首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
1. Characterisation of biodiversity is typically based on taxonomic approaches, while much less is known about other related aspects. Functional trait diversity is one such component of biodiversity that has not been addressed rigorously in ecological research until recently. We tested the congruence between taxonomic‐ and trait‐based approaches, and examined how spatial configuration, local abiotic environmental factors and biotic effects interact to influence taxonomic‐ and trait‐based characterisation of freshwater fish assemblages. 2. Fish assemblage data were compiled for 124 lakes in southern Finland. Variance partitioning in both linear regression analyses and redundancy analysis was used to quantify the relative contribution of spatial and environmental variables to taxonomic and functional trait diversity and structure. Additionally, a null model analysis was used to test for the potential effects of interspecific segregation and biotic interactions on the co‐occurrence of species. 3. The species pool was relatively poor. However, trait‐based classification of species indicated that most species belonged to unique functional entities, which suggested low redundancy in species composition. Correlation analysis indicated a very strong relationship between species richness (SR) and the number of unique trait combinations (UTC). Ecoregion‐level heterogeneity in SR and UTC were well represented in a relatively small group of randomly selected lakes (c. 30 lakes). Multiple regressions indicated moderate roles for abiotic environmental variables (i.e. lake surface area, depth, total phosphorous, colour and pH) in determining SR, UTC and the distribution of single trait categories, whereas geographical location was not generally influential. 4. Redundancy analysis revealed similar patterns to those of diversity analyses for taxonomic and associated trait‐based structure, emphasising the effect of abiotic environmental variables and the negligible effect of geographical position. 5. Co‐occurrence analysis indicated significant checkerboard distribution at the whole assemblage level, but interspecific segregation proved to be of relatively minor importance in the constrained analyses, where species pair combinations within trait category groups were evaluated. 6. Our results suggest that taxonomic‐ and trait‐based patterns of boreal lake fish assemblages are strongly interrelated. Environmental filtering through the effects of local abiotic variables seems to have the most prominent role in determining trait‐based assemblage patterns among lakes, which may also be secondarily shaped by biotic interactions. 7. From the applied perspective, it may not necessarily matter whether traditional taxonomic or more novel trait‐based approaches are used in characterising spatial patterns in boreal fish assemblages. However, trait‐based approaches may provide complementary information which cannot be directly revealed by taxonomic data.  相似文献   

2.
1. The scale of investigations influences the interpretation of results. Here, we investigate the influence of fish and nutrients on biotic communities in shallow lakes, using studies at two different scales: (i) within‐lake experimental manipulation and (ii) comparative, among‐lake relationships. 2. At both scales, fish predation had an overriding influence on macroinvertebrates; fish reduced macroinvertebrate biomass and altered community composition. Prey selection appeared to be size based. Fish influenced zooplankton abundance and light penetration through the water column also, but there was no indication that fish caused increased resuspension of sediment. 3. There were effects of nutrients at both scales, but these effects differed with the scale of the investigation. Nutrients increased phytoplankton and periphyton at the within‐lake scale, and were associated with increased periphyton at the among‐lake scale. No significant effect of nutrients on macroinvertebrates was observed at the within‐lake scale. However, at the among‐lake scale, nutrients positively influenced the biomass and density of macroinvertebrates, and ameliorated the effect of fish on macroinvertebrates. 4. Increased prey availability at higher nutrient concentrations would be expected to cause changes in the fish community. However, at the among‐lake scale, differences were not apparent in fish biomass among lakes with different nutrient conditions, suggesting that stochastic events influence the fish community in these small and relatively isolated shallow lakes. 5. The intensity of predation by fish significantly influences macroinvertebrate community structure of shallow lakes, but nutrients also play a role. The scale of investigation influences the ability to detect the influence of nutrients on the different components of shallow lake communities, particularly for longer lived organisms such as macroinvertebrates, where the response takes longer to manifest.  相似文献   

3.
Climate change is expected to increase climate variability and the occurrence of extreme climatic events, with potentially devastating effects on aquatic ecosystems. However, little is known about the role of climate extremes in structuring aquatic communities or the interplay between climate and local abiotic and biotic factors. Here, we examine the relative influence of climate and local abiotic and biotic conditions on biodiversity and community structure in lake invertebrates. We sampled aquatic invertebrates and measured environmental variables in 19 lakes throughout California, USA, to test hypotheses of the relationship between climate, local biotic and environmental conditions, and the taxonomic and functional structure of aquatic invertebrate communities. We found that, while local biotic and abiotic factors such as habitat availability and conductivity were the most consistent predictors of alpha diversity, extreme climate conditions such as maximum summer temperature and dry‐season precipitation were most often associated with multivariate taxonomic and functional composition. Specifically, sites with high maximum temperatures and low dry‐season precipitation housed communities containing high abundances of large predatory taxa. Furthermore, both climate dissimilarity and abiotic dissimilarity determined taxonomic turnover among sites (beta diversity). These findings suggest that while local‐scale environmental variables may predict alpha diversity, climatic variability is important to consider when projecting broad‐scale aquatic community responses to the extreme temperature and precipitation events that are expected for much of the world during the next century.  相似文献   

4.
Size structure of organisms at logarithmic scale (i.e. size spectrum) can often be described by a linear function with a negative slope; however, substantial deviations from linearity have often been found in natural systems. Theoretical studies suggest that greater nonlinearity in community size spectrum is associated with high predator–prey size ratios but low predator–prey abundance ratios; however, empirical evaluation of the effects of predator–prey interactions on nonlinear structures remains scarce. Here, we aim to empirically explore the pattern of the size‐specific residuals (i.e. deviations from the linear regression between the logarithmic fish abundance and the logarithmic mean fish size) by using size spectra of fish communities in 74 German lakes. We found that nonlinearity was strong in lakes with high predator–prey abundance ratios but at low predator–prey size ratios. More specifically, our results suggest that only large predators, even if occurring in low abundances, can control the density of prey fishes in a broad range of size classes in a community and thus promote linearity in the size spectrum. In turn, the lack of large predator fishes may cause high abundances of fish in intermediate size classes, resulting in nonlinear size spectra in these lakes. Moreover, these lakes were characterized by a more intense human use including high fishing pressure and high total phosphorus concentrations, which have negative impacts on the abundance of large, predatory fish. Our findings indicate that nonlinear size spectra may reflect dynamical processes potentially caused by predator–prey interactions. This opens a new perspective in the research on size spectrum, and can be relevant to further quantify the efficiency of energy transfer in aquatic food webs.  相似文献   

5.
6.
We evaluated several factors influencing the taxonomic richness of macrophytes, benthic invertebrates, snails, and fish in a series of northern Wisconsin lakes. We chose the study lakes to decouple the potential effects of ionic strength of lake water and stream connection, two factors that are usually highly correlated and therefore have been confounded in previous studies. In addition, our study lakes covered a wide range in a variety of characteristics, including residential development, abundance of exotic species, nutrient concentrations, predator abundance, and lake size. Species richness within each of the four taxonomic groups was significantly positively related to ionic strength (as measured by specific conductance); we also found secondary associations with other variables, depending on the specific group of organisms. The relationship between richness and lake area was dependent on the specific conductance of the lake and the vagility of the organisms; less vagile groups of organisms showed stronger and steeper species–area relationships in low-conductivity lakes. Further, after variance owing to specific conductance was removed, the presence of stream connections was positively related to species richness for fish, snails, and macrophytes as well as familial richness in benthic invertebrates. Our results indicate that lakes with relatively more groundwater input have lower extinction rates for all four groups of taxa and that lakes with stream inlets and outlets have enhanced immigration rates for fish, snails, benthic invertebrate families, and macrophytes. These findings link processes of immigration and extinction of four groups of organisms of varying vagility to landscape-level hydrologic characteristics related to the glacial history of the region.  相似文献   

7.
《Ecology letters》2017,20(1):98-111
Winter conditions are rapidly changing in temperate ecosystems, particularly for those that experience periods of snow and ice cover. Relatively little is known of winter ecology in these systems, due to a historical research focus on summer ‘growing seasons’. We executed the first global quantitative synthesis on under‐ice lake ecology, including 36 abiotic and biotic variables from 42 research groups and 101 lakes, examining seasonal differences and connections as well as how seasonal differences vary with geophysical factors. Plankton were more abundant under ice than expected; mean winter values were 43.2% of summer values for chlorophyll a, 15.8% of summer phytoplankton biovolume and 25.3% of summer zooplankton density. Dissolved nitrogen concentrations were typically higher during winter, and these differences were exaggerated in smaller lakes. Lake size also influenced winter‐summer patterns for dissolved organic carbon (DOC), with higher winter DOC in smaller lakes. At coarse levels of taxonomic aggregation, phytoplankton and zooplankton community composition showed few systematic differences between seasons, although literature suggests that seasonal differences are frequently lake‐specific, species‐specific, or occur at the level of functional group. Within the subset of lakes that had longer time series, winter influenced the subsequent summer for some nutrient variables and zooplankton biomass.  相似文献   

8.
1. Little is known about native communities in naturally fishless lakes in eastern North America, a region where fish stocking has led to a decline in these habitats. 2. Our study objectives were to: (i) characterise and compare macroinvertebrate communities in fishless lakes found in two biophysical regions of Maine (U.S.A.): kettle lakes in the eastern lowlands and foothills and headwater lakes in the central and western mountains; (ii) identify unique attributes of fishless lake macroinvertebrate communities compared to lakes with fish and (iii) develop a method to efficiently identify fishless lakes when thorough fish surveys are not possible. 3. We quantified macroinvertebrate community structure in the two physiographic fishless lake types (n = 8 kettle lakes; n = 8 headwater lakes) with submerged light traps and sweep nets. We also compared fishless lake macroinvertebrate communities to those in fish‐containing lakes (n = 18) of similar size, location and maximum depth. We used non‐metric multidimensional scaling to assess differences in community structure and t‐tests for taxon‐specific comparisons between lakes. 4. Few differences in macroinvertebrate communities between the two physiographic fishless lake types were apparent. Fishless and fish‐containing lakes had numerous differences in macroinvertebrate community structure, abundance, taxonomic composition and species richness. Fish presence or absence was a stronger determinant of community structure in our study than differences in physical conditions relating to lake origin and physiography. 5. Communities in fishless lakes were more speciose and abundant than in fish‐containing lakes, especially taxa that are large, active and free‐swimming. Families differing in abundance and taxonomic composition included Notonectidae, Corixidae, Gyrinidae, Dytiscidae, Aeshnidae, Libellulidae and Chaoboridae. 6. We identified six taxa unique to fishless lakes that are robust indicators of fish absence: Graphoderus liberus, Hesperocorixa spp., Dineutus spp., Chaoborus americanus, Notonecta insulata and Callicorixa spp. These taxa are collected most effectively with submerged light traps. 7. Naturally fishless lakes warrant conservation, because they provide habitat for a unique suite of organisms that thrive in the absence of fish predation.  相似文献   

9.
10.
11.
12.
Submerged hydrophyte vegetation consists of a highly important biotic component of maintaining lake ecosystems towards a “clear water” ecological status. Aquatic macrophytes are well known to play a significant multidimensional role in lakes by competing with phytoplankton growth, stabilising sediment and offering refuge to fishes, macro-invertebrates and littoral zooplankton, amongst others. Zooplanktons that are associated with macrophyte beds, in particular, may act as a positive feedback mechanism that contributes to maintaining a clear-water state. Although there are several studies investigating the relationships between macrophytes and zooplankton in European lakes, few have yet been carried out in Greek lakes. Seasonal field sampling was conducted from spring 2006 to autumn 2008 in four lakes of northwestern Greece. Zooplankton samples were collected from within hydrophyte beds in each lake to estimate their relative abundance and species density. Hydrophyte abundance and composition was recorded on a five-point scale. Moreover, water samples were analysed to determine nutrient and chlorophyll-a concentration. Pearson correlations between zooplankton density and key physicochemical variables were conducted to distinguish significant abiotic variables related with major zooplankton groups. Kruskal–Wallis non-parametric analysis was used to test for significant differences in zooplankton composition and environmental variables amongst the five hydrophyte abundance classes. In addition, Canonical correspondence analysis was used to distinguish possible correlations amongst the macrophyte and zooplankton species. Zooplankton density was significantly higher in dense macrophyte vegetation. Small-sized species (e.g. Rotifera) dominated the zooplankton community, indicating the eutrophic nature of the lakes. Large Cladocera were present in low abundance and were mostly littoral. The current research contributes to a better understanding of relationships between biotic groups in selected Greek lakes.  相似文献   

13.
14.
1. Shallow lakes in the Boreal Transition Zone (BTZ) in Alberta, Canada are naturally productive systems that provide important breeding and moulting habitat for many waterfowl (Anseriformes). To examine the relative importance of biotic and abiotic factors on waterfowl population densities, species richness and community composition, we surveyed 30 shallow lakes and evaluated the relationships among fish communities, lake characteristics and waterfowl in both breeding and moulting habitat. Shallow lakes were either fishless (n = 15), contained only small‐bodied fishes (n = 10) or contained large‐bodied, mostly predatory, fish in addition to small‐bodied fish (n = 5). 2. Environmental factors, including water colour, submerged aquatic vegetation, lake area and potassium, explained 24.3% of the variation in breeding waterfowl communities. Fish assemblage contributed independently to a small but significant proportion (13.4%) of the variation, while 13.8% of the explained variation was shared between environmental factors and fish assemblage. In total, 51.5% of the variation in breeding waterfowl communities was explained. 3. Overall, 55.5% of the total variation in moulting waterfowl communities was explained. Environment alone [especially total phosphorus, lake area, maximum depth and dissolved organic carbon (DOC)] and variation shared by fish and environment similarly accounted for most of the explained variation in moulting waterfowl communities (21.7% and 25.7% respectively), while fish assemblage was only one‐third as important (8.1%). 4. Both breeding and moulting waterfowl densities increased with lake productivity, even in eutrophic and hypereutrophic lakes. Breeding waterfowl density was also twice as great in fishless lakes than in lakes with fish, after accounting for lake area. 5. Certain waterfowl taxa were linked to fishless lakes, especially in the moulting season. Canvasback and moulting ring‐necked ducks were linked to small‐bodied fish lakes, whereas moulting common goldeneye were indicators of large‐bodied fish lakes. Knowledge of fish presence and species composition can therefore help guide conservation and management of waterfowl habitat in western Canada. Our results suggest that management efforts to maintain the most productive waterfowl habitat in the BTZ should focus on smaller, shallow, fishless lakes, particularly given that larger fish‐bearing systems have greater regulatory protection.  相似文献   

15.
1. Acidification has damaged biota in thousands of lakes and streams throughout eastern North America. Fortunately, reduced emissions of sulphur dioxide and nitrogen oxides beginning in the 1960s have allowed pH levels in many affected systems to increase. Determining the extent of biological and pH recovery in these systems is necessary to assess the success of emissions reductions programmes. 2. Although there have been promising signs of biological recovery in many systems, recovery has occurred more slowly than expected for some taxa. Past studies with crustacean zooplankton indicate that a mixture of local abiotic variables, biotic variables and dispersal processes may influence the structure of recovering communities. However, most studies have been unable to determine the relative importance of these three groups of variables. 3. We assessed chemical and biological recovery of acid‐damaged lakes in Killarney Park, Ontario. In addition, we assessed the relative importance of local abiotic variables, biotic variables and dispersal processes for structuring recovering communities. We collected zooplankton community data, abiotic and biotic data from 45 Killarney Park lakes. To assess the recovery of zooplankton communities, we compared zooplankton data collected in 2005 to a survey conducted for the same lakes in 1972–73 using several univariate measures of community structure, as well as multivariate methods based on relative species abundances. To determine the factors influencing the structure of recovering zooplankton communities, we used hierarchical partitioning for univariate measures and spatial modelling and variation partitioning techniques for multivariate analyses. 4. Our survey revealed significant pH increases for the majority of sampled lakes but univariate measures of community structure, such as species richness and diversity, indicated that only minor changes have occurred in many acid‐damaged lakes. Hierarchical partitioning identified several variables that may influence our univariate measures of recovery, including pH, dissolved organic carbon (DOC) levels, fish presence/absence, lake surface area and lake elevation. 5. Multivariate methods revealed a shift in communities through time towards a structure more typical of neutral lakes, providing some evidence for recovery. Variation partitioning suggested that the structure of recovering copepod communities was influenced most by dispersal processes and abiotic variables, while biotic (Chaoborus densities, fish presence/absence) and abiotic variables were more important for cladoceran zooplankton. 6. Our results indicate that the recovery of zooplankton communities in Killarney Park is not yet complete, despite decades of emission reductions. The importance of variables related to acidification, such as pH and DOC, indicates that further chemical recovery may be necessary. The differing importance of abiotic, biotic and dispersal processes for structuring copepod versus cladoceran zooplankton might indicate that different management approaches and expectations for recovery are needed for these groups.  相似文献   

16.
1. Classification of European lake fish assemblages can be based on fish‐assemblage structure or morphological, geographical, physical and chemical lake attributes. However, substantial gaps in knowledge exist with respect to the correspondence between both classification approaches. 2. Here, we compiled fish assemblage data from 165 lakes situated in the European ‘Central Plains’ ecoregion. Cluster analysis of fish abundances was performed to compare fish assemblage types of the entire ecoregion with those from previous country‐specific studies. Nonparametric group comparisons, classification trees and partial canonical ordinations were used to infer the correspondence between fish assemblage types and morphology, geographical position and nutrient concentration of the lakes. 3. Three distinct fish assemblages were revealed: vendace (Coregonus albula), ruffe (Gymnocephalus cernuus) and roach (Rutilus rutilus) lake types. Both latitude and lake depth were the best determinants of lake type, but total phosphorus (TP) concentrations were also important. Vendace lakes were deep and had low TP concentrations, whereas the shallower ruffe and roach lakes had higher TP values. Roach lakes were more frequent in the north‐west area of the ecoregion, whereas ruffe lakes were more often found south of the Baltic Sea. 4. Controlling for the influence of nutrient concentration showed that lake morphology and geographical position were important determinants of fish assemblages. However, the variance explained was low (<20%), implying that biological interactions may also be important in forming the lake‐specific fish assemblages. 5. The results suggest that fish assemblages differ between deep and shallow lakes, and between the north‐west and south‐east locations within the Central Plains ecoregion. Accordingly, establishment of depth‐related lake morphotypes is needed, and the European ecoregions recommended to be used in evaluation systems according to the Water Framework Directive seem to be too coarse to reflect the subtle differences of fish species richness along geographical gradients.  相似文献   

17.
Shallow eutrophic lakes commonly exist in two alternative stable states: a clear-water state and a turbid water state. A number of mechanisms, including both abiotic and biotic processes, buffer the respective states against changes, whereas other mechanisms likely drive transitions between states. Our earlier research shows that a large proportion of zooplanktivorous fish populations in shallow lakes undertake seasonal migrations where they leave the lake during winter and migrate back to the lake in spring. Based on our past research, we propose a number of scenarios of how feedback processes between the individual and ecosystem levels may affect stability of alternative stable states in shallow lakes when mediated by fish migration. Migration effects on shallow lakes result from processes at different scales, from the individual to the ecosystem. Our earlier research has shown that ecosystem properties, including piscivore abundance and zooplankton productivity, affect the individual state of zooplanktivorous fish, such as growth rate or condition. Individual state, in turn, affects the relative proportion and timing of migrating zooplanktivorous fish. This change, in turn, may stabilize states or cause runaway processes that eventually lead to state shifts. Consequently, such knowledge of processes coupled to seasonal migration of planktivorous fish should increase our understanding of shallow lake dynamics.  相似文献   

18.
Summary The structure and seasonal dynamics of phytoplankton communities in the littoral zone were compared between oligotrophic and eutrophic lakes in the southeastern United States. Differences in diversity and species composition between lakes could be ascribed to long-term variation in nutrients corresponding to trophic status. However, significant within-lake variation could not be accounted for by microstratification of nutrients or other abiotic variables. Local biotic factors, perhaps dominated by the spawning activities of centrarchid fishes, resuspend periphyton and generate tychoplankton which becomes a persistent and integral part of the phytoplankton community in eutrophic systems. The patchy distribution of these biotic factors and resultant tychoplankton may lead to the observed variation. Grazing by herbivorous zooplankton was considered to be the major factor affecting the relative abundance of phytoplankton in the littoral zone, completely overriding the effects of nutrient concentration and biotic interactions between phytoplankton species during spring and summer.The relative importance of tychoplankton and grazing as regulatory factors operates independently of the trophic status or geographical location of a lake, making comparisons of different studies difficult and perhaps meaningless if traditional analyses based only on nutrients and interactions between species of phytoplankton are used. Limnetic as well as littoral components must be considered in future studies of phytoplankton communities in the littoral zone.  相似文献   

19.
Between and within‐lake variations in morphology of perch Perca fluviatilis were studied in four humic lakes in eastern Finland. Perca fluviatilis were more streamlined and smaller headed in a lake with the highest abundance of cyprinids, but lowest abundance of predators (Lake Tuopanjärvi), indicating adaptation to planktivorous feeding and low predator density. Highest bodied fish were found from a lake with the lowest cyprinid but highest predator abundance (Lake Koppelojärvi), which conversely indicates adaptation to more effective predator avoidance. Furthermore, the length of the paired fins was longest in Lake Kinnasjärvi and Lake Tuopanjärvi, where the abundance of benthic macroinvertebrates was lowest, suggesting selection for more effective benthivory. Clear morphological differences of P. fluviatilis between habitats were found only in Lake Kinnasjärvi, whereas in Lake Koppelojärvi and Lake Tuopanjärvi only the length of the paired fins differed and in Lake Harkkojärvi no differences were found. Taken together, these results suggest that inter and intrapopulation morphological differences are probably highly dependent on different biotic factors (i.e. predation risk, resource availability and competition). Spatial and temporal variations in these factors may have a great effect on body morphology of P. fluviatilis.  相似文献   

20.
1. The zooplankton in Lake Kinneret (Israel) have undergone large fluctuations in recent decades, which have been linked to both biotic and abiotic processes. 2. By applying a data‐driven modelling approach to a long‐term database, and focusing on key abiotic (lake‐level change) and biotic (prey abundance) variables, we attempted to identify the possible factors impacting the lake’s zooplankton community. 3. We hypothesised that changes in the predatory zooplankton (adult cyclopoids) assemblage are driven by changes in lake level during years of large changes. We further postulated that lake‐level changes would have a similar impact on the herbivorous zooplankton (cladocerans and cyclopoid copepodites) but an opposite effect on the microzooplankton. In the years of moderate changes to lake level, however, the abundance of predatory zooplankton would determine the size of the herbivore and microzooplankton populations rather than their food sources, that is, top‐down control. 4. The resulting decision trees supported the hypotheses stressing the importance of the annual rate of lake‐level change in shaping the zooplankton community in the lake. In addition, and in contrast to expectations, bottom‐up processes seem to play a role in determining zooplankton abundance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号