首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The contraction of the amount of suitable habitat due to climate change can result in a species becoming threatened with extinction. Strong evidence supports that this effect will be pronounced for several species of small mammals in the near future. We address these issues using the ensemble technique to generate potential distribution models for Neotropical marsupials associated with aquatic environments, Chironectes minimus and Lutreolina crassicaudata, and predict the effects of climate change on the distribution of these two species. We later evaluate the effectiveness of the Fully Protected Areas for the two species in the present and future scenarios. Based on our models, we recommend priority areas for the conservation of these species, emphasizing conservation efforts across borders between countries. Our results indicated that both species will suffer a significant restriction of their potential distributions until 2050. Our models predicted that the loss of suitable areas will be greater for C. minimus, with only ~33% of the original distribution area remaining. The models also indicated that the current system of Fully Protected Areas in the Neotropical region will protect L. crassicaudata in a small area of its current and future potential distribution, inserted in climatically stable areas (~14%). These scenarios for these species support strong impacts on the biodiversity protection in aquatic environments in the Neotropical region. We strongly recommend the priority planning and implementation of transboundary Fully Protected Areas in stable areas of distribution of these species to maintain the protection of these marsupials and the ecosystems to which they are associated.  相似文献   

2.
Protected areas with restricted management can provide refugia for fungi, but are usually selected based on conservation strategies for flora and fauna. Despite the important role of fungi in floodplains, they are rarely considered in conservation projects. The SwissFungi database covering all biogeographic regions in Switzerland, and consisting of 84% citizen science data, provided a valuable basis to define fungal riparian species: 99.29% of 990 species were reported at least once from the riparian zone, while 15% of species showed a measurable riparian affinity. Species distribution modelling for 129 riparian macrofungi revealed that the predicted distribution is driven by temperature for most species. There were significantly more records per species inside compared to outside protected areas, when correcting for size differences (21% of the area in Switzerland is protected). In contrast, the model predicted significantly more suitable habitat outside currently protected areas. Unprotected areas harbor a high potential for the creation of newly protected areas for the conservation of riparian fungi. The database information and the modelling approach provided crucial information for future monitoring and conservation projects along rivers.  相似文献   

3.
A key conservation biology tool is the information on the geographic distribution of species as well as the variables driving those patterns. Here, we used maximum entropy modeling, MaxEnt, to model the total potential distribution of Tapirus terrestris, classified as “Vulnerable” on the IUCN Red List of Threatened Species. In this study, we recorded 117 occurrence records and considered 18 environmental variables. The total potential distribution area covers 96,055.6 km2, meaning 12.3 % of the territory of the Peruvian Amazon, with “high potential” habitat covering 3,891.36 km2, “moderate potential” habitat covering 22,849.5 km2, and “low potential” habitat covering 69,314.7 km2. Natural Protected Areas (NPAs) shelter 32.2 % (30,966.2 km2) of the total potential distribution area of the species, being the Bahuaja Sonene and Manu National Parks, the NPAs with the largest total potential distribution, 8,220.2 km2 and 7,619.7 km2 respectively. Eventually, 67.8 % (65,089.4 km2) of the total potential distribution were identified without any type of protection category by SINANPE and its complementary categories; therefore, we consider this area as a priority for the conservation of T. terrestris in Peru.  相似文献   

4.
Reptile populations are facing a global decline as a consequence of anthropic disturbs. For its conservation, it is necessary to know its geographical distribution and the main factors influencing it. Tandilia Mountains are located in the centre of Buenos Aires province, Argentina. These mountains contain high biodiversity and several endemic species, but the current Natural Protected Areas network covers a low area of ​​0.12 %. In this work, we modelled the geographic distribution of reptiles in the Tandilia Mountains to: a) explore the environmental factors affecting the distribution of reptiles on the highland grasslands of the Tandilia Mountain System and (b) identify the key biodiversity areas. We used ten environmental variables and several sources of records (fieldwork, scientific literature, museum collections, and an online database) to model the distribution of each reptile species. The best sites to propose natural reserves were determined in Zonation software. We determined the representativeness of the current system of Natural Protected Areas in the Tandilia Mountain range by overlapping the sites with the Zonation results. We obtained 20 species distribution models with two general patterns: continuous and patched. In most species, the two most informative variables were growing degree-days below 0 °C and precipitation of the wettest quarter. The current system of Natural Protected Areas of the Tandilia Mountains covers 0.35 % of the conservation priority sites (4341 km2) and therefore is insufficient in protecting reptile biodiversity.  相似文献   

5.
The black bear Ursus americanus is an endangered species in Mexico. Its historical distribution has decreased by approximately 80% although its current distribution is not known with precision; it is only reported to be present in the mountains of Northern Mexico. This study proposes two ensemble models: Mexicós black bear (a) potential distribution compared with Natural Protected Areas (NPAs); and, (b) persistence areas for 2024. The current distribution variables are coniferous forest, elevation and dry forest. Suitable habitat for black bear (354,047 km2, 18.07% of the country) was found mainly in the north of the Sonoran biogeographical zone, along the Sierra Madre Occidental, the center and south of the Sierra Madre Oriental and some northern regions of the Altiplano Norte. Comparing these areas with NPAs documented that only 12.41% of potential distribution coincided with current suitable habitat. There are unprotected areas in Sierra Madre Occidental center and central and southern of Sierra Madre Oriental. The model for 2024 indicates a reduction of suitable habitat of 64.5%, mainly in the northern Sonoran zone and the center Sierra Madre Occidental. On the other hand, areas that will persist (125,673 km2) are located along the two main mountain ranges of Mexico. Identification of these sites will allow strengthening of long-term conservation strategies.  相似文献   

6.
Protected areas (that are usually designated) play an important role in the effort to halt on-going losses of biodiversity. However, areas outside of designated sites for protection can also hold important elements of biodiversity, and knowledge of their distribution is necessary to ensure effective conservation strategies. We collated and mapped vascular plant distribution data for species of conservation concern on the island of Ireland. For the first time in Ireland, we extracted 6078 distribution records of 176 species of conservation concern and mapped them at the tetrad (2 km × 2 km) scale. We examined the extent to which tetrads with records of species of conservation concern overlapped with designated areas (Natura 2000, Natural Heritage Areas, Areas of Special Scientific Interest). A conservative estimate suggests that many of these tetrads do not overlap with designated areas (in the range of 22–40% for available records). The coincidence of records of individual species with designated areas ranged from 0% to 100% (mean = 79%). The mapped distribution data for all vascular plant species offers guidance to where additional recording may be helpful in supporting conservation activities. The analysis of the distribution of species of conservation concern indicates the importance of both designated areas and the (non-designated) wider countryside for biodiversity conservation. In particular the presence of species of conservation concern in non-designated areas highlights the need for conservation measures outside of designated areas.  相似文献   

7.
We studied a population of the endangered glassfrog, Cochranella mache, at Bilsa Biological Station, northwestern Ecuador, from 2008 and 2009. We present information on annual abundance patterns, behavioral ecology, habitat use and a species distribution model performed with MaxEnt. We evaluate the importance of the National System of Protected Areas (SNAP) in Colombia and Ecuador, under scenarios of climate change and habitat loss. We predicted a restricted environmental suitability area from 48,509 Km2 to 65,147 Km2 along western Ecuador and adjacent Colombia; ∼8% of the potential distribution occurs within SNAP. We examined four aspects of C. mache ecology: (1) ecological data suggests a strong correlation between relative abundance and rainfall, with a high probability to observe frogs through rainy months (February–May); (2) habitat use and the species distribution model suggest that this canopy dweller is restricted to small streams and rivulets in primary and old secondary forest in evergreen lowland and piedmont forest of western Ecuador, with predictions of suitability areas in adjacent southern Colombia; (3) the SNAP of Colombia and Ecuador harbor a minimum portion of the predicted model of distribution (<10%); and (4) synergetic effects of habitat loss and climate change reduces in about 95% the suitability areas for this endangered frog along its distributional range in Protected Areas. The resulting model allows the recognition of areas to undertake conservation efforts and plan future field surveys, as well as forecasting regions with high probability of C. mache occurrence in western Ecuador and southern Colombia. Further research is required to assess population tendencies, habitat fragmentation and target survey zones to accelerate the discovery of unknown populations in unexplored areas with high probability of suitability. We recommend that Cochranella mache must be re-categorized as “Critically Endangered” species in national and global status, according with criteria and sub-criteria A4, B1ab(i,ii,iii,iv),E.  相似文献   

8.
The genus Polianthes (Agavaceae) is endemic to Mexico and is important at the scientific, economical, and cultural level since prehispanic times. Habitat destruction is one of the main factors affecting populations of Polianthes species, yet little is known about the geographic distribution of this genus, and thus its vulnerability to habitat change. We compared three different approaches to measure the Polianthes species area of distribution to assess the risk of species extinction applying the MER (Method of Evaluation of Risk extinction of wild species for Mexico): area of occupancy, extent of occurrence, and ecological modeling. We also found the richness areas of distribution of this genus. We compared the species distributions with Terrestrial Protected Regions (TPR) and Natural Protected Areas (NPA). Although the three methods used to calculate the species area of distribution agree about the highly restricted nature of Polianthes species. The area of occupancy sub-estimate the species distribution, while the extent of occurrence over-estimate it for species with disjoint distribution. Thus, we recommend the use of ecological modeling to improve the assessment of the current species distribution area to apply the MER. Most Polianthes species are distributed in the Sierra Madre Occidental and Transvolcanic Belt. Three species do not occur in any of the NPA or TPR, one species has suitable habitat in three TPR but has not been recorded there, and one species, P. palustris, is likely extinct.  相似文献   

9.
The purpose of this study was to determine whether limited occurrence data for highly threatened species can provide useful spatial information to inform conservation. The study was conducted across central and southern China. We developed a habitat suitability model for the Critically Endangered Chinese giant salamander (Andrias davidianus) based on one biotic and three abiotic parameters from single‐site locality records, which represent the only relevant environmental data available for this species. We then validated model quality by testing whether increased percentage of predicted suitable habitat at the county level correlated with independent data on giant salamander presence. We randomly selected 48 counties containing historical records which were distinct from, and independent of, the single‐site records used to develop the model, and 47 additional counties containing >50% predicted suitable habitat. We interviewed 2,812 respondents near potential giant salamander habitat across these counties and tested for differences in respondent giant salamander reports between counties selected using each method. Our model predicts that suitable giant salamander habitat is found widely across central and southern China, with counties containing ≥50% predicted suitable habitat distributed in 13 provinces. Counties with historical records contain significantly more predicted suitable habitat than counties without historical records. There are no statistical differences in any patterns of respondent giant salamander reports in surveyed counties selected from our model compared with the areas of known historical giant salamander distribution. A Chinese giant salamander habitat suitability model with strong predictive power can be derived from the restricted range of environmental variables associated with limited available presence‐only occurrence records, constituting a cost‐effective strategy to guide spatial allocation of conservation planning. Few reported sightings were recent, however, with most being over 20 years old, so that identification of areas of suitable habitat does not necessarily indicate continued survival of the species at these locations.  相似文献   

10.
Distributions of potential ranges of plant species are not yet fully known in Ethiopia where high climatic variability and vegetation types are found. This study was undertaken to predict distributions of suitable habitats of Pouteria adolfi-friederici and Prunus africana under current and two future climate scenarios (RCP 4.5 and RCP 8.5 in 2050 and 2070) in Ethiopia. Eleven environmental variables with less correlation coefficients (r < 0.7) were used to make the prediction. Shifting in extents of habitat suitability and effects of elevation, solar radiation and topographic position in relation to the current and future climatic scenarios were statistically analysed using independent t-test and linear model. We found decreasing area of highly suitable habitat from 0.51% to 0.46%, 0.36% and 0.33%, 0.24% for Prunus africana and 1.13% to 1.02%, 0.77% and 0.76%, 0.60% for Pouteria adolfi-friederici, under RCP 4.5 and RCP 8.5 by 2050 and 2070 respectively. Moist and dry afromontane forests are identified as the most suitable habitat for both species. Overall, our results suggest that climate change can promote dynamic suitable habitat niches under different future climate scenarios. Therefore, biodiversity conservation strategies should take into account habitat suitability dynamics issues and identify where to conserve species before implementing conservation practices.  相似文献   

11.
Adansonia digitata L. (African baobab), is an important multi-purpose tree, whose distribution is at present limited to wild or semi-domesticated individuals widespread in Africa. Its distribution is threatened by seedling clearance for other land use and potentially by overharvesting induced by growing commercial use of baobab fruit. Recently, efforts have been made to establish baobab domestication and conservation strategies, with mixed results due to the low germinability of baobab seeds, a factor that hinders the possibility of developing commercial A. digitata plantations. Here, micropropagation was tested as a method for clonal propagation of explants from in vivo-grown seedlings. In vitro shoot multiplication was achieved by enhanced axillary bud proliferation of sterilized two-node segments. Bud break was dependent on cytokinin supply, but the combination of 1.0 or 10.0 μM zeatin riboside and 10.0 μM indole-3-butyric acid (IBA) increased the formation of microshoots after 8 weeks of culture. Regenerated microshoots rooted successfully in in vitro nutrient medium containing 10.0 μM IBA and normally grew in a greenhouse after acclimatization.  相似文献   

12.
Apex predators fulfil potentially vital ecological roles. Typically wide-ranging and charismatic, they can also be useful surrogates for biodiversity preservation, making their targeted conservation imperative. The Sri Lankan leopard (Panthera pardus kotiya), an endangered, endemic sub-species, is the island’s apex predator. Of potential keystone importance, this carnivore also fulfills “umbrella” and “flagship” criterion and is of high ecological and existence value. Apex predator conservation requires identifying factors underlying distribution, so we used multi-scale maximum entropy modelling with sampling bias correction to investigate a broad suite of relevant ecological, climatic and anthropogenic factors in order to identify potentially suitable leopard habitat. Presence locations were determined from 15 years of surveys, observations and verified reports. The best bias correction procedure and scale were uncertain, so we employed a novel method of using information from all models across analyses to determine top models and identify influential variables. Leopard presence was most strongly linked to the landscape proportion encompassed by Protected Areas strictly limiting human presence, with more porous Protected Areas less influential. All three forest composition and configuration metrics investigated (area weighted mean patch size, patch density and forest connectivity) were influential, with increased patch size and higher connectivity predicting better habitat suitability for leopards. Habitat suitability was also better where cropland extent and urban patch size were small. In summary, ground-level protection and natural forest extent and connectivity are of profound importance to Sri Lankan leopard distribution and are key factors in ensuring the ecological integrity of the island’s faunal assemblages.  相似文献   

13.
Populations occurring in areas of overlap between the current and future distribution of a species are particularly important because they can represent “refugia from climate change”. We coupled ecological and range‐wide genetic variation data to detect such areas and to evaluate the impacts of habitat suitability changes on the genetic diversity of the transitional Mediterranean‐temperate tree Fraxinus angustifolia. We sampled and genotyped 38 natural populations comprising 1006 individuals from across Europe. We found the highest genetic diversity in western and northern Mediterranean populations, as well as a significant west to east decline in genetic diversity. Areas of potential refugia that correspond to approximately 70% of the suitable habitat may support the persistence of more than 90% of the total number of alleles in the future. Moreover, based on correlations between Bayesian genetic assignment and climate, climate change may favour the westward spread of the Black Sea gene pool in the long term. Overall, our results suggest that the northerly core areas of the current distribution contain the most important part of the genetic variation for this species and may serve as in situ macrorefugia from ongoing climate change. However, rear‐edge populations of the southern Mediterranean may be exposed to a potential loss of unique genetic diversity owing to habitat suitability changes unless populations can persist in microrefugia that have facilitated such persistence in the past.  相似文献   

14.
野生植物是自然生态系统的重要组成部分,中国是野生植物种类最丰富的国家之一。研究国家重点保护野生植物的分布特征、保护现状以及潜在分布区,对于制定与支持生物多样性保护策略具有重要意义。该研究基于1 032种(隶属于129科315属)国家重点保护野生植物,利用前5%丰富度算法识别其热点地区,并与自然保护区叠加评估其保护成效、确定保护空缺,进而运用MaxEnt模型预测了国家重点保护野生植物的潜在分布区分布与变化趋势。结果表明:(1)中国南部和西南部是国家重点保护野生植物物种丰富度最高的地区,尤其是四川中部、云南南部和东南部、广西北部、广东北部与海南。(2)热点网格的保护成效分析表明,171个(85.50%)热点网格得到了有效保护(含80.50%的物种),29个(14.50%)热点网格未得到自然保护区的保护(含51.20%物种)。(3)通过比较当前与未来气候变化下国家重点保护野生植物的潜在分布区分布,发现未来潜在分布区将向西藏东南部、广西西南部、广东南部以及福建南部等地扩张,而向环四川盆地、云南南部和贵州南部等地缩减。因此,需要加强这些区域生物多样性的动态监测,持续关注气候变化对该区域国家重点保护野生植物的影响。基于该研究所确定的热点网格、保护成效以及潜在分布区的分析结果,可为国家重点保护野生植物多样性优先保护区的确定和保护政策的制定提供有力的数据支持与参考。  相似文献   

15.
Notopterygium incisum Ting ex H. T. Chang is a rare and endangered traditional Chinese medicinal plant. In this research, we built a comprehensive habitat suitability (CHS) model to analyze the potential suitable habitat distribution of this species in the present and future in China. First, using nine different algorithms, we built an ensemble model to explore the possible impacts of climate change on the habitat distribution of this species. Then, based on this model, we built a CHS model to further identify the distribution characteristics of N. incisum‐suitable habitats in three time periods (current, 2050s, and 2070s) while considering the effects of soil and vegetation conditions. The results indicated that the current suitable habitat for N. incisum covers approximately 83.76 × 103 km2, and these locations were concentrated in the Tibet Autonomous Region, Gansu Province, Qinghai Province, and Sichuan Province. In the future, the areas of suitable habitat for N. incisum would significantly decrease and would be 69.53 × 103 km2 and 60.21 × 103 km2 in the 2050s and 2070s, respectively. However, the area of marginally suitable habitat would remain relatively stable. This study provides a more reliable and comprehensive method for modelling the current and future distributions of N. incisum, and it provides valuable insights for highlighting priority areas for medicinal plant conservation and resource utilization.  相似文献   

16.
Species distribution models (SDMs) across past, present, and future timelines provide insights into the current distribution of these species and their reaction to climate change. Specifically, if a species is threatened or not well‐known, the information may be critical to understand that species. In this study, we computed SDMs for Orientocoluber spinalis, a monotypic snake genus found in central and northeast Asia, across the past (last interglacial, last glacial maximum, and mid‐Holocene), present, and future (2070s). The goal of the study was to understand the shifts in distribution across time, and the climatic factors primarily affecting the distribution of the species. We found the suitable habitat of O. spinalis to be persistently located in cold‐dry winter and hot summer climatic areas where annual mean temperature, isothermality, and annual mean precipitation were important for suitable habitat conditions. Since the last glacial maximum, the suitable habitat of the species has consistently shifted northward. Despite the increase in suitable habitat, the rapid alterations in weather regimes because of climate change in the near future are likely to greatly threaten the southern populations of O. spinalis, especially in South Korea and China. To cope with such potential future threats, understanding the ecological requirements of the species and developing conservation plans are urgently needed.  相似文献   

17.
Bats are considered important bioindicators and deliver key ecosystem services to humans. However, it is not clear how the individual and combined effects of climate change and land-use change will affect their conservation in the future. We used a spatial conservation prioritization framework to determine future shifts in the priority areas for the conservation of 169 bat species under projected climate and land-use change scenarios across Africa. Specifically, we modelled species distribution models under four different climate change scenarios at the 2050 horizon. We used land-use change scenarios within the spatial conservation prioritization framework to assess habitat quality in areas where bats may shift their distributions. Overall, bats’ representation within already existing protected areas in Africa was low (∼5% of their suitable habitat in protected areas which cover ∼7% of Africa). Accounting for future land-use change resulted in the largest shift in spatial priority areas for conservation actions, and species representation within priority areas for conservation actions decreased by ∼9%. A large proportion of spatial conservation priorities will shift from forested areas with little disturbance under present conditions to agricultural areas in the future. Planning land use to reduce impacts on bats in priority areas outside protected areas where bats will be shifting their ranges in the future is crucial to enhance their conservation and maintain the important ecosystem services they provide to humans.  相似文献   

18.
Critically endangered species representing ancient, evolutionarily isolated lineages must be given priority when allocating resources for conservation projects. Sound phylogenetic analyses and divergence time estimations are required to detect them, and studies on their population genetics, ecological requirements and breeding system are needed to understand their evolutionary history and to design efficient conservation strategies. Here we present the paradigmatic case of Avellara, a critically endangered monotypic genus of Compositae inhabiting a few swamps in the west–southwest Iberian coastal plains. Our phylogenetic and dating analyses based on nuclear (ITS) and plastid (matK) DNA sequences support a Miocene (>8.6 Ma) divergence between Avellara and closely related genera, resulting in marked morphological and ecological differentiation. We found alarmingly low levels of genetic diversity, based on AFLPs and plastid DNA sequences, and confirmed the prevalence of clonal reproduction. Species distribution modelling suggested a large macroclimatically suitable area for Avellara in the western Iberian Peninsula, but its apparently narrow microecological requirements restrict its distribution to peatlands with low‐mineralised waters. Although five populations have been recorded from Spain and Portugal in the past, its current distribution may be reduced to only one population, recurrently found in the last decade but threatened by herbivory and habitat degradation. All this confirms the consideration of Avellara as a threatened species with high phylogenetic singularity, and makes it a flagship species for plant conservation in both Spain and Portugal that should be given priority in the design of in situ and ex situ conservation programmes.  相似文献   

19.
Wang  Linlong  Zhang  Zhixin  Lin  Longshan  Peng  Xin  Lin  Li  Kang  Bin 《Hydrobiologia》2021,848(20):4919-4932

Climate change has the potential to greatly alter species distributions and threatens biodiversity in marine ecosystems. Mapping changes in species distribution patterns under climate change will help facilitate management strategies to maintain ecosystem structure and function. The lizardfish Harpadon nehereus is an aggressive predator that has experienced rapid population growth along the coast of China in recent decades, compressing the ecological niches of other marine species and disrupting food webs. If this species’ range is shifting due to climate change, it could further impact the integrity of ecological communities. To map the distribution of H. nehereus, we developed an ensemble species distribution model and projected the present and future habitat suitability in Chinese coastal waters. Annual mean benthic water temperature was identified as the most important variable affecting the projected distribution of H. nehereus, followed by water depth and salinity. Currently suitable habitats are along the coast from Guangxi Province to the southern Jiangsu Province. As climate changes, the southern portion of its distribution is predicted to recede with habitat losses, and the overall suitable habitat will shift northward. To avoid the potential impacts of H. nehereus redistribution, precautionary management based on species distribution modeling would help to maintain healthy marine ecosystems in the newly invaded areas.

  相似文献   

20.
Taylor S  Kumar L  Reid N  Kriticos DJ 《PloS one》2012,7(4):e35565
The threat posed by invasive species, in particular weeds, to biodiversity may be exacerbated by climate change. Lantana camara L. (lantana) is a woody shrub that is highly invasive in many countries of the world. It has a profound economic and environmental impact worldwide, including Australia. Knowledge of the likely potential distribution of this invasive species under current and future climate will be useful in planning better strategies to manage the invasion. A process-oriented niche model of L. camara was developed using CLIMEX to estimate its potential distribution under current and future climate scenarios. The model was calibrated using data from several knowledge domains, including phenological observations and geographic distribution records. The potential distribution of lantana under historical climate exceeded the current distribution in some areas of the world, notably Africa and Asia. Under future scenarios, the climatically suitable areas for L. camara globally were projected to contract. However, some areas were identified in North Africa, Europe and Australia that may become climatically suitable under future climates. In South Africa and China, its potential distribution could expand further inland. These results can inform strategic planning by biosecurity agencies, identifying areas to target for eradication or containment. Distribution maps of risk of potential invasion can be useful tools in public awareness campaigns, especially in countries that have been identified as becoming climatically suitable for L. camara under the future climate scenarios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号