首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phylogeographical studies are typically based on haplotype data, occasionally on nuclear markers such as microsatellites, but rarely combine both. This is unfortunate because the use of markers with contrasting modes of inheritance and rates of evolution might provide a more accurate and comprehensive understanding of a species' history. Here we present a detailed study of the phylogeography of the greater horseshoe bat, Rhinolophus ferrumequinum , using 1098 bp of the mitochondrial ND2 gene from 45 localities from across its Palaearctic range to infer population history. In addition, we re-analysed a large microsatellite data set available for this species and compared the results of both markers to infer population relationships and the historical processes influencing them. We show that mtDNA, the most popular marker in phylogeography studies, yielded a misleading result, and would have led us to conclude erroneously that a single expansion had taken place in Europe. Only by combining the mitochondrial and microsatellite data sets are we able to reconstruct the species' history and show two colonization events in Europe, one before the Last Glacial Maximum (LGM) and one after it. Combining markers also revealed the importance of Asia Minor as an ancient refugium for this species and a source population for the expansion of the greater horseshoe bat into Europe before the LGM.  相似文献   

2.
Recent studies have increasingly implicated deep (pre-Pleistocene) events as key in the vertebrate speciation, downplaying the importance of more recent (Pleistocene) climatic shifts. This work, however, has been based almost exclusively on evidence from molecular clock inferences of splitting dates. We present an independent perspective on this question, using ecological niche model reconstructions of Pleistocene Last Glacial Maximum (LGM) potential distributions for the Thrush-like Mourner (Schiffornis turdina) complex in the neotropics. LGM distributional patterns reconstructed from the niche models relate significantly to phylogroups identified in previous molecular systematic analyses. As such, patterns of differentiation and speciation in this complex are consistent with Pleistocene climate and geography, although further testing will be necessary to establish dates of origin firmly and unambiguously.  相似文献   

3.
The Last Glacial Maximum (LGM) severely restricted forest ecosystems on New Zealand’s South Island, but the extent of LGM distribution for forest species is still poorly understood. We used mitochondrial DNA phylogeography (COI) and ecological niche modelling (ENM) to identify LGM refugia for the mycophagous beetle Agyrtodes labralis (Leiodidae), a forest edge species widely distributed in the South Island. Both the phylogenetic analyses and the ENM indicate that A. labralis refuged in Kaikoura, Nelson, and along much of the South Island’s west coast. Phylogeography of this species indicates that recolonization of the largely deforested east and southeast South Island occurred in a west–east direction, with populations moving through the Southern Alps, and that the northern refugia participated little in interglacial population expansion. This contradicts published studies of other New Zealand species, in which recolonization occurs in a north–south fashion from many of the same refugia.  相似文献   

4.
This study investigated the Pleistocene history of a semi‐aquatic bug, Microvelia douglasi douglasi Scott, 1874 (Hemiptera: Veliidae) in East Asia. We used M. douglasi douglasi as a model species to explore the effects of historical climatic fluctuations on montane semi‐aquatic invertebrate species. Two hypotheses were developed using ecological niche models (ENMs). First, we hypothesized that M. douglasi douglasi persisted in suitable habitats in southern Guizhou, southern Yunnan, Hainan, Taiwan and southeast China during the LIG. After that, the populations expanded (Hypothesis 1). As the spatial prediction in the LGM was significantly larger than in the LIG, we then hypothesized that the population expanded during the LIG to LGM transition (Hypothesis 2). We tested these hypotheses using mitochondrial data (COI+COII) and nuclear data (ITS1 + 5.8S+ITS2). Young lineages, relatively deep splits, lineage differentiation among mountain ranges in central, south and southwest China and high genetic diversities were observed in these suitable habitats. Evidence of mismatch distributions and neutrality tests indicate that a population expansion occurred in the late Pleistocene. The Bayesian skyline plot (BSP) revealed an unusual population expansion that likely happened during the cooling transition between LIG and LGM. The results of genetic data were mostly consistent with the spatial predictions from ENM, a finding that can profoundly improve phylogeographic research. The ecological requirements of M. douglasi douglasi, together with the geographical heterogeneity and climatic fluctuations of Pleistocene in East Asia, could have shaped this unusual demographic history. Our study contributes to our knowledge of semi‐aquatic bug/invertebrate responses to Pleistocene climatic fluctuations in East Asia.  相似文献   

5.
Aim The goal of this study was to determine the extent of suitable habitats across the basins and ranges of the Great Basin for 13 montane mammals in the present and during the Last Glacial Maximum (LGM). For all these mammal species, we test whether: (1) more suitable habitat was available in basin areas during the LGM; (2) suitable habitat shifted upwards in elevation between the LGM and the present; (3) more ranges have suitable habitat than are currently occupied; and (4) these species are currently restricted to suitable habitats at higher‐elevation range areas. We also examine whether and how much distributional response varies among these montane mammal species. Location The Great Basin of western North America. Methods We re‐examine the past and present distributions of 13 Great Basin montane mammals using ecological niche modelling techniques that utilize now widely available species occurrence data and new, fine‐scale past climatological GIS layers in the present and at the LGM. These methods provide an objective, repeatable means for visual comparison of past and present modelled distributions for species examined in previous biogeographical studies. Results Our results indicate greater areal and lower elevational suitable habitat in the LGM than at present for nearly all montane mammals, and that there is more suitable habitat at present than is currently occupied. Our results also show that lowland areas provide suitable dispersal routes between ranges for most of the montane mammals both at the LGM and at present. However, three of the 13 species have little to no predicted suitable habitat in the LGM near currently occupied ranges, in contrast to the pattern for the other 10. For these species, the model results support more recent long‐distance colonization. Main conclusions Our finding of suitable lowland dispersal routes in the present for most species supports and greatly extends similar findings from single‐species studies. Our results also provide a visually striking confirmation that changes in species distribution and colonization histories of Great Basin montane mammals vary in a fashion related to the tolerances and requirements of each of these species; this has previously been hypothesized but not rigorously tested for multiple montane mammals in the region.  相似文献   

6.
7.
Aim Patterns of phylogeographical diversity in eastern North America have been well documented, with suggestions of Pleistocene refugia in both coastal and interior regions. However, most studies to date have assessed these patterns only qualitatively, largely through visual observation of haplotype networks. Furthermore, many plant studies use only one or two individuals per locality, which probably limits the recovery of haplotype diversity. The aim of this study is to address the issues of sampling strategy and quantitative assessment of phylogeographical patterns in an eastern North American tree, Fagus grandifolia (American beech). Location Eastern North America. Methods Comparing two sampling strategies (more localities with lower sample size within localities versus fewer localities with increased sample size within localities), we analysed chloroplast DNA sequence data from more than 230 individuals across 130 localities using statistical parsimony, maximum parsimony, maximum likelihood and Bayesian analyses. We then assessed support for inferred phylogenetic relationships using Monmonier’s algorithm and analysis of molecular variance. As an additional test of biogeographic hypotheses, we employed ecological niche models (ENMs), which are used to predict the geographic range of a species from occurrence data and environmental records. Here we predict both present and palaeodistributions. Results More haplotypes were recovered when more localities were sampled, but novel haplotypes and haplotype distributions were recovered using both strategies. Phylogeographical patterns suggest possible Pleistocene refugia along the Gulf and Atlantic coasts according to ENMs, as well as a more interior refugium according to Monmonier’s algorithm. Main conclusions Monmonier’s algorithm supports previous findings of an interior refugium in the Lower Mississippi River Valley/Upper Midwest, while ENMs indicate that the Gulf and Atlantic coasts may have provided the most suitable habitat for F. grandifolia during the Pleistocene. Our findings allow us to highlight the strengths and weaknesses of the two approaches. We propose that future phylogeographical studies should follow a step‐wise sampling strategy, balancing cost and expected outcomes.  相似文献   

8.
9.
Frequently, Pleistocene climatic cycling has been found to be the diver of genetic structuring in populations, even in areas that did not have continental ice sheets, such as on the Qinghai‐Tibetan Plateau (QTP). Typically, species distributed on the plateau have been hypothesized to re‐treat to south‐eastern refugia, especially during the Last Glacial Maximum (LGM). We evaluated sequence variation in the mitochondrial DNA gene Cytb and the nuclear DNA gene RAG‐1 in Rana kukunoris, a species endemic to the QTP. Two major lineages, N and S, were identified, and lineage N was further subdivided into N1 and N2. The geographical distribution and genealogical divergences supported the hypothesis of multiple refugia. However, major lineages and sublineages diverged prior to the LGM. Demographical expansion was detected only in lineage S and sublineage N2. Sublineage N1 might have survived several glacial cycles in situ and did not expand after the LGM because of the absence of suitable habitat; it survived in river islands. Genetic analysis and environment modelling suggested that the north‐eastern edge of QTP contained a major refugium for R. kukunoris. From here, lineage S dispersed southwards after the LGM. Two microrefugia in northern Qilian Mountains greatly contributed to current level of intraspecific genetic diversity. These results were found to have important implications for the habitat conservation in Northwest China.  相似文献   

10.
Aim Increasing our understanding of the effects of the Last Glacial Maximum (LGM) and determining the location of refugia requires studies on widely distributed species with dense sampling of populations. We have reconstructed the biogeographic history of Clitarchus hookeri (White), a widespread species of New Zealand stick insect that exhibits geographic parthenogenesis, using phylogeographic analysis and ecological niche modelling. Location New Zealand. Methods We used DNA sequence data from the mitochondrial cytochrome c oxidase subunit I gene to reconstruct phylogenetic relationships among haplotypes from C. hookeri and two undescribed Clitarchus species. We also used distribution data from our own field surveys and museum records to reconstruct the geographic distribution of C. hookeri during the present and the LGM, using ecological niche modelling. Results The ecological niche models showed that the geographic distribution of C. hookeri has expanded dramatically since the LGM. Our model predicted large areas of suitable LGM habitat in upper North Island, and small patches along the east coast of South Island. The phylogeographic analysis shows that populations in the northern half of North Island contain much higher levels of genetic variation than those from southern North Island and South Island, and is congruent with the ecological niche model. The distribution of bisexual populations is also non-random, with males completely absent from South Island and very rare in southern North Island. Main conclusions During the LGM C. hookeri was most likely restricted to several refugia in upper North Island and one or more smaller refugia along the east coast of South Island. The unisexual populations predominate in post-glacial landscapes and are clearly favoured in the recolonization of such areas. Our study exemplifies the utility of integrating ecological niche modelling and phylogeographic analysis.  相似文献   

11.
12.
13.
The Hordeum marinum species group consists of two annual grasses of western Eurasian saline meadows or marshes. The two grasses split in the Quaternary about two million years ago. Hordeum marinum and the diploid of Hordeum gussoneanum (2x) co-occur throughout the Mediterranean basin, while the autotetraploid cytotype of H. gussoneanum (4x) overlaps with its diploid progenitor geographically only in the utmost Eastern Mediterranean, extending from there eastwards into Asia. Using chloroplast sequences of the trnL-F region, six newly developed chloroplast microsatellite loci, ecological predictive models based on climate data, and the present geographical distribution of the two species we analysed differentiation processes in the H. marinum group. The chloroplast data indicated clear differences in the history of both species. For H. marinum we found a subdivision between genetically variable populations from the Iberian Peninsula and the more uniform populations from the remaining Mediterranean. As an explanation, we assume Pleistocene fragmentation of an earlier widespread population and survival in an Iberian and a Central Mediterranean glacial refuge. Chloroplast variation was completely absent within the cytotypes of H. gussoneanum, indicating a severe and recent genetic bottleneck. Due to this lack of chloroplast variation only the combination of ecological habitat modelling with molecular data analyses allowed conclusions about the history of this taxon. The distribution areas of the two cytotypes of H. gussoneanum overlap today in parts of Turkey, indicating an area with similar climate conditions during polyploid formation. However, after its origin the polyploid cytotype underwent a pronounced ecological shift, compared to its diploid progenitor, allowing it to colonize mountainous inland habitats between the Mediterranean basin and Afghanistan. The extant sympatric occurrence of H. marinum and H. gussoneanum 2x in the Mediterranean region is interpreted as a result of secondary contact after fast Holocene range expansion out of different ice age refugia.  相似文献   

14.
15.
16.
Environmental processes govern demography, species movements, community turnover and diversification and yet in many respects these dynamics are still poorly understood at high latitudes. We investigate the combined effects of climate change and geography through time for a widespread Holarctic shrew, Sorex tundrensis. We include a comprehensive suite of closely related outgroup taxa and three independent loci to explore phylogeographic structure and historical demography. We then explore the implications of these findings for other members of boreal communities. The tundra shrew and its sister species, the Tien Shan shrew (Sorex asper), exhibit strong geographic population structure across Siberia and into Beringia illustrating local centres of endemism that correspond to Late Pleistocene refugia. Ecological niche predictions for both current and historical distributions indicate a model of persistence through time despite dramatic climate change. Species tree estimation under a coalescent process suggests that isolation between populations has been maintained across timeframes deeper than the periodicity of Pleistocene glacial cycling. That some species such as the tundra shrew have a history of persistence largely independent of changing climate, whereas other boreal species shifted their ranges in response to climate change, highlights the dynamic processes of community assembly at high latitudes.  相似文献   

17.
Here, we present a study of the Pipistrellus pipistrellus species complex, a highly diversified bat group with a radiation centre in the Mediterranean biodiversity hotspot. The study sample comprised 583 animals from 118 localities representatively covering the bats' range in the western Palearctic. We used fast-evolving markers (the mitochondrial D-loop sequence and 11 nuclear microsatellites) to describe the phylogeography, demography and population structure of this model taxon and address details of its diversification. The overall pattern within this group includes a mosaic of phylogenetically basal, often morphologically distant, relatively small and mostly allopatric demes in the Mediterranean Basin, as well as two sympatric sibling species in the large continental part of the range. The southern populations exhibit constant size, whereas northern populations show a demographic trend of growth associated with range expansion during the Pleistocene climate oscillations. There is evidence of isolation by distance and female philopatry in P. pipistrellus sensu stricto. Although the northern populations are reproductively isolated, we detected introgression events among several Mediterranean lineages. This pattern implies incomplete establishment of reproductive isolating mechanisms in these populations as well as the existence of a past reinforcement stage in the continental siblings. The occurrence of reticulations in the radiation centre among morphologically and ecologically derived relict demes suggests that adaptive unequal gene exchange within hybridizing populations could play a role in speciation and adaptive radiation within this group.  相似文献   

18.
The evolutionary history of invasive species within their native range may involve key processes that allow them to colonize new habitats. Therefore, phylogeographic studies of invasive species within their native ranges are useful to understand invasion biology in an evolutionary context. Here we integrated classical and Bayesian phylogeographic methods using mitochondrial and nuclear DNA markers with a palaeodistribution modelling approach, to infer the phylogeographic history of the invasive ant Wasmannia auropunctata across its native distribution in South America. We discuss our results in the context of the recent establishment of this mostly tropical species in the Mediterranean region. Our Bayesian phylogeographic analysis suggests that the common ancestor of the two main clades of W. auropunctata occurred in central Brazil during the Pliocene. Clade A would have differentiated northward and clade B southward, followed by a secondary contact beginning about 380 000 years ago in central South America. There were differences in the most suitable habitats among clades when considering three distinct climatic periods, suggesting that genetic differentiation was accompanied by changes in niche requirements, clade A being a tropical lineage and clade B a subtropical and temperate lineage. Only clade B reached more southern latitudes, with a colder climate than that of northern South America. This is concordant with the adaptation of this originally tropical ant species to temperate climates prior to its successful establishment in the Mediterranean region. This study highlights the usefulness of exploring the evolutionary history of invasive species within their native ranges to better understand biological invasions.  相似文献   

19.
The phylogeography of common and widespread species helps to elucidate the history of local flora and vegetation. In this study, we selected Cotinus coggygria, a species widely distributed in China's warm‐temperate zone. One chloroplast DNA (cpDNA) region and ecological niche modelling were used to examine the phylogeographic pattern of C. coggygria. The cpDNA data revealed two phylogeographic groups (Southern and Northern) corresponding to the geographic regions. Divergence time analyses revealed that divergence of the two groups occurred at approximately 147,000 years before the present (BP), which coincided with the formation of the downstream area of the Yellow River, indicating that the Yellow River was a weak phylogeographic divide for C. coggygria. The molecular data and ecological niche modelling also indicated that C. coggyria did not experience population expansion after glaciations. This study thus supports the fact that Pleistocene glacial cycles only slightly affected C. coggygria, which survived in situ and occupied multiple localised glacial refugia during glaciations. This finding is contrary to the hypothesis of large‐scale range habitat contraction and retreat into a few main refugia.  相似文献   

20.
The spiny thicket of southwestern Madagascar represents an extreme and ancient landscape with extraordinary levels of biodiversity and endemism. Few hypotheses exist for explaining speciation in the region and few plant studies have explored hypotheses for species diversification. Here, we investigate three species in the endemic genus Megistostegium (Malvaceae) to evaluate phylogeographic structure and explore the roles of climate, soil, and paleoclimate oscillations on population divergence and speciation throughout the region. We combine phylogenetic and phylogeographic inference of RADseq data with ecological niche modeling across space and time. Population structure is concurrent with major rivers in the region and we identify a new, potentially important biogeographic break coincident with several landscape features. Our data further suggests that niches occupied by species and populations differ substantially across their distribution. Paleodistribution modeling provide evidence that past climatic change could be responsible for the current distribution, population structure, and maintenance of species in Megistostegium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号