首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 188 毫秒
1.
Evolutionary biologists have often assumed that ecological generalism comes at the expense of less intense exploitation of specific resources and that this trade-off will promote the evolution of ecologically specialized daughter species. Using a phylogenetic comparative approach with butterflies as a model system, we test hypotheses that incorporate changes in niche breadth and location into explanations of the taxonomic diversification of insect herbivores. Specifically, we compare the oscillation hypothesis, where speciation is driven by host-plant generalists giving rise to specialist daughter species, to the musical chairs hypothesis, where speciation is driven by host-plant switching, without changes in niche breadth. Contrary to the predictions of the oscillation hypothesis, we recover a negative relationship between host-plant breadth and diversification rate and find that changes in host breadth are seldom coupled to speciation events. By contrast, we present evidence for a positive relationship between rates of host switching and butterfly diversification, consonant with the musical chairs hypothesis. These results suggest that the costs of trophic generalism in plant-feeding insects may have been overvalued and that transitions from generalists to ecological specialists may not be an important driver of speciation in general.  相似文献   

2.
The exact nature of the relationship among species range sizes, speciation, and extinction events is not well understood. The factors that promote larger ranges, such as broad niche widths and high dispersal abilities, could increase the likelihood of encountering new habitats but also prevent local adaptation due to high gene flow. Similarly, low dispersal abilities or narrower niche widths could cause populations to be isolated, but such populations may lack advantageous mutations due to low population sizes. Here we present a large-scale, spatially explicit, individual-based model addressing the relationships between species ranges, speciation, and extinction. We followed the evolutionary dynamics of hundreds of thousands of diploid individuals for 200,000 generations. Individuals adapted to multiple resources and formed ecological species in a multidimensional trait space. These species varied in niche widths, and we observed the coexistence of generalists and specialists on a few resources. Our model shows that species ranges correlate with dispersal abilities but do not change with the strength of fitness trade-offs; however, high dispersal abilities and low resource utilization costs, which favored broad niche widths, have a strong negative effect on speciation rates. An unexpected result of our model is the strong effect of underlying resource distributions on speciation: in highly fragmented landscapes, speciation rates are reduced.  相似文献   

3.
Can a population evolved in two resources reach the same fitness in both as specialist populations evolved in each of the individual resources? This question is central to theories of ecological specialization, the maintenance of genetic variation, and sympatric speciation, yet relatively few experiments have examined costs of generalism over long‐term adaptation. We tested whether selection in environments containing two resources limits a population's ability to adapt to the individual resources by comparing the fitness of replicate Escherichia coli populations evolved for 6000 generations in the presence of glucose or lactose alone (specialists), or in varying presentations of glucose and lactose together (generalists). We found that all populations had significant fitness increases in both resources, though the magnitude and rate of these increases differed. For the first 4000 generations, most generalist populations increased in fitness as quickly in the individual resources as the corresponding specialist populations. From 5000 generations, however, a widespread cost of adaptation affected all generalists, indicating a growing constraint on their abilities to adapt to two resources simultaneously. Our results indicate that costs of generalism are prevalent, but may influence evolutionary trajectories only after a period of cost‐free adaptation.  相似文献   

4.
Identifying the factors that promote or preclude the evolution of resource polymorphism is essential for understanding the origins of diversity. Although such polymorphisms have long been viewed as an adaptive response to intraspecific competition, they are by no means ubiquitous, even in populations experiencing strong competition. In the present study, we examined a potentially important cost of resource polymorphism. Specifically, resource polymorphism typically entails the evolution of one or more resource‐use specialists, and these specialists may suffer more from competition with other specialists than generalists would with other generalists. Using spadefoot toad tadpoles as a model system, we combined stable isotope analyses with an experiment aiming to characterize dietary differences between alternative carnivore and omnivore morphs and to assess the potential ecological consequences of any such differences. We found that carnivores and omnivores represent alternative trophic specialists and generalists, respectively. We also established that the specialist morph (carnivores) experienced greater intramorph competition than the generalist morph (omnivores). We hypothesize that the greater intramorph competition faced by specialists stems ultimately from functional limitations associated with trophic specialization, which prevent specialists from switching to alternative resources when their resource is depleted. These costs may even preclude the evolution of distinct resource‐use specialists, and hence resource polymorphism, in certain populations. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ??, ??–??.  相似文献   

5.
Habitat loss, resource specialization, and extinction on coral reefs   总被引:6,自引:0,他引:6  
Coral reefs worldwide are being degraded because of global warming (coral bleaching) and coastal development (sedimentation and eutrophication). Predicting the risk of species extinctions from this type of habitat degradation is one of the most challenging and urgent tasks facing ecologists. Habitat specialists are thought to be more prone to extinction than generalists; however, specialists may be more susceptible to extinction because (1) they are specialists per se, (2) they are less abundant than generalists, or (3) both. Here, I show that declines in coral abundance lead to corresponding declines in the abundance of coral‐dwelling fishes, but with proportionally greater losses to specialists than generalists. In addition, specialists have smaller initial population sizes than generalists. Consequently, specialists face a dual risk of extinction because their already small populations decline more rapidly than those of generalists. Corresponding with this increased extinction risk, I describe the local extinction of one specialist species and the near‐global extinction of another species. I conclude that habitat specialists will be the first species lost from coral reefs because their small populations suffer the most from human‐induced disturbances.  相似文献   

6.
How differences in niche breadth evolve and are maintained remains largely unknown. The 'jack of all trades is master of none' model of resource specialization has been widely considered, but, to our knowledge, never before supported empirically. It invokes performance trade-offs associated with specialization. Specialists should outperform generalists on a subset of resources, but be unable to maintain high performance over a broader range of resources. By contrast, generalists should perform less well, on average, using a greater diversity of resources. We report such trade-offs among four coral goby species in the wild. Habitat specialists grew faster than generalists in one of two habitats. Average growth rates of generalists were less than that of specialists, but more consistent between habitats. Performance trade-offs associated with resource specialization could influence the evolution and maintenance of narrow niche breadth.  相似文献   

7.
  1. Species exhibit a range of specialisation in diet and other niche axes, with specialists typically thought to be more efficient in resource use but more vulnerable to extinction than generalists. Among herbivorous insects, dietary specialists seem more likely to lack acceptable host plants during the insect's feeding stage, owing to fluctuations in host-plant abundance or phenology. Like other herbivores, bee species vary in host breadth from pollen specialisation (oligolecty) to generalisation (polylecty).
  2. Several studies have shown greater interannual variation in flowering phenology for earlier-flowering plants than later-flowering plants, suggesting that early-season bees may experience substantial year-to-year variation in the floral taxa available to them.
  3. It was therefore reasoned that, among bees, early phenology could be a more viable strategy for generalists, which can use resources from multiple floral taxa, than for specialists. Consequently, it was expected that the median dates of collection of adult specimens to be earlier for generalist species than for specialists. To test this, phenology data and pollen diet information on 67 North American species of the bee genus Osmia was obtained.
  4. Controlling for latitude and phylogeny, it was found that dietary generalisation is associated with significantly earlier phenology, with generalists active, on average, 11–14 days earlier than specialists.
  5. This result is consistent with the generalist strategy being more viable than the specialist strategy for species active in early spring, suggesting that dietary specialisation may constrain the evolution of bee phenology—or vice versa.
  相似文献   

8.
Ecological theory predicts that species with narrow niche requirements (habitat specialists) are more vulnerable to anthropocentric disturbances than those with broad niche requirements (habitat generalists). Hence, understanding a species ecological niche and guild membership would serve as a valuable management tool for providing a priori assessments of a species extinction risk. It also would help to forecast a species capacity to respond to land use change, as what might be expected to occur under financial incentive schemes to improve threatened ecological vegetation communities. However, basic natural history information is lacking for many terrestrial species, particularly reptiles in temperate regions of the world. To overcome this limitation, we collated 3527 reptile observations from 52 species across an endangered woodland ecoregion in south‐eastern Australia and examined ecological niche breadth and microhabitat guild structure. We found 30% of species had low ecological niche values and were classified as habitat specialists associated with large eucalypt trees, woody debris, surface rock or rocky outcrops. Cluster analysis separated species into six broad guilds based on microhabitat similarity. Approximately 80% of species belonged to guilds associated with old growth vegetation attributes or non‐renewable litho‐resources such as surface rock or rocky outcrops. Our results suggest that agri‐environment schemes that focus purely on grazing management are unlikely to provide immediate benefits to broad suites of reptiles associated with old growth vegetation and litho‐resources. Our classification scheme will be useful for identifying reptile species that are potentially vulnerable to anthropocentric disturbances and may require alternative strategies for improving habitat suitability and reptile conservation outcomes in grassy woodland ecosystems.  相似文献   

9.
Understanding how evolution promotes pathogen emergence would aid disease management, and prediction of future host shifts. Increased pathogen infectiousness of different hosts may occur through direct selection, or fortuitously via indirect selection. However, it is unclear which type of selection tends to produce host breadth promoting pathogen emergence. We predicted that direct selection for host breadth should foster emergence by causing higher population growth on new hosts, lower among‐population variance in growth on new hosts, and lower population variance in growth across new hosts. We tested the predictions using experimentally evolved vesicular stomatitis virus populations, containing groups of host‐use specialists, directly selected generalists, and indirectly selected generalists. In novel‐host challenges, viruses directly selected for generalism showed relatively higher or equivalent host growth, lower among‐population variance in host growth, and lower population variance in growth across hosts. Thus, two of three outcomes supported our prediction that directly selected host breadth should favor host colonization. Also, we observed that indirectly selected generalists were advantaged over specialist viruses, indicating that fortuitous changes in host breadth may also promote emergence. We discuss evolution of phenotypic plasticity versus environmental robustness in viruses, virus avoidance of extinction, and surveillance of pathogen niche breadth to predict future likelihood of emergence.  相似文献   

10.
Resolving how complexity affects stability of natural communities is of key importance for predicting the consequences of biodiversity loss. Central to previous stability analysis has been the assumption that the resources of a consumer are substitutable. However, during their development, most species change diets; for instance, adults often use different resources than larvae or juveniles. Here, we show that such ontogenetic niche shifts are common in real ecological networks and that consideration of these shifts can alter which species are predicted to be at risk of extinction. Furthermore, niche shifts reduce and can even reverse the otherwise stabilizing effect of complexity. This pattern arises because species with several specialized life stages appear to be generalists at the species level but act as sequential specialists that are hypersensitive to resource loss. These results suggest that natural communities are more vulnerable to biodiversity loss than indicated by previous analyses.  相似文献   

11.
Aim To examine whether island parasitoid faunas are biased towards generalists when compared with the mainland and their species pool, and to evaluate the effects of climate, island characteristics and regional factors on the relative proportions of idiobionts (i.e. generalists) and koinobionts (i.e. specialists) of two parasitic wasp families, Braconidae and Ichneumonidae. Location Seventy‐three archipelagos distributed world‐wide. Methods We used data on the distribution and biology obtained from a digital catalogue and several literature sources. We related level of generalism, measured as the ratio between the number of idiobiont and koinobiont species, to climatic, physiographic and regional factors using generalized linear models. We compared models by means of Akaike weighting, and evaluated the spatial structure of their residuals. We used partial regressions to determine whether the final models account for all latitudinal structure in the level of generalism. Results Islands host comparatively more idiobionts than continental areas. Although there is a latitudinal gradient in the level of generalism of island faunas correlating with both environmental factors and island characteristics, the most important determinant of island community structure is their source pool. This effect is stronger for ichneumonids, where generalism is higher in the Indomalayan region, arguably due to the higher diversity of endophytic hosts in its large rain forests. Main conclusions The level of generalism of island parasitoid faunas is largely constrained by regional factors, namely by the structure of the species pool, which emphasizes the importance of including regional processes in our understanding of the functioning of ecological communities. The fact that generalist species are more predominant in islands with a large cover of rain forests pinpoints the importance of the indirect effects of ecological requirements on community structure, highlighting the complex nature of geographical gradients of diversity.  相似文献   

12.
Climate change is likely to impact multiple dimensions of biodiversity. Species range shifts are expected and may drive changes in the composition of species assemblages. In some regions, changes in climate may precipitate the loss of geographically restricted, niche specialists and facilitate their replacement by more widespread, niche generalists, leading to decreases in β-diversity and biotic homogenization. However, in other regions climate change may drive local extinctions and range contraction, leading to increases in β-diversity and biotic heterogenization. Regional topography should be a strong determinant of such changes as mountainous areas often are home to many geographically restricted species, whereas lowlands and plains are more often inhabited by widespread generalists. Climate warming, therefore, may simultaneously bring about opposite trends in β-diversity in mountainous highlands versus relatively flat lowlands. To test this hypothesis, we used species distribution modelling to map the present-day distributions of 2669 Neotropical anuran species, and then generated projections of their future distributions assuming future climate change scenarios. Using traditional metrics of β-diversity, we mapped shifts in biotic homogenization across the entire Neotropical region. We used generalized additive models to then evaluate how changes in β-diversity were associated with shifts in species richness, phylogenetic diversity and one measure of ecological generalism. Consistent with our hypothesis, we find increasing biotic homogenization in most highlands, associated with increased numbers of generalists and, to a lesser extent, losses of specialists, leading to an overall increase in alpha diversity, but lower mean phylogenetic diversity. In the lowlands, biotic heterogenization was more common, and primarily driven by local extinctions of generalists, leading to lower α-diversity, but higher mean phylogenetic diversity. Our results suggest that impacts of climate change on β-diversity are likely to vary regionally, but will generally lead to lower diversity, with increases in β-diversity offset by decreases in α-diversity.  相似文献   

13.
Evidence from insects and vertebrates suggests that cooperation may have enabled species to expand their niches, becoming ecological generalists and dominating the ecosystems in which they occur. Consistent with this idea, eusocial species of sponge‐dwelling Synalpheus shrimps from Belize are ecological generalists with a broader host breadth and higher abundance than non‐eusocial species. We evaluate whether sociality promotes ecological generalism (social conquest hypothesis) or whether ecological generalism facilitates the transition to sociality (social transition hypothesis) in 38 Synalpheus shrimp species. We find that sociality evolves primarily from host generalists, and almost exclusively so for transitions to eusociality. Additionally, sponge volume is more important for explaining social transitions towards communal breeding than to eusociality, suggesting that different ecological factors may influence the independent evolutionary origins of sociality in Synalpheus shrimps. Ultimately, our results are consistent with the social transition hypothesis and the idea that ecological generalism facilitates the transition to sociality.  相似文献   

14.
The question 'what renders a species extinction prone' is crucial to biologists. Ecological specialization has been suggested as a major constraint impeding the response of species to environmental changes. Most neoecological studies indicate that specialists suffer declines under recent environmental changes. This was confirmed by many paleoecological studies investigating longer-term survival. However, phylogeneticists, studying the entire histories of lineages, showed that specialists are not trapped in evolutionary dead ends and could even give rise to generalists. Conclusions from these approaches diverge possibly because (i) of approach-specific biases, such as lack of standardization for sampling efforts (neoecology), lack of direct observations of specialization (paleoecology), or binary coding and prevalence of specialists (phylogenetics); (ii) neoecologists focus on habitat specialization; (iii) neoecologists focus on extinction of populations, phylogeneticists on persistence of entire clades through periods of varying extinction and speciation rates; (iv) many phylogeneticists study species in which specialization may result from a lack of constraints. We recommend integrating the three approaches by studying common datasets, and accounting for range-size variation among species, and we suggest novel hypotheses on why certain specialists may not be particularly at risk and consequently why certain generalists deserve no less attention from conservationists than specialists.  相似文献   

15.
A better understand the ecology of microbes and their role in the global ecosystem could be achieved if traditional ecological theories can be applied to microbes. In ecology organisms are defined as specialists or generalists according to the breadth of their niche. Spatial distribution is often used as a proxy measure of niche breadth; generalists have broad niches and a wide spatial distribution and specialists a narrow niche and spatial distribution. Previous studies suggest that microbial distribution patterns are contrary to this idea; a microbial generalist genus (Desulfobulbus) has a limited spatial distribution while a specialist genus (Methanosaeta) has a cosmopolitan distribution. Therefore, we hypothesise that this counter-intuitive distribution within generalist and specialist microbial genera is a common microbial characteristic. Using molecular fingerprinting the distribution of four microbial genera, two generalists, Desulfobulbus and the methanogenic archaea Methanosarcina, and two specialists, Methanosaeta and the sulfate-reducing bacteria Desulfobacter were analysed in sediment samples from along a UK estuary. Detected genotypes of both generalist genera showed a distinct spatial distribution, significantly correlated with geographic distance between sites. Genotypes of both specialist genera showed no significant differential spatial distribution. These data support the hypothesis that the spatial distribution of specialist and generalist microbes does not match that seen with specialist and generalist large organisms. It may be that generalist microbes, while having a wider potential niche, are constrained, possibly by intrageneric competition, to exploit only a small part of that potential niche while specialists, with far fewer constraints to their niche, are more capable of filling their potential niche more effectively, perhaps by avoiding intrageneric competition. We suggest that these counter-intuitive distribution patterns may be a common feature of microbes in general and represent a distinct microbial principle in ecology, which is a real challenge if we are to develop a truly inclusive ecology.  相似文献   

16.
In coarse-grained environments specialists are generally predicted to dominate. Empirically, however, coexistence with generalists is often observed. We present a simple, but previously unrecognized, mechanism for coexistence of a habitat generalist and a number of habitat specialist species. In our model all species have a metapopulation structure in a landscape consisting of patches of different habitat types, governed by local extinction and colonization. Each specialist is limited to its specific type of habitat. The generalist can use more types of habitat, has a lower local competitive ability but can exploit patches left open by the specialists. Our modeling shows that coexistence is easily possible. The mechanism amounts to a colonization/competition trade-off at the landscape level, where the colonization advantage of the inferior competitor does not arise from a higher colonization rate but from its ability to use more types of habitat. Habitat availability has to be intermediate: when there are few patches of each habitat, only the generalist is able to maintain itself and when there are many patches, high propagule pressure of the specialists excludes the generalist. Habitat selection or temporal variations in relative habitat quality are not necessary for coexistence. Increased niche-width, colonization rate or local competitive ability of the generalist enhances its performance compared to the specialists. Various types of habitat degradation favour generalism. When able to use a broad range of habitats, generalists can generate so much propagule pressure that only a low level of local competitive ability is needed to globally exclude the specialists. Hence, in a reversal of the original problem, the question is why there are so many specialist metapopulations?  相似文献   

17.
Calcareous grasslands harbour a high biodiversity, but are highly fragmented and endangered in central Europe. We tested the relative importance of habitat area, habitat isolation, and landscape diversity for species richness of vascular plants. Plants were recorded on 31 calcareous grasslands in the vicinity of the city of Göttingen (Germany) and were divided into habitat specialist and generalist species. We expected that habitat specialists were more affected by area and isolation, and habitat generalists more by landscape diversity. In multiple regression analysis, the species richness of habitat specialists (n = 66 species) and habitat generalists (n = 242) increased with habitat area, while habitat isolation or landscape diversity did not have significant effects. Contrary to predictions, habitat specialists were not more affected by reduced habitat area than generalists. This may have been caused by delayed extinction of long-living plant specialists in small grasslands. Additionally, non-specialists may profit more from high habitat heterogeneity in large grasslands compared to habitat specialists. Although habitat isolation and landscape diversity revealed no significant effect on local plant diversity, only an average of 54% of habitat specialists of the total species pool were found within one study site. In conclusion, habitat area was important for plant species conservation, but regional variation between habitats contributed also an important 46% of total species richness.  相似文献   

18.
Coastal vegetation comprises a number of coastal specialists and terrestrial generalists. It remains unclear how they persist on disturbed and undisturbed coastal conditions. We tested the hypothesis that coastal specialists may be superior to terrestrial generalists on supratidal zones of coasts, but their superiority can be influenced by human disturbances. Eight separate sandy coasts of the Shandong Peninsula were sampled, representing for disturbed and undisturbed sandy coasts. Plants growing on their supratidal zones were surveyed. On this basis, we compared the relative dominances, niche widths, and commonness of all species, and also analyzed species diversities of the coasts. Coastal specialists were found to be more common and widespread on supratidal zones of the sandy coasts than terrestrial generalists haphazardly invading from hinterlands. Coastal specialists exhibited lower Sørensen dissimilarities than terrestrial generalists among the coasts. Tourist trampling seemed more detrimental than pond fishery to coastal vegetation. Relative to terrestrial generalists, coastal specialists responded to human disturbances more deterministically, with steady decreases in species diversities. These evidences verify that coastal specialists are intrinsically superior to terrestrial generalists on supratidal zones of coasts, especially of undisturbed coasts, because their dispersal among coasts adapts well to local storm surge regime. They also validate that human disturbances can depress the superiority of coastal specialists, partly by inducing invasion of terrestrial generalists.  相似文献   

19.
The long-standing view in ecology is that disparity in overall resource selection is the basis for identifying niche breadth patterns, with species having narrow selection being classified “specialists” and those with broader selection being “generalists”. The standard model of niche breadth characterizes generalists and specialists as having comparable levels of overall total resource exploitation, with specialists exploiting resources at a higher level of performance over a narrower range of conditions. This view has gone largely unchallenged. An alternate model predicts total resource use being lower for the specialized species with both peaking at a comparable level of performance over a particular resource gradient. To reconcile the niche breadth paradigm we contrasted both models by developing range-wide species distribution models for Canada lynx, Lynx canadensis, and bobcat, Lynx rufus. Using a suite of environmental factors to define each species’ niche, we determined that Canada lynx demonstrated higher total performance over a restricted set of variables, specifically those related to snow and altitude, while bobcat had higher total performance across most variables. Unlike predictions generated by the standard model, bobcat level of exploitation was not compromised by the trade-off with peak performance, and Canada lynx were not restricted to exploiting a narrower range of conditions. Instead, the emergent pattern was that specialist species have a higher total resource utilization and peak performance value within a smaller number of resources or environmental axes than generalists. Our results also indicate that relative differences in niche breadth are strongly dependent on the variable under consideration, implying that the appropriate model describing niche breadth dynamics between specialists and generalists may be more complex than either the traditional heuristic or our modified version. Our results demonstrate a need to re-evaluate traditional, but largely untested, assumptions regarding resource utilization in species with broad and narrow niches.  相似文献   

20.
Species that exploit a wide range of resources or habitats (generalists) tend to be widely distributed, whereas species that exploit a narrow range of resources or habitats (specialists) often have a limited distribution. The distribution patterns are thought to result from specialists using relatively smaller habitats than those exploited by generalists. I used data from 1,725 km of primate surveys that I conducted in Guyana to test these hypotheses. Habitat breadth is the total number of different habitat types occupied by each species. I used the total number of different food categories exploited by each species to measure dietary breadth. Geographic range size is correlated with habitat breadth but not with dietary breadth or body size for the 8 primate species in Guyana. Habitat generalists—red howlers and wedge-capped capuchins—range into all habitats. Habitat specialists—spider monkeys, brown bearded sakis, and golden-handed tamarins—range only into large habitats. Habitat generalists tend to be dietary type specialists in Guyana. I suggest that only habitat generalists can subsist on the low-quality foods in small habitats in Guyana. Conversely, habitat specialists tend to be dietary type generalists in Guyana. They must feed on a variety of food types in large habitats. However, using the number of food categories exploited as a measure of dietary breadth may be only a weak aspect of multidimensional niche. Researchers testing biogeographic hypotheses associated with dietary breadth should consider including multivariate indicators of both the types of food categories eaten and the number of plant species exploited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号