首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although species interactions are often proposed to be stronger at lower latitudes and elevations, few studies have evaluated the mechanisms driving such patterns. In this study, we assessed whether, and by which mechanisms, abiotic changes associated with elevation altered the outcome of an ant–aphid protection mutualism. To do so, we characterized the multi‐trophic interactions among the ant Formica podzolica, the aphid Aphis varians, and aphid natural enemies occurring on the plant Chamerion angustifolium within replicate high and low elevation valleys. Low (versus high) elevation sites had longer summers (snowmelt 13 days earlier) and were on average 1.1°C warmer and 41% drier throughout the year. At low elevations, individual ant colonies consumed approximately double the volume of carbohydrate baits, likely due to a higher foraging tempo, and possibly due to a greater demand for sugar‐ versus protein‐rich resources (as indicated by stable isotope analysis). Wild aphid colonies at low elevations were visited by 1.4‐fold more natural enemies (controlling for variation in aphid abundance), while experimental aphid colonies on potted plants were tended 52% more frequently by ants. As a result, ants increased aphid colony survival by 66% at low elevations but had no detectable effect at high elevations; at low (versus high) elevations aphid colonies without ants had lower survival, demonstrating stronger predator effects, while aphid colonies with ants had higher survival, demonstrating even stronger ant benefits. Analyses for the effects of mean summer temperature yielded qualitatively identical results to those based on elevation. Collectively, these findings support predictions for a greater sensitivity of higher trophic levels to warming and demonstrate how species interactions can vary across environmental gradients due to simultaneous changes in species traits and abundances across multiple trophic levels.  相似文献   

2.
1. Ant–plant mutualisms have been the focus of considerable empirical research, but few studies have investigated how introduced ants affect these interactions. Using 2 years of survey data, this study examines how the introduced Argentine ant [Linepithema humile (Mayr)] differs from native ants with respect to its ability to protect the extrafloral nectary‐bearing coast barrel cactus (Ferocactus viridescens) in Southern California. 2. Eighteen native ant species visited cacti in uninvaded areas, but cacti in invaded areas were primarily visited by the Argentine ant. The main herbivore of the coast barrel cactus present at the study sites is a leaf‐footed bug (Narnia wilsoni). 3. Herbivore presence (the fraction of surveys in which leaf‐footed bugs were present on individual cacti) was negatively related to ant presence (the fraction of surveys in which ants were present on individual cacti). Compared with cacti in uninvaded areas, those in invaded areas were less likely to have herbivores and when they did had them less often. 4. Seed mass was negatively related to herbivore presence, and this relationship did not differ for cacti in invaded areas versus those in uninvaded areas. 5. Although the Argentine ant might provide superior protection from herbivores, invasion‐induced reductions in ant mutualist diversity could potentially compromise plant reproduction. The cumulative number of ant species on individual cacti over time was lower in invaded areas and was associated with a shortened seasonal duration of ant protection and reduced seed mass. These results support the hypothesis that multiple partners may enhance mutualism benefits.  相似文献   

3.
1. Understanding the degree to which populations and communities are limited by both bottom‐up and top‐down effects is still a major challenge for ecologists, and manipulation of plant quality, for example, can alter herbivory rates in plants. In addition, biotic defence by ants can directly influence the populations of herbivores, as demonstrated by increased rates of herbivory or increased herbivore density after ant exclusion. The aim of this study was to evaluate bottom‐up and top‐down effects on herbivory rates in a mutualistic ant‐plant. 2. In this study, the role of Azteca alfari ants as biotic defence in individuals of Cecropia pachystachya was investigated experimentally with a simultaneous manipulation of both bottom‐up (fertilisation) and top‐down (ant exclusion) factors. Four treatments were used in a fully factorial design, with 15 replicates for each treatment: (i) control plants, without manipulation; (ii) fertilised plants, ants not manipulated; (iii) unfertilised plants and excluded ants and (iv) fertilised plants and ants excluded. 3. Fertilisation increased the availability of foliar nitrogen in C. pachystachya, and herbivory rates by chewing insects were significantly higher in fertilised plants with ants excluded. 4. Herbivory, however, was more influenced by bottom‐up effects – such as the quality of the host plant – than by top‐down effects caused by ants as biotic defences, reinforcing the crucial role of leaf nutritional quality for herbivory levels experienced by plants. Conditionality in ant defence under increased nutritional quality of leaves through fertilisation might explain increased levels of herbivory in plants with higher leaf nitrogen.  相似文献   

4.
The simple gaseous compound ethylene (ET) has long been recognized as a common component of plant responses to insect feeding and pathogen attack. However, it is presently uncertain whether it plays a role in host–plant resistance to piercing–sucking insects such as aphids. In these experiments, we investigated the expression of key ET‐associated genes in resistant and susceptible interactions in two model systems: the tomato‐MiMacrosiphum euphorbiae (Thomas) (Hemiptera: Aphididae: Macrosiphini) system and the melon‐virus aphid transmission gene (Vat)‐Aphis gossypii Glover (Hemiptera: Aphididiae: Aphidini) system. We examined expression patterns of genes associated with ET synthesis, perception, signal transduction, and downstream response. When compared with control plants, plants infested with aphids showed marked differences in gene expression. In particular, ET signaling pathway genes and downstream response genes were highly upregulated in the resistant interaction between A. gossypii and Vat+, indicating ET may play a role in Vat‐mediated host–plant resistance. A key integrator between the ET and jasmonic acid pathways (Cm‐ERF1) showed the strongest response.  相似文献   

5.
Female birds may adjust their offspring phenotype to the specific requirements of the environment by differential allocation of physiologically active substances into yolks, such as androgens. Yolk androgens have been shown to accelerate embryonic development, growth rate and competitive ability of nestlings, but they can also entail immunological costs. The balance between costs and benefits of androgen allocation is expected to depend on nestling environment. We tested this hypothesis in a multibrooded passerine, the spotless starling, Sturnus unicolor. We experimentally manipulated yolk androgen levels using a between‐brood design and evaluated its effects on nestling development, survival and immune function. Both in first and replacement broods, the embryonic development period was shorter for androgen‐treated chicks than controls, but there were no differences in second broods. In replacement broods, androgen‐treated chicks were heavier and larger than those hatched from control eggs, but this effect was not observed in the other breeding attempts. Androgen exposure reduced survival with respect to controls only in second broods. Regarding immune function, we detected nonsignificant trends for androgen treatment to activate two important components of innate and adaptive immunity (IL‐6 and Ig‐A levels, respectively). Similarly, androgen‐treated chicks showed greater lymphocyte proliferation than controls in the first brood and an opposite trend in the second brood. Our results indicate that yolk androgen effects on nestling development and immunity depend on the environmental conditions of each breeding attempt. Variation in maternal androgen allocation to eggs could be explained as the result of context‐dependent optimal strategies to maximize offspring fitness.  相似文献   

6.
Understanding the factors that determine invasion success for non‐native plants is crucial for maintaining global biodiversity and ecosystem functioning. One hypothesized mechanism by which many exotic plants can become invasive is through the disruption of key plant–mycorrhizal mutualisms, yet few studies have investigated how these disruptions can lead to invader success. We present an individual‐based model to examine how mutualism strengths between a native plant (Impatiens capensis) and mycorrhizal fungus can influence invasion success for a widespread plant invader, Alliaria petiolata (garlic mustard). Two questions were investigated as follows: (a) How does the strength of the mutualism between the native I. capensis and a mycorrhizal fungus affect resistance (i.e., native plant maintaining >60% of final equilibrium plant density) to garlic mustard invasion? (b) Is there a non‐linear relationship between initial garlic mustard density and invasiveness (i.e., garlic mustard representing >60% of final equilibrium plant density)? Our findings indicate that either low (i.e., facultative) or high (i.e., obligate) mutualism strengths between the native plant and mycorrhizal fungus were more likely to lead to garlic mustard invasiveness than intermediate levels, which resulted in higher resistance to garlic mustard invasion. Intermediate mutualism strengths allowed I. capensis to take advantage of increased fitness when the fungus was present but remained competitive enough to sustain high numbers without the fungus. Though strong mutualisms had the highest fitness without the invader, they proved most susceptible to invasion because the loss of the mycorrhizal fungus resulted in a reproductive output too low to compete with garlic mustard. Weak mutualisms were more competitive than strong mutualisms but still led to garlic mustard invasion. Furthermore, we found that under intermediate mutualism strengths, the initial density of garlic mustard (as a proxy for different levels of plant invasion) did not influence its invasion success, as high initial densities of garlic mustard did not lead to it becoming dominant. Our results indicate that plants that form weak or strong mutualisms with mycorrhizal fungi are most vulnerable to invasion, whereas intermediate mutualisms provide the highest resistance to an allelopathic invader.  相似文献   

7.
1. Centenarian species, defined as those taxa with life spans that frequently exceed 100 years, have long been of interest to ecologists because they represent an extreme end point in a continuum of life history strategies. One frequently reported example of a freshwater centenarian is the obligate cave crayfish Orconectes australis, with a maximum longevity reported to exceed 176 years. As a consequence of its reported longevity, O. australis has been used as a textbook example of life history adaptation to the organic‐carbon limitation that characterises many cave‐stream food webs. 2. Despite being widely reported, uncertainties surround the original estimates of longevity for O. australis, which were based on a single study dating from the mid‐1970s. In the present study, we re‐evaluated the growth rate, time‐to‐maturity, female age‐at‐first‐reproduction and longevity of O. australis using a mark–recapture study of more than 5 years based upon more than 3800 free‐ranging individuals from three isolated cave streams in the south‐eastern United States. 3. The results of our study indicate that accurate estimates of the longevity of O. australis are ≤22 years, with only a small proportion of individuals (<5%) exceeding this age. Our estimates for female time‐to‐maturity (4–5 years) and age‐at‐first‐reproduction (5–6 years) are also substantially lower than earlier estimates. 4. These new data indicate that the age thresholds for life history events of O. australis are comparable to other estimates for a modest assemblage of cave and surface species of crayfish for which credible age estimate exists, suggesting that a cave environment per se is not required for the evolution of extreme longevity in crayfish.  相似文献   

8.
9.
The conditions under which individuals are reared vary and sensitivity of offspring to such variation is often sex‐dependent. Parental age is one important natal condition with consequences for aspects of offspring fitness, but reports are mostly limited to short‐term fitness consequences and do not take into account offspring sex. Here we used individual‐based data from a large colony of a long‐lived seabird, the common tern Sterna hirundo, to investigate longitudinal long‐term fitness consequences of parental age in relation to both offspring and parental sex. We found that recruited daughters from older mothers suffered from reduced annual reproductive success. Recruited sons from older fathers were found to suffer from reduced life span. Both effects translated to reductions in offspring lifetime reproductive success. Besides revealing novel sex‐specific pathways of transgenerational parental age effects on offspring fitness, which inspire studies of potential underlying mechanisms, our analyses show that reproductive senescence is only observed in the common tern when including transgenerational age effects. In general, our study shows that estimates of selective pressures underlying the evolution of senescence, as well as processes such as age‐dependent mate choice and sex allocation, will depend on whether causal transgenerational effects exist and are taken into account.  相似文献   

10.
Reproductive performance is often age‐dependent, showing patterns of improvement and/or senescence as well as trade‐offs with other traits throughout the lifespan. High levels of extrinsic mortality (e.g., from predators) have been shown to sometimes, but not always, select for accelerated actuarial senescence in nature and in the lab. Here, we explore the inductive (i.e., plastic) effects of predation risk (i.e., nonlethal exposure to chemical cues from predators) on the reproductive success of freshwater snails (Physa acuta). Snails were reared either in the presence or absence of chemical cues from predatory crayfish and mated early in life or late in life (a 2 × 2 factorial design); we measured egg hatching and early post‐hatching survival of their offspring. Both age and predation risk reduced reproductive success, illustrating that predation risk can have a cross‐generational effect on the early survival of juveniles. Further, the decline in reproductive success was over three times faster under predation risk compared to the no‐predator treatment, an effect that stemmed from a disproportionate, negative effect of predation risk on the post‐hatching survival instead of hatching rate. We discuss our results in terms of a hypothesized consequence of elevated stress hormone levels.  相似文献   

11.
Immune responses are highly dynamic. The magnitude and efficiency of an immune response to a pathogen can change markedly across individuals, and such changes may be influenced by variance in a range of intrinsic (e.g. age, genotype, sex) and external (e.g. abiotic stress, pathogen identity, strain) factors. Life history theory predicts that up‐regulation of the immune system will come at a physiological cost, and studies have confirmed that increased investment in immunity can reduce reproductive output and survival. Furthermore, males and females often have divergent reproductive strategies, and this might drive the evolution of sex‐specific life history trade‐offs involving immunity, and sexual dimorphism in immune responses per se. Here, we employ an experiment design to elucidate dose‐dependent and sex‐specific responses to exposure to a nonpathogenic immune elicitor at two scales – the ‘ultimate’ life history and the underlying ‘proximate’ immune level in Drosophila melanogaster. We found dose‐dependent effects of immune challenges on both male and female components of reproductive success, but not on survival, as well as a response in antimicrobial activity. These results indicate that even in the absence of the direct pathogenic effects that are associated with actual disease, individual life histories respond to a perceived immune challenge – but with the magnitude of this response being contingent on the initial dose of exposure. Furthermore, the results indicate that immune responses at the ultimate life history level may indeed reflect underlying processes that occur at the proximate level.  相似文献   

12.
In recent years, there has been a surge in interest in the effects of the microbiota on the host. Increasingly, we are coming to understand the importance of the gut microbiota in modulating host physiology, ecology, behavior, and evolution. One method utilized to evaluate the effect of the microbiota is to suppress or eliminate it, and compare the effect on the host with that of untreated individuals. In this study, we evaluate some of these commonly used methods in the model organism, Drosophila melanogaster. We test the efficacy of a low‐dose streptomycin diet, egg dechorionation, and an axenic or sterile diet, in the removal of gut bacteria within this species in a fully factorial design. We further determine potential side effects of these methods on host physiology by performing a series of standard physiological assays. Our results showed that individuals from all treatments took significantly longer to develop, and weighed less, compared to normal flies. Males and females that had undergone egg dechorionation weighed significantly less than streptomycin reared individuals. Similarly, axenic female flies, but not males, were much less active when analyzed in a locomotion assay. All methods decreased the egg to adult survival, with egg dechorionation inducing significantly higher mortality. We conclude that low‐dose streptomycin added to the dietary media is more effective at removing the gut bacteria than egg dechorionation and has somewhat less detrimental effects to host physiology. More importantly, this method is the most practical and reliable for use in behavioral research. Our study raises the important issue that the efficacy of and impacts on the host of these methods require investigation in a case‐by‐case manner, rather than assuming homogeneity across species and laboratories.  相似文献   

13.
The Mi‐1.2 gene in tomato, Solanum lycopersicum L. (Solanaceae), confers resistance against several herbivores, including the potato aphid, Macrosiphum euphorbiae (Thomas) (Hemiptera: Sternorrhyncha: Aphididae) and the sweetpotato whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Sternorrhyncha: Aleyrodidae). Previous studies on the tissue localization of resistance have given varying results; whitefly resistance was attributed to factors localized in the mesophyll or epidermis, whereas aphid resistance was attributed to factors localized in the phloem. Our study utilizes the direct current electrical penetration graph (DC‐EPG) technique to compare aphid feeding behavior on resistant (Mi‐1.2+) and susceptible (Mi‐1.2?) tomato plants. This study also compares the impact of resistance on the feeding behavior of two aphid clones that vary in their virulence, or their ability to survive and reproduce on resistant plants. Previous work had shown that the avirulent WU11 clone is almost completely inhibited by resistance, whereas the semi‐virulent WU12 clone can colonize resistant hosts. Here, DC‐EPG analysis shows that both aphid clones take longer to initiate cell sampling and to establish a confirmed sieve element phase on resistant plants than on susceptible hosts, and have shorter ingestion periods on resistant plants. However, the magnitude of these deterrent effects is far less for the semi‐virulent clone than for the avirulent aphids. In particular, the WU12 clone is less sensitive to factors that limit sieve element ingestion, showing shorter non‐probe duration and rapidly establishing sustained phloem ingestion on resistant plants when compared to the WU11 clone. We conclude that, in addition to previously described factors in the phloem that inhibit ingestion, Mi‐mediated aphid resistance also involves factors (possibly in the mesophyll and/or epidermis) that delay initiation of phloem salivation, and that act in the intercellular spaces to deter the first cell sampling. Furthermore, the relative effectiveness of these components of resistance differs among insect populations.  相似文献   

14.
Spodoptera litura is one of the most destructive polyphagous insect pests, with more than 120 host‐plant species. In our present study, a field‐collected population of S. litura when selected with spinosad for 11 consecutive generations resulted in the development of 3921‐fold resistance to spinosad as compared to the susceptible strain. The spinosad‐resistant strain of S. litura had a relatively high fitness cost (0.17) as compared to the susceptible strain. Furthermore, the lethal and sub‐lethal effects of different concentrations of spinosad were checked on the susceptible strain at different levels; i.e., LC40, LC30, LC20 and LC10, which revealed that the impact of spinosad on the life‐history traits of S. litura increased with the increase in concentration of spinosad. A significant impact of spinosad was recorded on the larval duration, pre‐pupal weight, pupal duration, pupal weight, reproductive potential and adult emergence. The outcomes of the current research clearly indicate that fitness cost of spinosad and its sub‐lethal effects have a significant impact on population dynamics of S. litura, for which it can be incorporated in integrated pest management.  相似文献   

15.
Although feathers are the unifying characteristic of all birds, our understanding of the causes, mechanisms, patterns and consequences of the feather moult process lags behind that of other major avian life‐history phenomena such as reproduction and long‐distance migration. Migration, which evolved in many species of the temperate and arctic zones, requires high energy expenditure to endure long‐distance journeys. About a third of Western‐Palearctic passerines perform long‐distance migrations of thousands of kilometres each year using various morphological, physiological, biomechanical, behavioural and life‐history adaptations. The need to include the largely non‐overlapping breeding, long‐distance migration and feather moult processes within the annual cycle imposes a substantial constraint on the time over which the moult process can take place. Here, we review four feather‐moult‐related adaptations which, likely due to time constraints, evolved among long‐distance Western‐Palearctic migrants: (i) increased moult speed; (ii) increased overlap between moult and breeding or migration; (iii) decreased extent of plumage moult; and (iv) moult of part or all of the plumage during the over‐wintering period in the tropics rather than in the breeding areas. We suggest that long‐distance migration shaped the evolution of moult strategies and increased the diversity of these strategies among migratory passerines. In contrast to this variation, all resident passerines in the Western Palearctic moult immediately after breeding by renewing the entire plumage of adults and in some species also juveniles, while in other species juvenile moult is partial. We identify important gaps in our current understanding of the moult process that should be addressed in the future. Notably, previous studies suggested that the ancestral moult strategy is a post‐breeding summer moult in the Western Palearctic breeding areas and that moult during the winter evolved due to the scheduling of long‐distance migration immediately after breeding. We offer an alternative hypothesis based on the notion of southern ancestry, proposing that the ancestral moult strategy was a complete moult during the ‘northern winter’ in the Afro‐tropical region in these species, for both adults and juveniles. An important aspect of the observed variation in moult strategies relates to their control mechanisms and we suggest that there is insufficient knowledge regarding the physiological mechanisms that are involved, and whether they are genetically fixed or shaped by environmental factors. Finally, research effort is needed on how global climate changes may influence avian annual routines by altering the scheduling of major processes such as long‐distance migration and feather moult.  相似文献   

16.
Invasive species cope with novel environments through both phenotypic plasticity and evolutionary change. However, the environmental factors that cause evolutionary divergence in invasive species are poorly understood. We developed predictions for how different life‐history traits, and plasticity in those traits, may respond to environmental gradients in seasonal temperatures, season length and natural enemies. We then tested these predictions in four geographic populations of the invasive cabbage white butterfly (Pieris rapae) from North America. We examined the influence of two rearing temperatures (20 and 26.7 °C) on pupal mass, pupal development time, immune function and fecundity. As predicted, development time was shorter and immune function was greater in populations adapted to longer season length. Also, phenotypic plasticity in development time was greater in regions with shorter growing seasons. Populations differed significantly in mean and plasticity of body mass and fecundity, but these differences were not associated with seasonal temperatures or season length. Our study shows that some life‐history traits, such as development time and immune function, can evolve rapidly in response to latitudinal variation in season length and natural enemies, whereas others traits did not. Our results also indicate that phenotypic plasticity in development time can also diverge rapidly in response to environmental conditions for some traits.  相似文献   

17.
We estimated broad‐sense heritabilities (H2) of 13 female and seven male life‐history traits of the Glanville fritillary butterfly (Melitaea cinxia) under semi‐natural conditions in a large outdoor population cage. The analysis was based on full‐sib families collected as young larvae in the field and reared under common garden conditions. We found significant genetic variance in female lifespan, fecundity, number of matings and host‐plant preference as well as in male body mass and mobility. Apart from host‐plant preference, female traits that were more strongly correlated with lifetime reproductive success (LRS; measured as total number of eggs laid) had higher H2. LRS itself exhibited significant heritability. Host‐plant preference had very high H2, consistent with a previously reported genetically determined geographical cline in host‐plant preference in the study area. Lifespan and egg hatching rate were significantly associated with a SNP in the coding region of the Pgi gene, for which there is previous evidence for balancing selection. Selection on Pgi, which furthermore shows spatial and temporal variation, may maintain genetic variance in fitness‐related life‐history traits. In contrast, we found no strong evidence for life‐history trade‐offs.  相似文献   

18.
Transgenic Bacillus thuringiensis Berliner (Bt) crops receive particular attention because they carry genes encoding insecticidal proteins that might negatively affect non‐target arthropods. Here, laboratory experiments were conducted to evaluate the impact of Cry1Ab‐expressing transgenic maize [5422Bt1 (event Bt11) and 5422CBCL (MON810)] on the biological parameters of two non‐target arthropods, the aphid Rhopalosiphum maidis (Fitch) (Hemiptera: Aphididae) and its predator the ladybeetle Propylea japonica (Thunberg) (Coleoptera: Coccinellidae). In a long‐term assay (three generations), no significant differences were found between R. maidis fed Bt maize and those fed a near‐isogenic line (5422) when individual parameters were compared, including nymph development time, adult longevity, aphid spawning period, and fecundity. No negative effects were detected throughout the life cycle of Pjaponica in aphids’ feeding amount, development (nymphs, pupae, adults, and progeny eggs), fecundity, or egg hatching when they preyed on Bt maize‐fed aphids compared with non‐Bt maize treatments. A tritrophic assay revealed that Cry1Ab was highly diluted through the food chain (Bt maize leaves, R. maidis, and P. japonica), as detected by an enzyme‐linked immunosorbent assay (ELISA). In conclusion, although Cry1Ab concentrations in maize leaves increased as the plants developed, Cry1Ab levels were significantly reduced in the aphid R. maidis, and no traces of Cry1Ab were detected in P. japonica preying on Bt maize‐fed aphids. The two hybrids of Bt maize expressing Cry1Ab had no negative effects on the measured biological parameters of the aphid R. maidis or its predator, the ladybeetle P. japonica.  相似文献   

19.
Sexual selection should cause sex differences in patterns of resource allocation. When current and future reproductive effort trade off, variation in resource acquisition might further cause sex differences in age‐dependent investment, or in sensitivity to changes in resource availability over time. However, the nature and prevalence of sex differences in age‐dependent investment remain unclear. We manipulated resource acquisition at juvenile and adult stages in decorated crickets, Gryllodes sigillatus, and assessed effects on sex‐specific allocation to age‐dependent reproductive effort (calling in males, fecundity in females) and longevity. We predicted that the resource and time demands of egg production would result in relatively consistent female strategies across treatments, whereas male investment should depend sharply on diet. Contrary to expectations, female age‐dependent reproductive effort diverged substantially across treatments, with resource‐limited females showing much lower and later investment in reproduction; the highest fecundity was associated with intermediate lifespans. In contrast, long‐lived males always signalled more than short‐lived males, and male age‐dependent reproductive effort did not depend on diet. We found consistently positive covariance between male reproductive effort and lifespan, whereas diet altered this covariance in females, revealing sex differences in the benefits of allocation to longevity. Our results support sex‐specific selection on allocation patterns, but also suggest a simpler alternative: males may use social feedback to make allocation decisions and preferentially store resources as energetic reserves in its absence. Increased calling effort with age therefore could be caused by gradual resource accumulation, heightened mortality risk over time, and a lack of feedback from available mates.  相似文献   

20.
Does agricultural intensification reduce the area used for agricultural production in Brazil? Census and other data for time periods 1975–1996 and 1996–2006 were processed and analyzed using Geographic Information System and statistical tools to investigate whether and if so, how, changes in yield and stocking rate coincide with changes in cropland and pasture area. Complementary medium‐resolution data on total farmland area changes were used in a spatially explicit assessment of the land‐use transitions that occurred in Brazil during 1960–2006. The analyses show that in agriculturally consolidated areas (mainly southern and southeastern Brazil), land‐use intensification (both on cropland and pastures) coincided with either contraction of both cropland and pasture areas, or cropland expansion at the expense of pastures, both cases resulting in farmland stability or contraction. In contrast, in agricultural frontier areas (i.e., the deforestation zones in central and northern Brazil), land‐use intensification coincided with expansion of agricultural lands. These observations provide support for the thesis that (i) technological improvements create incentives for expansion in agricultural frontier areas; and (ii) farmers are likely to reduce their managed acreage only if land becomes a scarce resource. The spatially explicit examination of land‐use transitions since 1960 reveals an expansion and gradual movement of the agricultural frontier toward the interior (center‐western Cerrado) of Brazil. It also indicates a possible initiation of a reversed trend in line with the forest transition theory, i.e., agricultural contraction and recurring forests in marginally suitable areas in southeastern Brazil, mainly within the Atlantic Forest biome. The significant reduction in deforestation that has taken place in recent years, despite rising food commodity prices, indicates that policies put in place to curb conversion of native vegetation to agriculture land might be effective. This can improve the prospects for protecting native vegetation by investing in agricultural intensification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号