr?1) and S (4 kg S ha?1 yr?1) deposition. A gradient of ammonia (NH3, dry N), from 70 kg N ha?1 yr?1 down to background, 3–4 kg N ha?1 yr?1 was generated by free air release. Wet ammonium (NH4+, wet N) was provided to replicate plots in a fine rainwater spray (NH4Cl at +8, +24, +56 kg N ha?1 yr?1). Automated treatments are coupled to meteorological conditions, in a globally unique, field experiment. Ammonia concentrations were converted to NH3‐N deposition (kg N ha?1) using a site/vegetation specific parameterization. Within 3 years, exposure to relatively modest deposition of NH3, 20–56 kg NH3‐N ha?1 yr?1 led to dramatic reductions in species cover, with almost total loss of Calluna vulgaris, Sphagnum capillifolium and Cladonia portentosa. These effects appear to result from direct foliar uptake and interaction with abiotic and biotic stresses, rather than via effects on the soil. Additional wet N by contrast, significantly increased Calluna cover after 5 years at the 56 kg N dose, but reduced cover of Sphagnum and Cladonia. Cover reductions caused by wet N were significantly different from and much smaller than those caused by equivalent dry N doses. The effects of gaseous NH3 described here, highlight the potential for ammonia to destroy acid heathland and peat bog ecosystems. Separating the effects of gaseous ammonia and wet ammonium deposition, for a peat bog, has significant implications for regulatory bodies and conservation agencies.  相似文献   

16.
E. Medina 《Plant and Soil》1982,67(1-3):305-314
The nitrogen balance of a Trachypogon grassland in Calabozo, Venezuela, is calculated for average conditions using biomass accumulation, nitrogen content, and turnover rates of organic matter. Burning Trachypogon grasslands results in losses of 8.5 kg N ha?1 yr?1, while rainfall inputs average 2.6 kg N ha?1 yr?1. Uptake of N by vegetation is 14.8 kg N ha?1 yr?1, but the total N required to build new tissue during a growing season is about 30 kg N ha?1 yr?1, so that about 50% of the nitrogen in the vegetation is recycled internally. Nitrogen lossesvia fire are probably balanced by biological N2-fixation, but no data are available for N-fixation in these savannas. The calculations presented in this paper are based on few data and more measurements are needed to develop a conclusive picture of the N-balance of Trachypogon grasslands.  相似文献   

17.
氮素添加和刈割对内蒙古弃耕草地土壤氮矿化的影响   总被引:1,自引:0,他引:1  
刘碧荣  王常慧  张丽华  董宽虎 《生态学报》2015,35(19):6335-6343
以内蒙古多伦县恢复生态学试验示范研究站弃耕10余年的草地为研究对象,于2006年起分别设置对照、氮素添加、刈割和氮素添加+刈割4种处理,每种处理6次重复,研究弃耕草地氮素添加和刈割对土壤氮矿化的影响,结合土壤理化性质和植被地上生产力的动态变化,分析弃耕草地土壤氮矿化对植被恢复的响应,为当地草地恢复与重建提供理论依据和数据支持。实验结果表明:1氮素添加显著增加了植物地上净初级生产力(ANPP)和土壤无机氮库,与对照相比分别提高115%和196%,同时显著提高了土壤总硝化速率;但是氮素添加对总氨化速率、土壤微生物生物量碳(MBC)、微生物生物量氮(MBN)、微生物生物量碳氮比(MBC/MBN)、微生物呼吸(MR)以及呼吸熵(q CO2)均无显著影响;2总氨化速率和硝化速率对刈割处理的响应均不显著,但是刈割处理显著降低了土壤MR(P0.05);3氮素添加+刈割处理5—7a后,土壤总氨化和硝化速率均无显著变化;但是氮素添加+刈割处理显著增加了ANPP、土壤无机氮库和q CO2,同时显著降低了MBC和MBC/MBN。这说明在弃耕草地适应性管理中,氮素添加可以显著提高草地生产力,但是长期的氮添加对土壤微生物氮的转化是否有利还值得我们进一步研究。  相似文献   

18.
Nitrogen (N) deposition is a component of global change that has considerable impact on belowground carbon (C) dynamics. Plant growth stimulation and alterations of fungal community composition and functions are the main mechanisms driving soil C gains following N deposition in N‐limited temperate forests. In N‐rich tropical forests, however, N deposition generally has minor effects on plant growth; consequently, C storage in soil may strongly depend on the microbial processes that drive litter and soil organic matter decomposition. Here, we investigated how microbial functions in old‐growth tropical forest soil responded to 13 years of N addition at four rates: 0 (Control), 50 (Low‐N), 100 (Medium‐N), and 150 (High‐N) kg N ha?1 year?1. Soil organic carbon (SOC) content increased under High‐N, corresponding to a 33% decrease in CO2 efflux, and reductions in relative abundances of bacteria as well as genes responsible for cellulose and chitin degradation. A 113% increase in N2O emission was positively correlated with soil acidification and an increase in the relative abundances of denitrification genes (narG and norB). Soil acidification induced by N addition decreased available P concentrations, and was associated with reductions in the relative abundance of phytase. The decreased relative abundance of bacteria and key functional gene groups for C degradation were related to slower SOC decomposition, indicating the key mechanisms driving SOC accumulation in the tropical forest soil subjected to High‐N addition. However, changes in microbial functional groups associated with N and P cycling led to coincidentally large increases in N2O emissions, and exacerbated soil P deficiency. These two factors partially offset the perceived beneficial effects of N addition on SOC storage in tropical forest soils. These findings suggest a potential to incorporate microbial community and functions into Earth system models considering their effects on greenhouse gas emission, biogeochemical processes, and biodiversity of tropical ecosystems.  相似文献   

19.
The importance of managing land to optimize carbon sequestration for climate change mitigation is widely recognized, with grasslands being identified as having the potential to sequester additional carbon. However, most soil carbon inventories only consider surface soils, and most large‐scale surveys group ecosystems into broad habitats without considering management intensity. Consequently, little is known about the quantity of deep soil carbon and its sensitivity to management. From a nationwide survey of grassland soils to 1 m depth, we show that carbon in grassland soils is vulnerable to management and that these management effects can be detected to considerable depth down the soil profile, albeit at decreasing significance with depth. Carbon concentrations in soil decreased as management intensity increased, but greatest soil carbon stocks (accounting for bulk density differences), were at intermediate levels of management. Our study also highlights the considerable amounts of carbon in subsurface soil below 30 cm, which is missed by standard carbon inventories. We estimate grassland soil carbon in Great Britain to be 2097 Tg C to a depth of 1 m, with ~60% of this carbon being below 30 cm. Total stocks of soil carbon (t ha?1) to 1 m depth were 10.7% greater at intermediate relative to intensive management, which equates to 10.1 t ha?1 in surface soils (0–30 cm), and 13.7 t ha?1 in soils from 30 to 100 cm depth. Our findings highlight the existence of substantial carbon stocks at depth in grassland soils that are sensitive to management. This is of high relevance globally, given the extent of land cover and large stocks of carbon held in temperate managed grasslands. Our findings have implications for the future management of grasslands for carbon storage and climate mitigation, and for global carbon models which do not currently account for changes in soil carbon to depth with management.  相似文献   

20.
The long‐term effects of conservation management practices on greenhouse gas fluxes from tropical/subtropical croplands remain to be uncertain. Using both manual and automatic sampling chambers, we measured N2O and CH4 fluxes at a long‐term experimental site (1968–present) in Queensland, Australia from 2006 to 2009. Annual net greenhouse gas fluxes (NGGF) were calculated from the 3‐year mean N2O and CH4 fluxes and the long‐term soil organic carbon changes. N2O emissions exhibited clear daily, seasonal and interannual variations, highlighting the importance of whole‐year measurement over multiple years for obtaining temporally representative annual emissions. Averaged over 3 years, annual N2O emissions from the unfertilized and fertilized soils (90 kg N ha?1 yr?1 as urea) amounted to 138 and 902 g N ha?1, respectively. The average annual N2O emissions from the fertilized soil were 388 g N ha?1 lower under no‐till (NT) than under conventional tillage (CT) and 259 g N ha?1 higher under stubble retention (SR) than under stubble burning (SB). Annual N2O emissions from the unfertilized soil were similar between the contrasting tillage and stubble management practices. The average emission factors of fertilizer N were 0.91%, 1.20%, 0.52% and 0.77% for the CT‐SB, CT‐SR, NT‐SB and NT‐SR treatments, respectively. Annual CH4 fluxes from the soil were very small (?200–300 g CH4 ha?1 yr?1) with no significant difference between treatments. The NGGF were 277–350 kg CO2‐e ha?1 yr?1 for the unfertilized treatments and 401–710 kg CO2‐e ha?1 yr?1 for the fertilized treatments. Among the fertilized treatments, N2O emissions accounted for 52–97% of NGGF and NT‐SR resulted in the lowest NGGF (401 kg CO2‐e ha?1 yr?1 or 140 kg CO2‐e t?1 grain). Therefore, NT‐SR with improved N fertilizer management practices was considered the most promising management regime for simultaneously achieving maximal yield and minimal NGGF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号