首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Anti-EGFR antibody–based treatment is an important therapeutic strategy for advanced colorectal cancer (CRC); despite this, several mutations—including KRAS, BRAF, and PIK3CA mutations, and HER2 amplification—are associated with the mechanisms underlying the development of resistance to anti-EGFR therapy. The aim of our study was to investigate the frequencies and clinical implications of these genetic alterations in advanced CRC.

Methods

KRAS, BRAF, and PIK3CA mutations were determined by Cobas real-time polymerase chain reaction (PCR) in 191 advanced CRC patients with distant metastasis. Microsatellite instability (MSI) status was determined by a fragmentation assay and HER2 amplification was assessed by silver in situ hybridization. In addition, KRAS mutations were investigated by the Sanger sequencing method in 97 of 191 CRC cases.

Results

Mutations in KRAS, BRAF, and PIK3CA were found in 104 (54.5%), 6 (3.1%), and 25 (13.1%) cases of advanced CRC, respectively. MSI-high status and HER2 amplification were observed in 3 (1.6%) and 16 (8.4%) cases, respectively. PIK3CA mutations were more frequently found in KRAS mutant type (18.3%) than KRAS wild type (6.9%) (P = 0.020). In contrast, HER2 amplifications and BRAF mutations were associated with KRAS wild type with borderline significance (P = 0.052 and 0.094, respectively). In combined analyses with KRAS, BRAF and HER2 status, BRAF mutations or HER2 amplifications were associated with the worst prognosis in the wild type KRAS group (P = 0.004). When comparing the efficacy of detection methods, the results of real time PCR analysis revealed 56 of 97 (57.7%) CRC cases with KRAS mutations, whereas Sanger sequencing revealed 49 cases (50.5%).

Conclusions

KRAS mutations were found in 54.5% of advanced CRC patients. Our results support that subgrouping using PIK3CA and BRAF mutation or HER2 amplification status, in addition to KRAS mutation status, is helpful for managing advanced CRC patients.  相似文献   

2.
B. Pang, D. Matthias, C.W. Ong, A.N. Dhewar, S. Gupta, G.L. Lim, M.‐E. Nga, J.E. Seet, A. Qasim, T.‐M. Chin, R. Soo, R. Soong and M. Salto‐Tellez The positive impact of cytological specimens for EGFR mutation testing in non‐small cell lung cancer: a single South East Asian laboratory’s analysis of 670 cases Objectives: To compare the rejection rates of non‐small cell lung cancer (NSCLC) samples obtained by differing sampling methods for testing by Sanger sequencing for epidermal growth factor receptor (EGFR) mutations. To assess the association between unsatisfactory outcomes and the quantity of DNA extracted from cytological versus histological samples. Methods: Six hundred and seventy NSCLC samples referred to our centre from 2008 to 2010 were reviewed as a consequence of sample rejection, presence of EGFR mutations, cytological versus histological sampling methods, DNA quantity and the unsatisfactory genotyping rate. Results: Eighty samples were rejected for testing in similar proportions of histological and cytological samples (11.9% versus 10.9%) usually (n = 75) because the amount of cellular material was judged insufficient in small biopsies or cytology samples. The remaining 590 samples on which EGFR testing was attempted yielded 51 (8.6%) unsatisfactory test outcomes caused by failure of the polymerase chain reaction (PCR) (n = 47 cases), uninterpretable Sanger chromatograms (n = 3 cases) and insufficient DNA extracted for PCR (n = 1 case). The difference in rates of unsatisfactory outcomes between cytological samples (seven of 147 samples or 4.7%) versus tissue samples (44 of 443 samples or 9.9%) was clinically relevant but not statistically significant (Mann–Whitney test; P < 0.081). There was no association between the concentration of DNA extracted and the likelihood of an unsatisfactory analysis; which was similar in all types of sections (large and small) while 0% of 37 cytology slides were unsatisfactory. Conclusions: Utilizing cytology samples for EGFR testing avoids unnecessary patient re‐biopsing and yields a clinically superior satisfactory rate to the overall satisfactory rate of tissue biopsies of NSCLC. The quality rather than quantity of DNA extracted may be a more important determinant of a satisfactory result.  相似文献   

3.
Colorectal cancer (CRC), regardless of standard procedures of treatment and screening, is still considered one of the deadliest cancers in the Western world, and in economically developed Asian countries, especially Iran. The current study was undertaken to investigate whether changes in the level of Cripto-1 (CR-1) expression and KRAS mutations have a cumulative effect on the onset and progression of CRC. Fifty colorectal tissue samples, including 35 colorectal carcinomas with matching adjacent mucosa, and 15 colorectal adenomas, were chosen for analysis. Twenty-five CRC biopsies and 15 adenoma were analyzed for KRAS mutations by DNA sequencing (Sanger sequencing), and all 50 patients (35 CRCs and 15 adenomas) were evaluated by immunohistochemistry for the CR-1 protein expression. The inducible somatic KRAS mutation (G12D) was observed in nine (36%) of CRC patients, and in two (13.3%) of adenoma patients. The CR-1 expression level in both adenomas (P < .05) and carcinomas (P < .001), were significantly different, compared with the matching adjacent mucosa. The intensity of CR-1 staining in adenomas was less than the intensity of staining, detected in the CRCs (P < .001). The G12D KRAS mutation and CR-1 abnormalities are significantly associated as two signature biomarkers with potential clinical characteristics for the detection of CRC development.  相似文献   

4.
In sporadic colorectal cancer (CRC), the BRAFV600E mutation is associated with deficient mismatch repair (MMR) status and inversely associated with to KRAS mutations. In contrast to deficient MMR (dMMR) CRC, data on the presence of KRAS oncogenic mutations in proficient MMR (pMMR) CRC and their relationship with tumor progression are scarce. We therefore examined the MMR status in combination with KRAS mutations in 913 Chinese patients and correlated the findings obtained with clinical and pathological features. The MMR status was determined based on detection of MLH1, MSH2, MSH6 and PMS2 expression. KRAS mutation and dMMR status were detected in 36.9% and 7.5% of cases, respectively. Four subtypes were determined by MMR and KRAS mutation status: KRAS (+)/pMMR (34.0%), KRAS (+)/dMMR (2.9%), KRAS (-)/pMMR (58.5%) and KRAS (-)/dMMR (4.6%). A higher percentage of pMMR tumors with KRAS mutation were most likely to be female (49.0%), proximal located (45.5%), a mucinous histology (38.4%), and to have increased lymph node metastasis (60.3%), compared with pMMR tumors without BRAFV600E and KRAS mutations (36.0%, 29.3%, 29.4% and 50.7%, respectively; all P < 0.01). To the contrary, compared with those with KRAS(-)/dMMR tumors, patients with KRAS(+)/dMMR tumors demonstrated no statistically significant differences in gender, tumor location, pT depth of invasion, lymph node metastasis, pTNM stage, and histologic grade. This study revealed that specific epidemiologic and clinicopathologic characteristics are associated with MMR status stratified by KRAS mutation. Knowledge of MMR and KRAS mutation status may enhance molecular pathologic staging of CRC patients and metastatic progression in CRC can be estimated based on the combination of these biomarkers.  相似文献   

5.
Personalized treatments based on the genetic profiles of tumors can simultaneously optimize efficacy and minimize toxicity, which is beneficial for improving patient outcomes. This study aimed to integrate gene alterations associated with predictive and prognostic outcomes in patients with metastatic colorectal cancer (mCRC) with polymerase chain reaction (PCR) and in-house next-generation sequencing (NGS) to detect KRAS, NRAS, and BRAF mutations. In the present study, 41 patients with mCRC were assessed between August 2017 and June 2019 at a single institution. The overall concordance between NGS and PCR results for detecting KRAS, NRAS, and BRAF mutations was considerably high (87.8–92.7%), with only 15 discrepant results between PCR and NGS. Our companion diagnostic test analyzes KRAS, NRAS, and BRAF as a panel of CRC molecular targets; therefore, it has the advantages of requiring fewer specimens and being more time and cost efficient than conventional testing for separate analyses, allowing for the simultaneous analysis of multiple genes.  相似文献   

6.
Somatic mutations in KRAS, NRAS, and BRAF genes are related to resistance to anti-EGFR antibodies in colorectal cancer. We have established an extended RAS and BRAF mutation assay using a next-generation sequencer to analyze these mutations. Multiplexed deep sequencing was performed to detect somatic mutations within KRAS, NRAS, and BRAF, including minor mutated components. We first validated the technical performance of the multiplexed deep sequencing using 10 normal DNA and 20 formalin-fixed, paraffin-embedded (FFPE) tumor samples. To demonstrate the potential clinical utility of our assay, we profiled 100 FFPE tumor samples and 15 plasma samples obtained from colorectal cancer patients. We used a variant calling approach based on a Poisson distribution. The distribution of the mutation-positive population was hypothesized to follow a Poisson distribution, and a mutation-positive status was defined as a value greater than the significance level of the error rate (α = 2 x 10-5). The cut-off value was determined to be the average error rate plus 7 standard deviations. Mutation analysis of 100 clinical FFPE tumor specimens was performed without any invalid cases. Mutations were detected at a frequency of 59% (59/100). KRAS mutation concordance between this assay and Scorpion-ARMS was 92% (92/100). DNA obtained from 15 plasma samples was also analyzed. KRAS and BRAF mutations were identified in both the plasma and tissue samples of 6 patients. The genetic screening assay using next-generation sequencer was validated for the detection of clinically relevant RAS and BRAF mutations using FFPE and liquid samples.  相似文献   

7.
The KRAS mutation status predicts the outcome of treatment with epidermal growth factor receptor targeted agents, and therefore the testing for KRAS mutations has become an important diagnostic procedure. To optimize the quality of this test, we compared the results of the two most commonly used KRAS mutation tests, cycle sequencing and a real‐time PCR‐based assay, in DNA extracted from formalin‐fixed paraffin‐embedded (FFPE) colorectal cancer samples of 511 patients. The results were interpreted in the context of the tumour cell percentage and the assay parameters. In 510 samples KRAS mutation status assessment was successful. A KRAS mutation was detected in 201 tumours (39.4%). Sequencing and the real‐time PCR‐based assay generated the same result in 486 samples (95.3%). The sequencing result was considered false positive in one (0.2%) and false negative in nine samples (1.8%). The assay result was considered false positive in six (1.2%) and false negative in seven samples (1.4%). Explanations for discrepant test results were a higher sensitivity of the assay in samples with a low tumour cell percentage, occurrence of mutations that are not covered by the assay and δ Ct values approximating the cut‐off value of the assay. In conclusion, both sequencing and the real‐time PCR‐based assay are reliable tests for KRAS mutation analysis in FFPE colorectal cancer samples, with a sensitivity of 95.5% (95% confidence interval [CI] 91.7–97.9%) and 96.5% (95% CI 93.0–98.6%), respectively. The real‐time PCR based assay is the method of choice in samples with a tumour cell percentage below 30%.  相似文献   

8.
Mutations in KRAS oncogene are recognized biomarkers that predict lack of response to anti- epidermal growth factor receptor (EGFR) antibody therapies. However, some patients with KRAS wild-type tumors still do not respond, so other downstream mutations in BRAF, PIK3CA and NRAS should be investigated. Herein we used direct sequencing to analyze mutation status for 676 patients in KRAS (codons 12, 13 and 61), BRAF (exon 11 and exon 15), PIK3CA (exon 9 and exon 20) and NRAS (codons12, 13 and 61). Clinicopathological characteristics associations were analyzed together with overall survival (OS) of metastatic colorectal cancer patients (mCRC). We found 35.9% (242/674) tumors harbored a KRAS mutation, 6.96% (47/675) harbored a BRAF mutation, 9.9% (62/625) harbored a PIK3CA mutation and 4.19% (26/621) harbored a NRAS mutation. KRAS mutation coexisted with BRAF, PIK3CA and NRAS mutation, PIK3CA exon9 mutation appeared more frequently in KRAS mutant tumors (P = 0.027) while NRAS mutation almost existed in KRAS wild-types (P<0.001). Female patients and older group harbored a higher KRAS mutation (P = 0.018 and P = 0.031, respectively); BRAF (V600E) mutation showed a higher frequency in colon cancer and poor differentiation tumors (P = 0.020 and P = 0.030, respectively); proximal tumors appeared a higher PIK3CA mutation (P<0.001) and distant metastatic tumors shared a higher NRAS mutation (P = 0.010). However, in this study no significant result was found between OS and gene mutation in mCRC group. To our knowledge, the first large-scale retrospective study on comprehensive genetic profile which associated with anti-EGFR MoAbs treatment selection in East Asian CRC population, appeared a specific genotype distribution picture, and the results provided a better understanding between clinicopathological characteristics and gene mutations in CRC patients.  相似文献   

9.
Objectives: While colorectal cancer (CRC) is common, its incidence significantly varies around the globe. The incidence of CRC in West Africa is relatively low, but it has a distinctive clinical pattern and its molecular characteristics have not been studied. This study is one of the first attempts to analyze molecular, genetic, and pathological characteristics of colorectal cancer in Ghana. Methods: DNA was extracted from microdissected tumor and adjacent normal tissue of 90 paraffin blocks of CRC cases (1997–2007) collected at the University of Ghana. Microsatellite instability (MSI) was determined using fragment analysis of ten microsatellite markers. We analyzed expression of mismatch repair (MMR) proteins by immunohistochemistry and sequenced exons 2 and 3 of KRAS and exon 15 of BRAF. Results: MSI analysis showed 41% (29/70) MSI-High, 20% (14/70) MSI-Low, and 39% (27/70) microsatellite-stable (MSS) tumors. Sequencing of KRAS exons 2 and 3 identified activating mutations in 32% (24/75) of tumors, and sequencing of BRAF exon 15, the location of the common activating mutation (V600), did not show mutations at codons 599 and 600 in 88 tumors. Conclusions: Our study found a high frequency of MSI-High colorectal tumors (41%) in Ghana. While the frequency of KRAS mutations is comparable with other populations, absence of BRAF mutations is intriguing and would require further analysis of the molecular epidemiology of CRC in West Africa.  相似文献   

10.

Aims

To determine the prevalence and clinicopathological characteristics of BRAF V600E mutation and HER2 exon 20 insertions in Chinese lung adenocarcinoma (ADC) patients.

Methods

Given the fact that the driver mutations are mutually exclusive in lung ADCs, 204 EGFR/KRAS wild-type cases were enrolled in this study. Direct Sanger sequencing was performed to examine BRAF V600E and HER2 exon 20 mutations. The association of BRAF and HER2 mutations with clinicopathological characteristics was statistically analyzed.

Results

Among the 204 lung ADCs tested, 11 cases (5.4%) carried HER2 exon 20 insertions and 4 cases (2.0%) had BRAF V600E mutation. HER2 mutation status was identified to be associated with a non-smoking history (p<0.05). HER2 mutation occurs in 9.4% of never smokers (10/106), 8.7% of female (8/92) and 2.7% of male (3/112) in this selected cohort. All four BRAF mutated patients were women and three of them were never-smokers. No HER2 mutant patients harbor BRAF mutation.

Conclusions

HER2 and BRAF mutations identify a distinct subset of lung ADCs. Given the high prevalence of lung cancer and the availability of targeted therapy, Chinese lung ADC patients without EGFR and KRAS mutations are recommended for HER2 and BRAF mutations detection, especially for those never smokers.  相似文献   

11.
The objective of the work was to study PIK3CA mutations in wild type KRAS and BRAF colorectal cancer. Clinicopathological data and paraffin-embedded specimens were collected on 73 patients who underwent colorectal resections at General Yagüe Hospital in Burgos. KRAS, BRAF and PIK3CA status were analyzed by real-time PCR in all patients. PIK3CA mutations were present in 8.22% of wild type KRAS and BRAF colorectal cancers. The most frequent mutation is E545K/D in exon 9 which represents 83.3% of all mutations. By contrast, we did not found any tumour harbouring H1047R mutation in exon 20. Among the patients who undergo a curative resection of colorectal cancer, PIK3CA mutation is present in an important percentage of KRAS and BRAF wild type tumours. PIK3CA mutation may be considered as it could be a hypothetic reason to be not responder to anti-EGFR antibodies.  相似文献   

12.

Background

Cancer is caused by somatic DNA alterations such as gene point mutations, DNA copy number aberrations (CNA) and structural variants (SVs). Genome-wide analyses of SVs in large sample series with well-documented clinical information are still scarce. Consequently, the impact of SVs on carcinogenesis and patient outcome remains poorly understood. This study aimed to perform a systematic analysis of genes that are affected by CNA-associated chromosomal breaks in colorectal cancer (CRC) and to determine the clinical relevance of recurrent breakpoint genes.

Methods

Primary CRC samples of patients with metastatic disease from CAIRO and CAIRO2 clinical trials were previously characterized by array-comparative genomic hybridization. These data were now used to determine the prevalence of CNA-associated chromosomal breaks within genes across 352 CRC samples. In addition, mutation status of the commonly affected APC, TP53, KRAS, PIK3CA, FBXW7, SMAD4, BRAF and NRAS genes was determined for 204 CRC samples by targeted massive parallel sequencing. Clinical relevance was assessed upon stratification of patients based on gene mutations and gene breakpoints that were observed in >3% of CRC cases.

Results

In total, 748 genes were identified that were recurrently affected by chromosomal breaks (FDR <0.1). MACROD2 was affected in 41% of CRC samples and another 169 genes showed breakpoints in >3% of cases, indicating that prevalence of gene breakpoints is comparable to the prevalence of well-known gene point mutations. Patient stratification based on gene breakpoints and point mutations revealed one CRC subtype with very poor prognosis.

Conclusions

We conclude that CNA-associated chromosomal breaks within genes represent a highly prevalent and clinically relevant subset of SVs in CRC.  相似文献   

13.
BRAF inhibitors have demonstrated improvement of overall survival in patients with metastatic melanoma and BRAFV600 mutations. In order to evaluate BRAF tumor heterogeneity between primary and metastatic site, we have evaluated the performance of immunohistochemistry (IHC) with an anti-BRAFV600E antibody in both localization by comparison with high resolution melting analysis followed by Sanger sequencing in a parallel blinded study. A total of 230 samples distributed as primary melanoma (n = 88) and different types of metastatic samples (n = 142) were studied in 99 patients with advanced or metastatic melanoma (stage III or IV). The prevalence of each BRAF mutation was c.1799T>A, BRAFV600E (45.2%), c.1799_1800TG>AA, BRAFV600E2 (3.0%), c.1798_1799GT>AA, BRAFV600K (3.0%), c.1801 A>G, BRAFK601E (1.3%), c.1789_1790CT>TC, BRAFL597S (0.4%), c.1780G>A, BRAFD594N (0.9%) respectively. IHC was positive in 109/112 samples harboring BRAFV600E/E2 mutations and negative in other cases. The cytoplasmic staining was either strongly positive in tumor cells of BRAFV600E mutated cases. It appeared strong brown, different from the vesicular grey cytoplasmic pigmentation of melanophages. Concordance between the two techniques was 96.4%. Sensitivity of IHC for detecting the BRAFV600E/E2 mutations was 97.3%, while specificity was 100%. Both our IHC and molecular study demonstrated homogeneity between primary and metastatic sites for BRAF status in melanoma. This study also provides evidence that IHC may be a cost-effective first-line method for BRAFV600E detection. Thereafter, molecular techniques should be used in negative, ambiguous or non-contributive cases.  相似文献   

14.
Epidemiologic studies have evaluated the association between BRAF mutations and resistance to the treatment of anti-EGFR monoclonal antibodies (MoAb) in patients with metastatic colorectal cancer (mCRC). However, the results are still inconclusive. To derive a more precise estimation of the relationship, we performed this meta-analysis. A total of 11 studies were included in the final meta-analysis. There were seven studies for unselected mCRC patients and four studies for patients with wild type KRAS mCRC. Among unselected mCRC patients, BRAF V600E mutation was detected in 48 of 546 primary tumors (8.8%). The objective response rate (ORR) of patients with mutant BRAF was 29.2% (14/48), whereas the ORR of patients with wild-type BRAF was 33.5% (158/472).The overall RR for ORR of mutant BRAF patients over wild-type BRAF patients was 0.86 (95% CI = 0.57–1.30; P = 0.48). For patients with KRAS wild-type mCRC, BRAF V600E mutation was detected in 40 of 376 primary tumors (10.6%). The ORR of patients with mutant BRAF was 0.0% (0/40), whereas the ORR of patients with wild-type BRAF was 36.3% (122/336). The pooled RR of mutant BRAF patients over wild-type BRAF patients was 0.14 (95% CI = 0.04–0.53; P = 0.004). In conclusion, this meta-analysis provides evidence that BRAF V600E mutation is associated with lack of response in wild-type KRAS mCRC treated with anti-EGFR MoAbs. BRAF mutation may be used as an additional biomarker for the selection of mCRC patients who might benefit from anti-EGFR MoAbs therapy.  相似文献   

15.
Heterogeneity of BRAF mutation in melanoma has been a controversial subject. Quantitative data on BRAF allele frequency (AF) are sparse, and the potential relationship with response to BRAF inhibitors (BRAFi) in patients with metastatic melanoma is unknown. We quantitatively measured BRAF AF in a cohort of treatment naïve metastatic melanoma samples by pyrosequencing and correlated with survival data in patients treated with BRAFi as part of their clinical care. Fifty‐two samples from 50 patients were analysed. BRAF V600E mutations were detected in 71.1% of samples followed by V600K (25%) and V600R (3.9%). There was a wide range of AF from 3.9% to 80.3% (median 41.3%). In 33 patients treated with BRAFi, there was no difference in overall or progression‐free survival when the patients were categorized into high or low AF groups. There was no correlation between AF and degree of response, and no difference in survival based on genotype.  相似文献   

16.
Mucosal malignant melanoma (MMM) is a rare and aggressive tumor. Despite effective local therapies, tumor recurrence and metastasis remain frequent. The genetics of MMM remain incompletely understood. This study is aimed to identify actionable genetic alterations by next-generation sequencing. Fifteen MMM samples were analyzed by next-generation and Sanger sequencing. Gene copy number alterations were analyzed by MLPA. Mutation status was correlated with pERK, pAKT, and Ki-67 expression and follow-up data. Inactivating mutations and intragenic deletions in neurofibromatosis type-1 (NF1) were identified in 3 and 2 cases, respectively, (in total 5/15, 33%) and activating mutations in NRAS and KRAS (3/15, 20%) cases. Other mutated genes included CDKN2A, APC, ATM, MITF, FGFR1, and FGFR2. BRAF and KIT mutations were not observed. Cases with NF1 alterations tended to have worse overall survival. The mutational status was not associated with pERK, pAKT, or Ki-67 immunostaining. MMM carries frequent gene mutations activating the MAPK pathway, similar to cutaneous melanoma. In contrast, NF1 is the most frequently affected gene. Intragenic NF1 deletions have not been described before and may go undetected by sequencing studies. This finding is clinically relevant as NF1-mutated melanomas have worse survival and could benefit from therapy with immune checkpoint and MEK inhibitors.  相似文献   

17.

Background

Colorectal cancer is the second leading cause of cancer death in the United States, with over 50,000 deaths estimated in 2014. Molecular profiling for somatic mutations that predict absence of response to anti-EGFR therapy has become standard practice in the treatment of metastatic colorectal cancer; however, the quantity and type of tissue available for testing is frequently limited. Further, the degree to which the primary tumor is a faithful representation of metastatic disease has been questioned. As next-generation sequencing technology becomes more widely available for clinical use and additional molecularly targeted agents are considered as treatment options in colorectal cancer, it is important to characterize the extent of tumor heterogeneity between primary and metastatic tumors.

Results

We performed deep coverage, targeted next-generation sequencing of 230 key cancer-associated genes for 69 matched primary and metastatic tumors and normal tissue. Mutation profiles were 100% concordant for KRAS, NRAS, and BRAF, and were highly concordant for recurrent alterations in colorectal cancer. Additionally, whole genome sequencing of four patient trios did not reveal any additional site-specific targetable alterations.

Conclusions

Colorectal cancer primary tumors and metastases exhibit high genomic concordance. As current clinical practices in colorectal cancer revolve around KRAS, NRAS, and BRAF mutation status, diagnostic sequencing of either primary or metastatic tissue as available is acceptable for most patients. Additionally, consistency between targeted sequencing and whole genome sequencing results suggests that targeted sequencing may be a suitable strategy for clinical diagnostic applications.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-014-0454-7) contains supplementary material, which is available to authorized users.  相似文献   

18.
19.
20.
Oncogenic activation resulting in hyperproliferative lesions within the colonic mucosa has been identified in putative precancerous lesions, aberrant crypt foci (ACF). KRAS and BRAF mutation status was determined in 172 ACF identified in the colorectum of screening subjects by in situ high‐definition, magnifying chromoendoscopy. Lesions were stratified according to histology (serrated vs. distended). Due to their limiting size, however, it was not technically feasible to examine downstream signaling consequences of these oncogenic mutations. We have combined ultraviolet‐infrared (UV/IR) microdissection with an ultrasensitive nanofluidic proteomic immunoassay (NIA) to enable accurate quantification of posttranslational modifications to mitogen‐activated protein kinase (MAPK) in total protein lysates isolated from hyperproliferative crypts and adjacent normal mucosa. Using this approach, levels of singly and dually (activated) phosphorylated isoforms of extracellular receptor kinase(ERK)‐1 and ERK‐2 were quantified in samples containing as little as 16 ng of total protein recovered from <200 cells. ERK activation is responsible for observed hyperplasia found in these early lesions, but is not directly dependent on KRAS and/or BRAF mutation status. This study describes the novel use of a sensitive nanofluidic platform to measure oncogene‐driven proteomic changes in diminutive lesions and highlights the advantage of this approach over classical immunohistochemistry‐based analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号