首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 15 毫秒
1.
Abiotic stressors such as drought, salinity, and exposure to heavy metals can induce epigenetic changes in plants. In this study, liquid chromatography (RP-HPLC), methylation amplified fragment length polymorphisms (metAFLP), and methylation-sensitive amplification polymorphisms (MSAP) analysis was used to investigate the effects of aluminum (Al) stress on DNA methylation levels in the crop species triticale. RP-HPLC, but not metAFLP or MSAP, revealed significant differences in methylation between Al-tolerant (T) and non-tolerant (NT) triticale lines. The direction of methylation change was dependent on phenotype and organ. Al treatment increased the level of global DNA methylation in roots of T lines by approximately 0.6%, whereas demethylation of approximately 1.0% was observed in NT lines. DNA methylation in leaves was not affected by Al stress. The metAFLP and MSAP approaches identified DNA alterations induced by Al3+ treatment. The metAFLP technique revealed sequence changes in roots of all analyzed triticale lines and few mutations in leaves. MSAP showed that demethylation of CCGG sites reached approximately 3.97% and 3.75% for T and NT lines, respectively, and was more abundant than de novo methylation, which was observed only in two tolerant lines affected by Al stress. Three of the MSAP fragments showed similarity to genes involved in abiotic stress.  相似文献   

2.
With the help of quantum mechanical calculations, we have examined the series of central system X(ML)3 +(X = O, S, Se; M = Au, Ag, Cu). Using a scalar–relativistic density functional approach, we studied the geometry structures, Mulliken populations and charges of the systems. Structure parameters of the experimental systems are reproduced well with Xα method. The metallophilic interaction energy is analyzed and decomposed. For the systems with different central atoms and different metal atoms, the nature of the metallophilic attraction interaction is analyzed.  相似文献   

3.
The microsecond time-scale motions in the N-terminal domain of cardiac troponin C (NcTnC) loaded with lanthanide ions have been investigated by means of a (1)H(N) off-resonance spin-lock experiment. The observed relaxation dispersion effects strongly increase along the series of NcTnC samples containing La(3+), Ce(3+), and Pr(3+) ions. This rise in dispersion effects is due to modulation of long-range pseudocontact shifts by micros time-scale dynamics. Specifically, the motion in the coordination sphere of the lanthanide ion (i.e. in the NcTnC EF-hand motif) causes modulation of the paramagnetic susceptibility tensor which, in turn, causes modulation of pseudocontact shifts. It is also probable that opening/closing dynamics, previously identified in Ca(2+)-NcTnC, contributes to some of the observed dispersions. On the other hand, it is unlikely that monomer-dimer exchange in the solution of NcTnC is directly responsible for the dispersion effects. Finally, on-off exchange of the lanthanide ion does not seem to play any significant role. The amplification of dispersion effects by Ln(3+) ions is a potentially useful tool for studies of micros-ms motions in proteins. This approach makes it possible to observe the dispersions even when the local environment of the reporting spin does not change. This happens, for example, when the motion involves a 'rigid' structural unit such as individual alpha-helix. Even more significantly, the dispersions based on pseudocontact shifts offer better chances for structural characterization of the dynamic species. This method can be generalized for a large class of applications via the use of specially designed lanthanide-binding tags.  相似文献   

4.
Selected intrinsic aspects of the mode of action of 3-N-morpholinosydnonimine (SIN-1) and its follow-up products are investigated by means of density functional theory. Besides the well known radical-cationic Feelisch–Schoenafinger pathway, an alternative anionic route via a neutral radical is proposed and included in the study. The individual reaction pathways are followed. Most notably, the overall activation barrier for the cationic route is calculated to be 184.04 kcal mol–1, while the one for the anionic route is predicted to be more favorable with 14.09 kcal mol–1.Figure A mere conformational change is predicted by DFT theory to elicit NO ejection from the SIN-1a radical cation, formed after one electron oxidation of the N-nitrosohydrazine SIN-1a.
Roy U. Rojas WahlEmail: Phone: +1-201-836-1714
  相似文献   

5.
Understanding the bond-cleavage ability of metal clusters is very important in various fields, such as catalysis and surface science. In this work, we performed density functional theory calculations on the first dehydrogenation process (also the key step) of methanol on Ptn q (n = 1–3, q = 0, +1, ?1) clusters in varied charge states using quantum chemical calculations. It is shown that methanol is adsorbed much more easily to the cationic Ptn + than to the neutral and anionic Ptn 0/?. By contrast, the intrinsic bond cleavage barriers of both C–H and O–H on the cationic Ptn + are significantly higher than on Ptn 0/? (the only exception is the C–H bond cleavage on Pt+). Promisingly, injecting an electron to the neutral Ptn 0 to give Ptn ? can greatly reduce the C–H/O–H bond scission barrier while maintaining appreciable adsorption energy. The charging effect can be nicely interpreted by the nature of the frontier orbitals of Ptn q.  相似文献   

6.
The most stable structures and electronic properties of TmSi n (n?=?3–10) clusters and their anions have been probed by using the ABCluster global search technique combined with the PBE, TPSSh, and B3LYP density functional methods. The results revealed that the most stable structures of neutral TmSi n and their anions can be regarded as substituting a Si atom of the ground state structure of Si n?+?1 with a Tm atom. The reliable AEAs, VDEs and simulated PES of TmSi n (n?=?3–10) are presented. Calculations of HOMO-LUMO gap revealed that introducing Tm atom to Si cluster can improve photochemical reactivity of the cluster. The NPA analyses indicated that the 4f electron of Tm atom in TmSi n (n?=?3–10) and their anions do not participate in bonding. The total magnetic moments of TmSi n are mainly provided by the 4f electrons of Tm atom. The dissociation energy of Tm atom from the most stable structure of TmSi n and their anions has been calculated to examine relative stability.  相似文献   

7.
This work describes a DFT level theoretical quantum study using the B3LYP functional with the Lanl2TZ(f)/6-31G* basis set to calculate parameters including the bond distances and angles, electronic configurations, interaction energies, and vibrational frequencies of FeTClTAA (iron-tetrachloro-tetraaza[14]annulene), FeTOHTAA (iron-tetrahydroxy-tetraaza[14]annulene), FeTOCH3TAA (iron- tetramethoxy-tetraaza[14]annulene), FeTNH2TAA (iron-tetraamino-tetraaza[14]annulene), and FeTNO2TAA (iron-tetranitro-tetraaza[14]annulene) complexes, as well as their different spin multiplicities. The calculations showed that the complexes were most stable in the triplet spin state (S?=?1), while, after interaction with carbon monoxide, the singlet state was most stable. The reactivity of the complexes was evaluated using HOMO–LUMO gap calculations. Parameter correlations were performed in order to identify the best complex for back bonding (3d xzFe?→?2p xC and 3d yzFe?→?2p zC) with carbon monoxide, and the degree of back bonding increased in the order: FeTNO2TAA?<?FeTClTAA?<?FeTOHTAA?<?FeTOCH3TAA?<?FeTNH2TAA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号