首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peripheral tethering factors bind to small GTPases in order to obtain their correct location within the Golgi apparatus. Using fluorescence resonance energy transfer (FRET) and fluorescence lifetime imaging microscopy (FLIM) we visualized interactions between Arabidopsis homologues of tethering factors and small GTPases at the Golgi stacks in planta . Co-expression of the coiled-coil proteins AtGRIP and golgin candidate 5 (GC5) [TATA element modulatory factor (TMF)] and the putative post-Golgi tethering factor AtVPS52 fused to green fluorescent protein (GFP) with mRFP (monomeric red fluorescent protein) fusions to the small GTPases AtRab-H1b, AtRab-H1c and AtARL1 resulted in reduced GFP lifetimes compared to the control proteins. Interestingly, we observed differences in GFP quenching between the different protein combinations as well as selective quenching of GFP-AtVPS52-labelled structures. The data presented here indicate that the FRET-FLIM technique should prove invaluable in assessing protein interactions in living plant cells at the organelle level.  相似文献   

2.
The green fluorescent protein (GFP) has proven to be an excellent fluorescent marker for protein expression and localisation in living cells [1] [2] [3] [4] [5]. Several mutant GFPs with distinct fluorescence excitation and emission spectra have been engineered for intended use in multi-labelling experiments [6] [7] [8] [9]. Discrimination of these co-expressed GFP variants by wavelength is hampered, however, by a high degree of spectral overlap, low quantum efficiencies and extinction coefficients [10], or rapid photobleaching [6]. Using fluorescence lifetime imaging microscopy (FLIM) [11] [12] [13] [14] [15] [16], four GFP variants were shown to have distinguishable fluorescence lifetimes. Among these was a new variant (YFP5) with spectral characteristics reminiscent of yellow fluorescent protein [8] and a comparatively long fluorescence lifetime. The fluorescence intensities of co-expressed spectrally similar GFP variants (either alone or as fusion proteins) were separated using lifetime images obtained with FLIM at a single excitation wavelength and using a single broad band emission filter. Fluorescence lifetime imaging opens up an additional spectroscopic dimension to wavelength through which novel GFP variants can be selected to extend the number of protein processes that can be imaged simultaneously in cells.  相似文献   

3.
Ca2+/calmodulin-dependent protein kinase II (CaMKII) is highly enriched in excitatory synapses in the central nervous system and is critically involved in synaptic plasticity, learning, and memory. However, the precise temporal and spatial regulation of CaMKII activity in living cells has not been well described, due to lack of a specific method. Here, based on our previous work, we attempted to generate an optical probe for fluorescence lifetime imaging (FLIM) of CaMKII activity by fusing the protein with donor and acceptor fluorescent proteins at its amino- and carboxyl-termini. We first optimized the combinations of fluorescent proteins by taking advantage of expansion of fluorescent proteins towards longer wavelength in fluorospectrometric assay. Then using digital frequency domain FLIM (DFD-FLIM), we demonstrated that the resultant protein can indeed detect CaMKII activation in living cells. These FLIM versions of Camui could be useful for elucidating the function of CaMKII both in vitro and in vivo.  相似文献   

4.
Fluorescence resonance energy transfer (FRET) detection in fusion constructs consisting of green fluorescent protein (GFP) variants linked by a sequence that changes conformation upon modification by enzymes or binding of ligands has enabled detection of physiological processes such as Ca(2+) ion release, and protease and kinase activity. Current FRET microscopy techniques are limited to the use of spectrally distinct GFPs such as blue or cyan donors in combination with green or yellow acceptors. The blue or cyan GFPs have the disadvantages of less brightness and of autofluorescence. Here a FRET imaging method is presented that circumvents the need for spectral separation of the GFPs by determination of the fluorescence lifetime of the combined donor/acceptor emission by fluorescence lifetime imaging microscopy (FLIM). This technique gives a sensitive, reproducible, and intrinsically calibrated FRET measurement that can be used with the spectrally similar and bright yellow and green fluorescent proteins (EYFP/EGFP), a pair previously unusable for FRET applications. We demonstrate the benefits of this approach in the analysis of single-cell signaling by monitoring caspase activity in individual cells during apoptosis.  相似文献   

5.
Global analysis of fluorescence lifetime imaging microscopy data   总被引:6,自引:0,他引:6       下载免费PDF全文
Global analysis techniques are described for frequency domain fluorescence lifetime imaging microscopy (FLIM) data. These algorithms exploit the prior knowledge that only a limited number of fluorescent molecule species whose lifetimes do not vary spatially are present in the sample. Two approaches to implementing the lifetime invariance constraint are described. In the lifetime invariant fit method, each image in the lifetime image sequence is spatially averaged to obtain an improved signal-to-noise ratio. The lifetime estimations from these averaged data are used to recover the fractional contribution to the steady-state fluorescence on a pixel-by-pixel basis for each species. The second, superior, approach uses a global analysis technique that simultaneously fits the fractional contributions in all pixels and the spatially invariant lifetimes. In frequency domain FLIM the maximum number of lifetimes that can be fit with the global analysis method is twice the number of lifetimes that can be fit with conventional approaches. As a result, it is possible to discern two lifetimes with a single-frequency FLIM setup. The algorithms were tested on simulated data and then applied to separate the cellular distributions of coexpressed green fluorescent proteins in living cells.  相似文献   

6.
Fluorescence lifetime imaging microscopy (FLIM) is a quantitative microscopy technique for imaging nanosecond decay times of fluorophores. In the case of frequency-domain FLIM, several methods have been described to resolve the relative abundance of two fluorescent species with different fluorescence decay times. Thus far, single-frequency FLIM methods generally have been limited to quantifying two species with monoexponential decay. However, multiexponential decays are the norm rather than the exception, especially for fluorescent proteins and biological samples. Here, we describe a novel method for determining the fractional contribution in each pixel of an image of a sample containing two (multiexponentially) decaying species using single-frequency FLIM. We demonstrate that this technique allows the unmixing of binary mixtures of two spectrally identical cyan or green fluorescent proteins, each with multiexponential decay. Furthermore, because of their spectral identity, quantitative images of the relative molecular abundance of these fluorescent proteins can be generated that are independent of the microscope light path. The method is rigorously tested using samples of known composition and applied to live cell microscopy using cells expressing multiple (multiexponentially decaying) fluorescent proteins.  相似文献   

7.
8.
Intermolecular and intramolecular FRET between two spectrally overlapping green fluorescent protein variants fused to two different host proteins or at two different sites within the same protein offers a unique opportunity to monitor real-time protein-protein interactions or protein conformational changes. By using fluorescence digital imaging microscopy, one can visualize the location of green fluorescent proteins within a living cell and follow the time course of the changes in FRET corresponding to cellular events at a millisecond time resolution. The observation of such dynamic molecular events in vivo provides vital insight into the action of biological molecules.  相似文献   

9.
Using two-photon-induced fluorescence lifetime imaging microscopy, we corroborate an interaction (previously demonstrated by yeast two-hybrid domain analysis) of full-length vaccinia virus (VACV; an orthopoxvirus) A36 protein with the cellular microtubule motor protein kinesin. Quenching of enhanced green fluorescent protein (EGFP), fused to the C terminus of VACV A36, by monomeric red fluorescent protein (mDsRed), fused to the tetratricopeptide repeat (TPR) domain of kinesin, was observed in live chicken embryo fibroblasts infected with either modified vaccinia virus Ankara (MVA) or wild-type fowlpox virus (FWPV; an avipoxvirus), and the excited-state fluorescence lifetime of EGFP was reduced from 2.5 ± 0.1 ns to 2.1 ± 0.1 ns due to resonance energy transfer to mDsRed. FWPV does not encode an equivalent of intracellular enveloped virion surface protein A36, yet it is likely that this virus too must interact with kinesin to facilitate intracellular virion transport. To investigate possible interactions between innate FWPV proteins and kinesin, recombinant FWPVs expressing EGFP fused to the N termini of FWPV structural proteins Fpv140, Fpv168, Fpv191, and Fpv198 (equivalent to VACV H3, A4, p4c, and A34, respectively) were generated. EGFP fusions of intracellular mature virion (IMV) surface protein Fpv140 and type II membrane protein Fpv198 were quenched by mDsRed-TPR in recombinant FWPV-infected cells, indicating that these virion proteins are found within 10 nm of mDsRed-TPR. In contrast, and as expected, EGFP fusions of the IMV core protein Fpv168 did not show any quenching. Interestingly, the p4c-like protein Fpv191, which demonstrates late association with preassembled IMV, also did not show any quenching.  相似文献   

10.
Quantitative imaging of protein interactions in the cell nucleus   总被引:2,自引:0,他引:2  
Voss TC  Demarco IA  Day RN 《BioTechniques》2005,38(3):413-424
Over the past decade, genetically encoded fluorescent proteins have become widely used as noninvasive markers in living cells. The development of fluorescent proteins, coupled with advances in digital imaging, has led to the rapid evolution of live-cell imaging methods. These approaches are being applied to address biological questions of the recruitment, co-localization, and interactions of specific proteins within particular subcellular compartments. In the wake of this rapid progress, however, come important issues associated with the acquisition and analysis of ever larger and more complex digital imaging data sets. Using protein localization in the mammalian cell nucleus as an example, we will review some recent developments in the application of quantitative imaging to analyze subcellular distribution and co-localization of proteins in populations of living cells. In this report, we review the principles of acquiring fluorescence resonance energy transfer (FRET) microscopy measurements to define the spatial relationships between proteins. We then discuss how fluorescence lifetime imaging microscopy (FLIM) provides a method that is independent of intensity-based measurements to detect localized protein interactions with spatial resolution. Finally, we consider potential problems associated with the expression of proteins fused to fluorescent proteins for FRET-based measurements from living cells.  相似文献   

11.
We show that fluorescence lifetime imaging microscopy (FLIM) of green fluorescent protein (GFP) molecules in cells can be used to report on the local refractive index of intracellular GFP. We expressed GFP fusion constructs of Rac2 and gp91phox, which are both subunits of the phagocyte NADPH oxidase enzyme, in human myeloid PLB-985 cells and showed by high-resolution confocal fluorescence microscopy that GFP-Rac2 and GFP-gp91phox are targeted to the cytosol and to membranes, respectively. Frequency-domain FLIM experiments on these PLB-985 cells resulted in average fluorescence lifetimes of 2.70 ns for cytosolic GFP-Rac2 and 2.31 ns for membrane-bound GFP-gp91phox. By comparing these lifetimes with a calibration curve obtained by measuring GFP lifetimes in PBS/glycerol mixtures of known refractive index, we found that the local refractive indices of cytosolic GFP-Rac2 and membrane-targeted GFP-gp91phox are ∼1.38 and ∼1.46, respectively, which is in good correspondence with reported values for the cytosol and plasma membrane measured by other techniques. The ability to measure the local refractive index of proteins in living cells by FLIM may be important in revealing intracellular spatial heterogeneities within organelles such as the plasma and phagosomal membrane.  相似文献   

12.
Summary FLIM (Fluorescence Lifetime Imaging Microscopy) is a new tool to detect interaction between proteins. The proteins under investigation are fused with fluorescent donor and acceptor molecules. Interaction between the two proteins is accompanied by direct energy transfer from donor to acceptor (FRET), resulting in a shorter lifetime of the fluorescence emitted by the donor molecule. This change in lifetime is detected by FLIM. Fluorescence lifetime imaging can now be done on a widefield fluorescence microscope by using an attachment that is easy to install and simple to operate. The new LIFA attachment is equipped to use different excitation sources. High brightness modulated LEDs as well as lasers modulated by an Accousto Optical Modulator can be used as excitation light source. A modulated image intensifier with digital camera is used as a detector. Power supplies and signal generator are integrated in one control unit that is connected to the light source, detector and computer. All parameters for image acquisition, processing and viewing are easy accessible in the user interface of the software package that uses a modular structure. Lifetime images showing FRET in MCF7 cells with ErbB1-GFP as donor and Py72/Cy3 as acceptor that were taken at EMBL, Heidelberg are shown.  相似文献   

13.
Förster resonance energy transfer (FRET) is a powerful method for obtaining information about small-scale lengths between biomacromolecules. Visible fluorescent proteins (VFPs) are widely used as spectrally different FRET pairs, where one VFP acts as a donor and another VFP as an acceptor. The VFPs are usually fused to the proteins of interest, and this fusion product is genetically encoded in cells. FRET between VFPs can be determined by analysis of either the fluorescence decay properties of the donor molecule or the rise time of acceptor fluorescence. Time-resolved fluorescence spectroscopy is the technique of choice to perform these measurements. FRET can be measured not only in solution, but also in living cells by the technique of fluorescence lifetime imaging microscopy (FLIM), where fluorescence lifetimes are determined with the spatial resolution of an optical microscope. Here we focus attention on time-resolved fluorescence spectroscopy of purified, selected VFPs (both single VFPs and FRET pairs of VFPs) in cuvette-type experiments. For quantitative interpretation of FRET–FLIM experiments in cellular systems, details of the molecular fluorescence are needed that can be obtained from experiments with isolated VFPs. For analysis of the time-resolved fluorescence experiments of VFPs, we have utilised the maximum entropy method procedure to obtain a distribution of fluorescence lifetimes. Distributed lifetime patterns turn out to have diagnostic value, for instance, in observing populations of VFP pairs that are FRET-inactive.  相似文献   

14.
15.
Transformants of Aspergillus flavus containing the Aequorea victoria gfp gene fused to a viral promoter or the promoter region and 483 bp of the coding region of A. flavus aflR expressed green fluorescence detectable without a microscope or filters. Expression of green fluorescent protein fluorescence was correlated with resistance to aflatoxin accumulation in five corn genotypes inoculated with these transformants.  相似文献   

16.
We present single‐molecule fluorescence data of fluorescent proteins GFP, YFP, DsRed, and mCherry, a new derivative of DsRed. Ensemble and single‐molecule fluorescence experiments proved mCherry as an ideally suited fluorophore for single‐molecule applications, demonstrated by high photostability and rare fluorescence‐intensity fluctuations. Although mCherry exhibits the lowest fluorescence quantum yield among the fluorescent proteins investigated, its superior photophysical characteristics suggest mCherry as an ideal alternative in single‐molecule fluorescence experiments. Due to its spectral characteristics and short fluorescence lifetime of 1.46 ns, mCherry complements other existing fluorescent proteins and is recommended for tracking and localization of target molecules with high accuracy, fluorescence resonance energy transfer (FRET), fluorescence lifetime imaging microscopy (FLIM), or multicolor applications. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
Yang GX  Liu TL  Zhang H  Wu CQ  Shen DL 《Genetika》2006,42(7):893-897
The human bradykinin B2 receptor (B2R) fused with green fluorescent protein (GFP) at the C-terminal has been expressed in the methylotrophic yeast of Pichia pastoris. In the expression vector, B2R gene was drove under the highly inducible promoter of alcohol oxidase 1 gene of P. pastoris. By fluorescence activated cell sorting (FACS) analysis and western blot analysis, it was proved that B2R recombinant receptor proteins were expressed at high level in the yeast. Further more, the transformants of P. pastoris were monitored with confocal microscopy, a strong green fluorescence was checked out. The recombinant B2R receptor proteins were mainly located on the plasma membrane proved by immunofluorescence microscopy.  相似文献   

18.
An improved native polyacrylamide gel electrophoresis (PAGE) method capable of evaluating the hydrodynamic states of membrane proteins and allowing in-gel fluorescence detection was established. In this method, bis(alkyl) sulfosuccinate is used to provide negative charges for detergent-solubilized membrane proteins to facilitate proper electrophoretic migration without disturbing their native hydrodynamic states. The method achieved high-resolution electrophoretic separation, in good agreement with the elution profiles obtained by size exclusion chromatography. The applicability of in-gel fluorescence detection for tagged green fluorescent protein (GFP) facilitates the analysis of samples without any purification. This method might serve as a general analytical technique for assessing the folding, oligomerization, and protein complex formation of membrane proteins.  相似文献   

19.
BACKGROUND: Fluorescence lifetime microscopy (FLIM) is currently one of the best techniques to perform accurate measurements of interactions in living cells. It is independent of the fluorophore concentration, thus avoiding several common artifacts found in F?rster Resonance Energy Transfer (FRET) imaging. However, for FLIM to achieve high performance, a rigorous instrumental setup and characterization is needed. METHODS: We use known fluorophores to perform characterization experiments in our instrumental setup. This allows us to verify the accuracy of the fluorescence lifetime determination, and test the linearity of the instrument by fluorescence quenching. RESULTS: We develop and validate here a protocol for rigorous characterization of time-domain FLIM instruments. Following this protocol, we show that our system provides accurate and reproducible measurements. We also used HeLa cells expressing proteins fused to Green Fluorescent Proteins variants (CFP and YFP) to confirm its ability to detect interactions in living cells by FRET. CONCLUSIONS: We report a well-designed protocol in which precise and reproducible lifetime measurements can be performed. It is usable for all confocal-based FLIM instruments and is a useful tool for anyone who wants to perform quantitative lifetime measurements, especially when studying interactions in living cells using FRET.  相似文献   

20.
Autographa californica multiple nucleopolyhedrovirus (AcMNPV) replicates in the nucleus of insect cells to produce nucleocapsids, which are transported from the nucleus to the plasma membrane for budding through GP64-enriched areas to form budded viruses. However, little is known about the anterograde trafficking of baculovirus nucleocapsids in insect cells. Preliminary confocal scanning laser microscopy studies showed that enhanced green fluorescent protein (EGFP)-tagged nucleocapsids and capsid proteins aligned and colocalized with the peripheral microtubules of virus-infected insect cells. A colchicine inhibition assay of virus-infected insect cells showed a significant reduction in budded virus production, providing further evidence for the involvement of microtubules and suggesting a possible role of kinesin in baculovirus anterograde trafficking. We investigated the interaction between AcMNPV nucleocapsids and kinesin-1 with fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy (FRET-FLIM) and show for the first time that AcMNPV capsid proteins VP39 and EXON0, but not Orf1629, interact with the tetratricopeptide repeat (TPR) domain of kinesin. The excited-state fluorescence lifetime of EGFP fused to VP39 or EXON0 was quenched from 2.4 ± 1 ns to 2.1 ± 1 ns by monomeric fluorescent protein (mDsRed) fused to TPR (mDsRed-TPR). However, the excited-state fluorescence lifetime of an EGFP fusion of Orf1629 remained unquenched by mDsRed-TPR. These data indicate that kinesin-1 plays an important role in the anterograde trafficking of baculovirus in insect cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号