首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. In brown food webs of the forest floor, necromass (e.g. insect carcasses and frass) falling from the canopy feeds both microbes and ants, with the former decomposing the homes of the latter. In a tropical litter ant community, we added necromass to 1 m2 plots, testing if it added as a net food (increasing ant colony growth and recruitment) or destroyer of habitat (by decomposing leaf litter). 2. Maximum, but not mean, colony growth rates were higher on +food plots. However, neither average colony size, nor density was higher on +food plots. In contrast, +food plots saw diminished availability of leaf litter and higher microbial decomposition of cellulose, a main component of the organic substrate that comprises litter habitat. 3. Furthermore, necromass acted as a limiting resource to the ant community only when nest sites were supplemented on +food plots in a second experiment. Many of these +food +nest plots were colonised by the weedy species Wasmannia auropunctata. 4. Combined, these results support the more food–less habitat hypothesis and highlight the importance of embedding studies of litter ant ecology within broader decomposer food web dynamics.  相似文献   

2.
In closed‐canopy tropical forest understory, light availability is a significant determinant of habitat diversity because canopy structure is highly variable in most tropical forests. Consequently, variation in canopy cover affects the composition and distribution of plant species via creating variable light environments. Nevertheless, little is known about how variation in canopy openness structures patterns of plant–animal interactions. Because of the great diversity and dominance of ants in tropical environments, we used ant–plant interactions as a focal network to evaluate how variation in canopy cover influences patterns of plant–insect interactions in the Brazilian Amazon rain forest. We observed that small increases in canopy openness are associated with increased diversity of ant–plant interactions in our study area, and this change is independent of plant or ant species richness. Additionally, we found smaller niche overlap for both ants and plants associated with greater canopy openness. We hypothesize that enhanced light availability increases the breadth of ant foraging sources because variation in light availability gives rise to plant resources of different quality and amounts. Moreover, greater light availability promotes vegetative growth in plants, creating ant foraging ‘bridges’ between plants. In sum, our results highlight the importance of environmental heterogeneity as a determinant of ant–plant interaction diversity in tropical environments.  相似文献   

3.
Mutualisms between invasive ants and honeydew‐producing insects can have widespread negative effects on natural ecosystems. This is becoming an increasingly serious problem worldwide, causing certain ecosystems to change radically. Management of these abundant and influential mutualistic species is essential if the host ecosystem is to recover to its former non‐invaded status. This negative effect is particularly prevalent on some tropical islands, including Cousine Island, Seychelles. On this island, the invasive ant Pheidole megacephala has caused serious indirect damage to the threatened native Pisonia grandis trees via a mutualism with an invasive scale insect, Pulvinaria urbicola. We aimed to suppress the ant, thereby decoupling the mutualism and enabling recovery of the Pisonia trees. We treated all areas where ant pressure was high with a selective formicidal bait, which was deployed in custom‐made bait stations designed to avoid risk of treatment to endemic fauna. In the treated area, ant foraging activity was reduced by 93 percent and was followed by a 100 percent reduction in scale insect density. Abundance of endemic herbivorous insects and herbivorous activity increased significantly, however, after the decline in mutualistic species densities. Despite the native herbivore increase, there was considerable overall improvement in Pisonia shoot condition and an observed increase in foliage density. Our results demonstrate the benefit of strategic management of highly mutualistic alien species to the native Pisonia trees. It also supports the idea that area‐wide suppression is a feasible alternative to eradication for achieving positive conservation management at the level of the forest ecosystem.  相似文献   

4.
Question: Do traits of liana regeneration differ among secondary forest types of varying land‐use history and primary forest? Location: Eighty kilometers north of Manaus, Brazil. Methods: We compared plant functional traits and growth rates of liana regeneration (<1.7‐m length) among two secondary forest types and primary forest. Secondary forest types were: Vismia (on land formerly clear‐cut, used for pasture and intensively burned) and Cecropia (no pasture usage or intensive fires after clear‐cut). Results: A principal components analysis indicated that most of the primary forest species exhibited a similar habit and were characterized by short shoots and small, round leaves with low specific leaf area, whereas secondary forest species had a broad range of trait values. At the plot level, primary and secondary forest communities were separated mainly by plant length and leaf size. Plant size varied more within secondary than within primary forest plots. The two secondary forest types could not be separated based on the traits of liana regeneration. Relative growth rate (RGR) did not correlate significantly with any measured plant trait, except for a negative relation to initial length. RGR increased with decreasing canopy cover and was highest in Vismia forest plots. Conclusion: Plant functional traits of liana regeneration were more similar in the primary forest and differed substantially from secondary forests, yet canopy cover only partly explained the observed differences.  相似文献   

5.
We examined the effect of selective logging and corresponding forest canopy loss on arboreal ant diversity in a tropical rainforest. Arboreal ants were collected from an unlogged forest plot and from forest plots selectively logged 14 years and 24 years earlier in Danum Valley, Sabah, Malaysia, using a canopy fogging method. Selective logging was associated with a significant decrease in canopy cover and an increase in understory vegetation density relative to unlogged forest. Our study showed that selective logging in primary forest might not dramatically decrease total species number and overall abundance of arboreal ants; however, it may influence the species composition and dominance structure of the ant community, accompanied by an increase in abundance of shrub‐layer species and trophobiotic species. In view of the results of this study, management techniques that minimize logging impact on understory vegetation structure are likely to help maintain the conservation value of logged forests for arboreal ants. Our results also suggest that accurate assessment of the impacts on biodiversity should not be based only on measurement of species number and overall abundance, but also on analysis of species composition and community structure.  相似文献   

6.
Invasional 'meltdown' on an oceanic island   总被引:11,自引:0,他引:11  
Islands can serve as model systems for understanding how biological invasions affect community structure and ecosystem function. Here we show invasion by the alien crazy ant Anoplolepis gracilipes causes a rapid, catastrophic shift in the rain forest ecosystem of a tropical oceanic island, affecting at least three trophic levels. In invaded areas, crazy ants extirpate the red land crab, the dominant endemic consumer on the forest floor. In doing so, crazy ants indirectly release seedling recruitment, enhance species richness of seedlings, and slow litter breakdown. In the forest canopy, new associations between this invasive ant and honeydew‐secreting scale insects accelerate and diversify impacts. Sustained high densities of foraging ants on canopy trees result in high population densities of host‐generalist scale insects and growth of sooty moulds, leading to canopy dieback and even deaths of canopy trees. The indirect fallout from the displacement of a native ‘keystone’ species by an ant invader, itself abetted by introduced/cryptogenic mutualists, produces synergism in impacts to precipitate invasional ‘meltdown’ in this system.  相似文献   

7.
Aim Owing to their role as insect predators, web‐building spiders can be important biological control agents within agricultural systems. In complex tropical agroecosystems such as agroforests, management determines plant architecture, vegetation composition and associated ant density, but little is known on how these attributes, together with landscape context, determine spider web density. We hypothesized that all three spatial scales and the presence of Philidris ants significantly contribute to the explanation of spider web density with web types being differently affected. Location In 42 differently managed cacao agroforestry systems in Sulawesi, Indonesia. Methods We surveyed the distribution of five spider‐web types on 420 cacao trees to determine how these relate to habitat variables and a numerically dominant ant species at three different spatial scales, comparing tree, plot and landscape features. We fitted linear mixed‐effects model, selected the best model subset using information‐theoretic criteria and calculated the model‐averaged estimates. We used non‐metric multidimensional scaling (NMDS) to determine and visualize guild level responses to the effects of the tree, plot and landscape‐scale variables. Results The five spider guilds preferred different features of cacao tree architecture. Most frequently recorded webs belonged to the line‐ and orb‐web type. At the tree scale, overall web density was positively related to canopy openness. At the plot scale, a higher number of shade trees was related to a higher web density. At the landscape scale, the altitude determined the distribution patterns of web‐building spiders. Presence of Philidris ants was positively associated with density of orb webs, while no pattern was found for other web types. Main conclusions Results suggest spider web density could be increased by pruning of cacao trees while keeping shade trees at high density in cacao plots. The results emphasize the need to consider scale dependency of crop management and web‐guild‐specific responses that may be related to different functional roles of spiders as a high‐density predator group in agroforestry.  相似文献   

8.
Studies on the responses of ant–plant interactions to land‐use change have mainly focused on tropical habitats, usually without considering the impacts on the structure of interaction networks. Here we show that land‐use modifies the structure of the ant–plant interaction networks in a temperate habitat. Ant–plant interactions and plant diversity were recorded in an oak forest and agricultural land in central Mexico. We registered five ant species in the oak forest, and four ant species in the agricultural land. Plant diversity was higher in the agricultural land than in the oak forest. In the ant–plant networks of both sites, our results showed a higher dependence of ants on the plants on which they feed than vice versa, and the ants Formica spp. and the plants Barkleyanthus salicifolius were the species with the most strength and greatest influence in the network structure. The ant–plant network in the oak forest showed a nested structure. However, the network at the agricultural land site showed non‐nestedness; the identity of both ants and plants with the highest values of specialization was different and the number of ant species in the network was decreased, but the number of plant species with which they interacted significantly increased. Both ant–plant networks were equally tolerant to simulated extinction of individual species. We conclude that temperate forest ant–plant networks can be inherently fragile and susceptible to the effects of agricultural land‐use change, not on the number of interacting species but on their identity.  相似文献   

9.
  • 1 The mutualism between wood ants of the Formica rufa group and aphids living in the canopy of trees is a widespread phenomenon in boreal forests, and it can affect tree growth. However, not all trees in the forest are involved in this interaction.
  • 2 To assess the incidence of host trees involved in this ant–aphid mutualism and its spatial distribution in boreal forests, we inventoried sample plots with a radius of 10–15 m around wood ant mounds in 12 forest stands of two age classes (5–12‐year‐old sapling stands and 30–45‐year‐old pole stands) and two dominant tree species (Scots pine and silver birch) in Eastern Finland from 2007 to 2009.
  • 3 The proportion of trees visited by ants out of all trees on the individual study plots were in the range 4–62%, and 1.5–39% of the trees on the plots were consistently visited by ants during all 3 years. The percentage of host trees increased with the ant mound base area on the plots. Trees visited by ants were larger and closer to the mound than trees not visited by ants. Within the group of visited trees, more ants were found on bigger trees and on trees close to the ant mounds.
  • 4 Extrapolated from plot to stand level, we estimated that 0.5–6.6% of the trees were host trees in at least one of the three study years, and that only 0.01–2.3% of all the trees were consistently visited by ants during all 3 years. It is concluded that ant–aphid mutualism is a minor occurrence at the stand level.
  相似文献   

10.
This paper describes the ant assemblages sampled from rain forest canopies ranging from southern Victoria through to Cape York Peninsula, Australia, and also in Brunei. Specifically, it examines the influence of decreasing latitude and variations in elevation on the character, richness, and abundance of the arboreal rain forest ant fauna, and also the relative contribution of ants to the total arthropod community. The sites that were examined included: cool temperate Nothofagus cunninghamii forest from a range of locations in Victoria; cool temperate N. moorei forest at both Werrikimbe and Styx River, New South Wales; notophyll vine forest in Lamington National Park, southeast Queensland; high elevation notophyll vine forest in Eungella National Park, central Queensland; complex notophyll vine forest at Robson Creek, Atherton Tablelands, north Queensland; complex mesophyll vine forest at Cape Tribulation, north Queensland; and mixed dipterocarp forest in Brunei. Although these sites represent a gradient increasingly tropical in character, botanically speaking, Eungella is less tropical than Lamington because of its high elevation. All samples were obtained by fogging the canopy with a rapid‐knockdown pyrethrin pesticide. In all cases, circular funnels were suspended beneath the foliage of individual trees or small plots of mixed canopy. Arthropods were collected four hours after fogging. Following ordinal sorting, ants were identified and counted to morphospecies level. The resulting catch were then standardized across sites as numbers caught per 0.5 m2 sampling funnel. Generic and species richness were higher at the lowland tropical Cape Tribulation sites than at the sites to the south and was comparable with values in the Brunei site. Species richness was negatively correlated with latitude and elevation. Within the Australian rain forest, the lowland/highland break appears to be the strongest predictor of ant relative abundance, with a weaker latitudinal relationship superimposed.  相似文献   

11.
Ants are widely employed by plants as an antiherbivore defence. A single host plant can associate with multiple, symbiotic ant species, although usually only a single ant species at a time. Different plant‐ant species may vary in the degree to which they defend their host plant. In Kenya, ant–acacia interactions are well studied, but less is known about systems elsewhere in Africa. A southern African species, Vachellia erioloba, is occupied by thorn‐dwelling ants from three different genera. Unusually, multiple colonies of all these ants simultaneously and stably inhabit trees. We investigated if the ants on V. erioloba (i) deter insect herbivores; (ii) differ in their effectiveness depending on the identity of the herbivore; and (iii) protect the tree against an important herbivore, the larvae of the lepidopteran Gonometa postica. We show that experimental exclusion of ants leads to greater levels of herbivory on trees. The ants inhabiting V. erioloba are an effective deterrent against hemipteran and coleopteran, but not lepidopteran herbivores. Defensive services do not vary among ant species, but only Crematogaster ants exhibit aggression towards G. postica. This highlights the potential of the V. erioloba–ant mutualism for studying ant–plant interactions that involve multiple, simultaneously resident thorn‐dwelling ant species.  相似文献   

12.
Kirsti L.Abbott  Peter T.Green 《Oikos》2007,116(7):1238-1246
Positive interactions play a widespread role in facilitating biological invasions. Here we use a landscape–scale ant exclusion experiment to show that widespread invasion of tropical rainforest by honeydew-producing scale insects on Christmas Island (Indian Ocean) has been facilitated by positive interactions with the invasive ant Anoplolepis gracilipes . Toxic bait was used to exclude A. gracilipes from large (9–35 ha) forest patches. Within 11 weeks, ant activity on the ground and on trunks had been reduced by 98–100%, while activity on control plots remained unchanged. The exclusion of ants caused a 100% decline in the density of scale insects in the canopies of three rainforest trees in 12 months ( Inocarpus fagifer , Syzygium nervosum and Barringtonia racemosa ), but on B. racemosa densities of scale insects also declined in control plots, resulting in no effect of ant exclusion on this species. This study demonstrates the role of positive interactions in facilitating biological invasions, and supports recent models calling for greater recognition of the role of positive interactions in structuring ecological communities.  相似文献   

13.
1. Predatory ants may reduce infestation by herbivorous insects, and slow‐moving Lepidopteran larvae are often vulnerable on foliage. We investigate whether caterpillars with morphological or behavioural defences have decreased risk of falling prey to ants, and if defence traits mediate host plant use in ant‐rich cerrado savanna. 2. Caterpillars were surveyed in four cerrado localities in southeast Brazil (70–460 km apart). The efficacy of caterpillar defensive traits against predation by two common ant species (Camponotus crassus, C. renggeri) was assessed through experimental trials using caterpillars of different species and captive ant colonies. 3. Although ant presence can reduce caterpillar infestation, the ants' predatory effects depend on caterpillar defence traits. Shelter construction and morphological defences can prevent ant attacks (primary defence), but once exposed or discovered by ants, caterpillars rely on their size and/or behaviour to survive (secondary defence). 4. Defence efficiency depends on ant identity: C. renggeri was more aggressive and lethal to caterpillars than C. crassus. Caterpillars without morphological defences or inside open shelters were found on plants with decreased ant numbers. No unsheltered caterpillar was found on plants with extrafloral nectaries (EFNs). Caterpillars using EFN‐bearing plants lived in closed shelters or presented morphological defences (hairs, spines), and were less frequently attacked by ants during trials. 5. The efficiency of defences against ants is thus crucial for caterpillar survival and determines host plant use by lepidopterans in cerrado. Our study highlights the effect of EFN‐mediated ant‐plant interactions on host plant use by insect herbivores, emphasizing the importance of a tritrophic viewpoint in risky environments.  相似文献   

14.
Species‐specific climate responses within ecological communities may disrupt the synchrony of co‐evolved mutualisms that are based on the shared timing of seasonal events, such as seed dispersal by ants (myrmecochory). The spring phenology of plants and ants coincides with marked changes in temperature, light and moisture. We investigate how these environmental drivers influence both seed release by early and late spring woodland herb species, and initiation of spring foraging by seed‐dispersing ants. We pair experimental herbaceous transplants with artificial ant bait stations across north‐ and south‐facing slopes at two contrasting geographic locations. This use of space enables robust identification of plant fruiting and ant foraging cues, and the use of transplants permits us to assess plasticity in plant phenology. We find that warming temperatures act as the primary phenological cue for plant fruiting and ant foraging. Moreover, the plasticity in plant response across locations, despite transplants being from the same source, suggests a high degree of portability in the seed‐dispersing mutualism. However, we also find evidence for potential climate‐driven facilitative failure that may lead to phenological asynchrony. Specifically, at the location where the early flowering species (Hepatica nobilis) is decreasing in abundance and distribution, we find far fewer seed‐dispersing ants foraging during its fruit set than during that of the later flowering Hexastylis arifolia. Notably, the key seed disperser, Aphaenogaster rudis, fails to emerge during early fruit set at this location. At the second location, A. picea forages equally during early and late seed release. These results indicate that climate‐driven changes might shift species‐specific interactions in a plant–ant mutualism resulting in winners and losers within the myrmecochorous plant guild.  相似文献   

15.
16.
In tropical rain forests, high canopy trees have diverse and abundant populations of ants and spiders. However, accessing high trees and their fauna remains difficult; thus, how ants and spiders interact in the canopy remains unclear. To better understand the interspecific interactions between these two dominant arthropod groups, we investigated their spatial distributions at the canopy surface in a tropical rain forest in Borneo. We sampled ants and spiders six times between 2009 and 2011 by sweeping with an insect net at the tree crown surfaces of 190 emergent or tall (≥20 m in height) trees. We collected 438 ant individuals belonging to 94 species and 1850 spider individuals (1630 juveniles and 220 adults) belonging to 142 morphospecies (adults only) from a total of 976 samples. The fact that we collected four times more spider individuals than ant individuals suggests that fewer ants forage at the tree crown surface than previously thought. The number of spider individuals negatively correlated with the number of ant individuals and the number of ant species, indicating significant exclusivity between ant and spider spatial distributions at the tree crown surface. Niche‐overlap between the two taxa confirmed this observation. Although our data do not address the causes of these spatial distributions, antagonistic interspecific interactions such as interference behaviors and intra‐guild predation are ecological mechanisms that give rise to exclusive spatial distributions.  相似文献   

17.
Invasive ants threaten native biodiversity and ecosystem function worldwide. Although their principal direct impact is usually the displacement of native ants, they may also affect other invertebrates. The Argentine ant, Linepithema humile (Dolichoderinae), one of the most widespread invasive ant species, has invaded native habitat where it abuts peri‐urban development in coastal Victoria in south‐eastern Australia. Here we infer impacts of the Argentine ant on native ants and other litter and ground‐dwelling invertebrates by comparing their abundance and taxonomic composition in coastal scrub forest either invaded or uninvaded by the Argentine ant. Species composition of native ants at bait stations and extracted from litter differed significantly between Argentine ant‐invaded and uninvaded sites and this was consistent across years. Argentine ants had a strong effect on epigeic ants, which were either displaced or reduced in abundance. The native ant Rhytidoponera victoriae (Ponerinae), numerically dominant at uninvaded sites, was completely absent from sites invaded by the Argentine ant. However, small hypogeic ants, including Solenopsis sp. (Myrmicinae) and Heteroponera imbellis (Heteroponerinae), were little affected. Linepithema humile had no detectable effect upon the abundance and richness of other litter invertebrates. However, invertebrate group composition differed significantly between invaded and uninvaded sites, owing to the varied response of several influential groups (e.g. Collembola and Acarina). Floristics, habitat structure and measured environmental factors did not differ significantly between sites either invaded or uninvaded by Argentine ants, supporting the contention that differences in native ant abundance and species composition are related to invasion. Changes in the native ant community wrought by Argentine ant invasion have important implications for invertebrate communities in southern Australia and may affect key processes, including seed dispersal.  相似文献   

18.
  • 1 Ants can have a range of effects on arthropods in crops, including suppressing herbivores such as caterpillars. However, ants can also increase hemipteran densities while reducing natural enemy numbers. In vineyard ecosystem, the effects of native ants and their interactions with other arthropods are poorly understood.
  • 2 An ant‐exclusion experiment was designed to test the impact of native ants on both canopy and ground arthropods concurrently. The potential influence of ants on predation and parasitism of light brown apple moth (LBAM) eggs, a grape pest, was also examined. Adult grapevine scale insects and earwigs under bark were counted after a season of ant‐exclusion.
  • 3 Among 23 ground ant species collected, six were found to forage in the canopy, with two Iridomyrmex species being the most commonly encountered.
  • 4 There was no difference in the abundance of most arthropod orders and feeding groups between ant‐excluded and control vines, although ground spiders were more abundant under ant‐excluded vines, despite increased ground ant foraging pressure. LBAM egg parasitism and predation were low and probably affected by weather and other arthropods. Ant exclusion did not reduce survival of scale insects, although the distribution and abundance of scale insects were negatively associated with earwigs.
  • 5 In conclusion, native ants did not consistently suppress arthropod assemblages, including natural enemies, and they did not promote the survival of scale insects. Interactions among native ant species within a vineyard might minimize their effects on other arthropods, although this needs further study.
  相似文献   

19.
20.
Abstract The association between visiting ants and the extrafloral nectaries (EFN)‐bearing shrub Hibiscus pernambucensis Arruda (Malvaceae) was investigated in two different coastal habitats – a permanently dry sandy forest and a regularly inundated mangrove forest. In both habitats the frequency of plants with ants and the mean number of ants per plant were much higher on H. pernambucensis than on non‐nectariferous neighbouring plants. In the sandy forest the proportion of live termite baits attacked by ants on H. pernambucensis was much higher than on plants lacking EFNs. In the mangrove, however, ants attacked equal numbers of termites on either plant class. Ant attendance to tuna/honey baits revealed that overall ant activity in the sandy forest is higher than in the mangrove area. The vertical distribution (ground vs. foliage) of ant activity also differed between habitats. While in the mangrove foraging ants were more frequent at baits placed on foliage, in the sandy forest ant attendance was higher at ground baits. Plants housing ant colonies were more common in the mangrove than in the sandy forest. Frequent flooding in the mangrove may have resulted in increased numbers of ant nests on vegetation and scattered ant activity across plant foliage, irrespective of possession of EFNs. Thus plants with EFNs in the mangrove may not experience increased ant aggression towards potential herbivores relative to plants lacking EFNs. The study suggests that the vertical distribution of ant activity, as related to different nest site distribution (ground vs. foliage) through a spatial scale, can mediate ant foraging patterns on plant foliage and probably affect the ants’ potential for herbivore deterrence on an EFN‐bearing plant species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号