首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim To investigate the potential impacts of climate change on stream fish assemblages in terms of species and biological trait diversity, composition and similarity. Location One‐thousand one‐hundred and ten stream sections in France. Methods We predicted the future potential distribution of 35 common stream fish species facing changes in temperature and precipitation regime. Seven different species distribution models were applied and a consensus forecast was produced to limit uncertainty between single‐models. The potential impacts of climate change on fish assemblages were assessed using both species and biological trait approaches. We then addressed the spatial distribution of potential impacts along the upstream–downstream gradient. Results Overall, climate change was predicted to result in an increase in species and trait diversity. Species and trait composition of the fish assemblages were also projected to be highly modified. Changes in assemblages’ diversity and composition differed strongly along the upstream–downstream gradient, with upstream and midstream assemblages more modified than downstream assemblages. We also predicted a global increase in species and trait similarity between pairwise assemblages indicating a future species and trait homogenization of fish assemblages. Nevertheless, we found that upstream assemblages would differentiate, whereas midstream and downstream assemblages would homogenize. Our results suggested that colonization could be the main driver of the predicted homogenization, while local extinctions could result in assemblage differentiation. Main conclusions This study demonstrated that climate change could lead to contrasted impacts on fish assemblage structure and diversity depending on the position along the upstream–downstream gradient. These results could have important implications in terms of ecosystem monitoring as they could be useful in establishing areas that would need conservation prioritization.  相似文献   

2.
1. Quantifying the relative importance of environmental filtering versus regional spatial structuring has become an intensively studied area in the context of metacommunity ecology. However, most studies have evaluated the role of environmental and spatial processes using taxonomic data sets of single snapshot surveys. 2. Here, we examined temporal changes in patterns and possible processes behind the functional metacommunity organization of stream fishes in a human‐modified landscape. Specifically, we (i) studied general changes in the functional composition of fish assemblages among 40 wadeable stream sites during a 3‐year study period in the catchment area of Lake Balaton, Hungary, (ii) quantified the relative importance of spatial and environmental factors as determinants of metacommunity structure and (iii) examined temporal variability in the relative role of spatial and environmental processes for this metacommunity. 3. Partial triadic analysis showed that assemblages could be effectively ordered along a functional gradient from invertebrate consuming species dominated by the opportunistic life‐history strategy, to assemblages with a diverse array of functional attributes. The analysis also revealed that functional fish assemblage structure was moderately stable among the sites between the sampling periods. 4. Despite moderate stability, variance partitioning using redundancy analyses (RDA) showed considerable temporal variability in the contribution of environmental and spatial factors to this pattern. The analyses also showed that environmental variables were, in general, more important than spatial ones in determining metacommunity structure. Of these, natural environmental variables (e.g. altitude, velocity) proved to be more influential than human‐related effects (e.g. pond area, % inhabited area above the site, nutrient enrichment), even in this landscape with relatively low variation in altitude and stream size. 5. Pond area was, however, the most important human stressor variable that was positively associated with the abundance of non‐native species with diverse functional attributes. The temporal variability in the relative importance of environmental and spatial factors was probably shaped by the release of non‐native fish from fish ponds to the stream system during flood events. 6. To conclude, both spatial processes and environmental control shape the functional metacommunity organization of stream fish assemblages in human‐modified landscapes, but their importance can vary in time. We argue, therefore, that metacommunity studies should better consider temporal variability in the ecological mechanisms (e.g. dispersal limitation, species sorting) that determine the dynamics of landscape‐level community organization.  相似文献   

3.
Describing the spatial and temporal dynamics of communities is essential for understanding the impacts of global environmental change on biodiversity and ecosystem functioning. Trait‐based approaches can provide better insight than species‐based (i.e. taxonomic) approaches into community assembly and ecosystem functioning, but comparing species and trait dynamics may reveal important patterns for understanding community responses to environmental change. Here, we used a 33‐year database of fish monitoring to compare the spatio‐temporal dynamics of taxonomic and trait structure in North Sea fish communities. We found that the majority of variation in both taxonomic and trait structure was explained by a pronounced spatial gradient, with distinct communities in the southern and northern North Sea related to depth, sea surface temperature, salinity and bed shear stress. Both taxonomic and trait structure changed significantly over time; however taxonomically, communities in the south and north diverged towards different species, becoming more dissimilar over time, yet they converged towards the same traits regardless of species differences. In particular, communities shifted towards smaller, faster growing species with higher thermal preferences and pelagic water column position. Although taxonomic structure changed over time, its spatial distribution remained relatively stable, whereas in trait structure, the southern zone of the North Sea shifted northward and expanded, leading to homogenization. Our findings suggest that global environmental change, notably climate warming, will lead to convergence towards traits more adapted for novel environments regardless of species composition.  相似文献   

4.
1. Characterisation of biodiversity is typically based on taxonomic approaches, while much less is known about other related aspects. Functional trait diversity is one such component of biodiversity that has not been addressed rigorously in ecological research until recently. We tested the congruence between taxonomic‐ and trait‐based approaches, and examined how spatial configuration, local abiotic environmental factors and biotic effects interact to influence taxonomic‐ and trait‐based characterisation of freshwater fish assemblages. 2. Fish assemblage data were compiled for 124 lakes in southern Finland. Variance partitioning in both linear regression analyses and redundancy analysis was used to quantify the relative contribution of spatial and environmental variables to taxonomic and functional trait diversity and structure. Additionally, a null model analysis was used to test for the potential effects of interspecific segregation and biotic interactions on the co‐occurrence of species. 3. The species pool was relatively poor. However, trait‐based classification of species indicated that most species belonged to unique functional entities, which suggested low redundancy in species composition. Correlation analysis indicated a very strong relationship between species richness (SR) and the number of unique trait combinations (UTC). Ecoregion‐level heterogeneity in SR and UTC were well represented in a relatively small group of randomly selected lakes (c. 30 lakes). Multiple regressions indicated moderate roles for abiotic environmental variables (i.e. lake surface area, depth, total phosphorous, colour and pH) in determining SR, UTC and the distribution of single trait categories, whereas geographical location was not generally influential. 4. Redundancy analysis revealed similar patterns to those of diversity analyses for taxonomic and associated trait‐based structure, emphasising the effect of abiotic environmental variables and the negligible effect of geographical position. 5. Co‐occurrence analysis indicated significant checkerboard distribution at the whole assemblage level, but interspecific segregation proved to be of relatively minor importance in the constrained analyses, where species pair combinations within trait category groups were evaluated. 6. Our results suggest that taxonomic‐ and trait‐based patterns of boreal lake fish assemblages are strongly interrelated. Environmental filtering through the effects of local abiotic variables seems to have the most prominent role in determining trait‐based assemblage patterns among lakes, which may also be secondarily shaped by biotic interactions. 7. From the applied perspective, it may not necessarily matter whether traditional taxonomic or more novel trait‐based approaches are used in characterising spatial patterns in boreal fish assemblages. However, trait‐based approaches may provide complementary information which cannot be directly revealed by taxonomic data.  相似文献   

5.
6.
We examined Indiana fish assemblages using taxonomy and ecological categories to assess temporal shifts in community structure and recent environmental relationships. Historic (1945) and recent (1996–2007) presence/absence data were compiled by subbasin and analyzed with Nonmetric Multidimensional Scaling (NMS) ordination and by species richness. Canonical Correspondence Analysis (CCA) was used to test taxonomic identity and ecological category abundance data for explanation with recent (1996–2007) environmental variables. We found a decrease in assemblage heterogeneity for recent assemblages and an increase in the number of tolerant species per subbasin. Recent Indiana streams are dominated by tolerant fishes with generalist life history strategies and low functional variation. The use of ecological categories resulted in weaker relationships with environmental variables than analyses with taxonomic identities. Analyses using taxonomy resulted in strong assemblage explanation from stream size and flow variation, while analyses using ecological categories resulted in strong assemblage explanation from habitat variation in silt substrates and flow. Analyses of recent assemblage structure using ecological categories resulted in decreased assemblage variation among subbasins than in analyses using taxonomic identities. We found that fish assemblages of Indiana streams are structured primarily by habitat complexity and have been altered during the past 50 years through multiple disturbances including fragmentation, siltation, and species introductions.  相似文献   

7.
Understanding of community assembly has been improved by phylogenetic and trait‐based approaches, yet there is little consensus regarding the relative importance of alternative mechanisms and few studies have been done at large geographic and phylogenetic scales. Here, we use phylogenetic and trait dispersion approaches to determine the relative contribution of limiting similarity and environmental filtering to community assembly of stream fishes at an intercontinental scale. We sampled stream fishes from five zoogeographic regions. Analysis of traits associated with habitat use, feeding, or both resulted in more occurrences of trait underdispersion than overdispersion regardless of spatial scale or species pool. Our results suggest that environmental filtering and, to a lesser extent, species interactions were important mechanisms of community assembly for fishes inhabiting small, low‐gradient streams in all five regions. However, a large proportion of the trait dispersion values were no different from random. This suggests that stochastic factors or opposing assembly mechanisms also influenced stream fish assemblages and their trait dispersion patterns. Local assemblages tended to have lower functional diversity in microhabitats with high water velocity, shallow water depth, and homogeneous substrates lacking structural complexity, lending support for the stress‐dominance hypothesis. A high prevalence of functional underdispersion coupled with phylogenetic underdispersion could reflect phylogenetic niche conservatism and/or stabilizing selection. These findings imply that environmental filtering of stream fish assemblages is not only deterministic, but also influences assemblage structure in a fairly consistent manner worldwide.  相似文献   

8.
Aim We evaluated variation in fish assemblages on the basis of taxonomic composition and functional groups based on Pleistocene glacial boundaries in the Ohio River basin. We tested for the influence of habitat and hydrology on fish assemblage variation. Location Ohio River basin of North America, including the states of Ohio, Indiana and Illinois. Methods Fish collection sites were identified as Wisconsinan, pre‐Wisconsinan or unglaciated regions. Multivariate analyses, multi‐response permutation procedures, discriminant analysis and indicator species analyses were used to test whether taxonomic and functional assemblages were distinct among regions with varying glacial histories. Principal components analysis was used to identify habitat and water quality, as well as hydrological gradients that could be discerned by glacial region. Results We identified significant differences in both taxonomic and functional fish assemblage structure and habitat variation among regions that had different glaciation histories. The largest differences in taxonomic and functionally based fish communities were for unglaciated and pre‐Wisconsinan regions, while unglaciated and Wisconsinan regions were most similar. We correctly classified study regions in 71% and 60% of sites using taxonomy and functional analyses, respectively. Wisconsinan sites were characterized by Cyprinidae and Catostomidae assemblages with high abundances of tolerant fishes that tended to occur in habitats with reduced current velocity. Pre‐Wisconsinan sites were characterized by Cyprinidae, Catostomidae, Centrarchidae and Percidae families with increased abundances of intolerant fishes that tended to occur in habitats with coarser substrates and increased water velocity in streams of varying size. Unglaciated sites were characterized by Cyprinidae and Percidae families and were not closely associated with any habitat‐based functional group. Habitat in the unglaciated and pre‐Wisconsinan sites was significantly different from that in the Wisconsinan sites, which were characterized by increased channel structure and reduced stream size. Main conclusions Pleistocene glaciation events formed a lasting template of predictable regional differences in stream habitat and in the corresponding taxonomic and functional fish assemblage structures. While many factors impact the distribution of fishes, these results suggest that historical influences such as glaciation may be used to further explain the underlying mechanisms of spatial variation in fish assemblages.  相似文献   

9.
10.
Agricultural land use is a primary driver of environmental impacts on streams. However, the causal processes that shape these impacts operate through multiple pathways and at several spatial scales. This complexity undermines the development of more effective management approaches, and illustrates the need for more in‐depth studies to assess the mechanisms that determine changes in stream biodiversity. Here we present results of the most comprehensive multi‐scale assessment of the biological condition of streams in the Amazon to date, examining functional responses of fish assemblages to land use. We sampled fish assemblages from two large human‐modified regions, and characterized stream conditions by physical habitat attributes and key landscape‐change variables, including density of road crossings (i.e. riverscape fragmentation), deforestation, and agricultural intensification. Fish species were functionally characterized using ecomorphological traits describing feeding, locomotion, and habitat preferences, and these traits were used to derive indices that quantitatively describe the functional structure of the assemblages. Using structural equation modeling, we disentangled multiple drivers operating at different spatial scales, identifying causal pathways that significantly affect stream condition and the structure of the fish assemblages. Deforestation at catchment and riparian network scales altered the channel morphology and the stream bottom structure, changing the functional identity of assemblages. Local deforestation reduced the functional evenness of assemblages (i.e. increased dominance of specific trait combinations) mediated by expansion of aquatic vegetation cover. Riverscape fragmentation reduced functional richness, evenness and divergence, suggesting a trend toward functional homogenization and a reduced range of ecological niches within assemblages following the loss of regional connectivity. These results underscore the often‐unrecognized importance of different land use changes, each of which can have marked effects on stream biodiversity. We draw on the relationships observed herein to suggest priorities for the improved management of stream systems in the multiple‐use landscapes that predominate in human‐modified tropical forests.  相似文献   

11.
We combine evolutionary biology and community ecology to test whether two species traits, body size and geographic range, explain long term variation in local scale freshwater stream fish assemblages. Body size and geographic range are expected to influence several aspects of fish ecology, via relationships with niche breadth, dispersal, and abundance. These traits are expected to scale inversely with niche breadth or current abundance, and to scale directly with dispersal potential. However, their utility to explain long term temporal patterns in local scale abundance is not known. Comparative methods employing an existing molecular phylogeny were used to incorporate evolutionary relatedness in a test for covariation of body size and geographic range with long term (1983 – 2010) local scale population variation of fishes in West Fork White River (Indiana, USA). The Bayesian model incorporating phylogenetic uncertainty and correlated predictors indicated that neither body size nor geographic range explained significant variation in population fluctuations over a 28 year period. Phylogenetic signal data indicated that body size and geographic range were less similar among taxa than expected if trait evolution followed a purely random walk. We interpret this as evidence that local scale population variation may be influenced less by species-level traits such as body size or geographic range, and instead may be influenced more strongly by a taxon’s local scale habitat and biotic assemblages.  相似文献   

12.
13.
1. This study analysed changes occurring in Mediterranean stream fish assemblages over a sequence of dry years followed by a generally wet period (1991–98). Variations in assemblage attributes were quantified at the basin and stream reach scales, and related to variables reflecting the occurrence of unusually dry or wet conditions. 2. Assemblage variability increased along with the resolution of analysis, with little changes in species richness, composition and rank abundances, but significant variation in individual species abundances. Fluctuations in relative abundances were significantly affected by variables reflecting the severity of summer droughts and the occurrence of rainy springs. These patterns were evident at the basin scale, while variability at individual stream reaches tended to be higher and less related to rainfall patterns. 3. At least three response guilds to rainfall variation could be identified: two of the four abundant and widespread species (chub and loach) declined following dry years, whereas the two other core species (nase and eel) declined after rainy spring; one scarce native species (stickleback) increased in dry years. 4. Except at the two most upstream reaches, the assemblages tended to recover quickly to previous configuration after the changes occurring during the sequence of dry years. 5. Temporal variability of local assemblages was concordant among reaches but did not follow any consistent spatial pattern. Instead, spatial patterns in assemblage attributes changed over time in response to environmental variability, with a tendency for a disruption of upstream–downstream gradients following dry years. 6. Results supported the view that present‐day droughts cause relatively small and transient changes to Mediterranean stream fish assemblages. However, longer and more severe droughts expected under altered future climates, may result in declines or local extinctions of the most sensitive species and their potential replacement by more resistant species. Changing drought regimes thus need to be duly considered in the development of conservation strategies for Mediterranean stream fish.  相似文献   

14.
陈兵  孟雪晨  张东  储玲  严云志 《生态学报》2019,39(15):5730-5745
确定鱼类群落的空间格局是保护和管理河流鱼类多样性的基础。尽管河流鱼类分类群(基于物种组成)的纵向梯度格局已得到大量报道,但其功能群(基于功能特征)的空间格局研究较少。以皖南山区新安江为研究流域,沿其"正源-下游"梯度共设置27个调查样点,分别于2017年5月和10月完成2次调查取样,着重研究了鱼类分类群和功能群结构的纵向梯度格局及其形成机制。共采集鱼类44种,可分为5个运动功能群和4个营养功能群,构成14个"营养-运动"复合功能群。双因素交互相似性分析结果显示,鱼类分类群和功能群均随河流级别显著变化,但两者均无显著的季节变化;根据相似性百分比分析,由1级至3级河流,数量优势物种和功能群的空间变化主要呈嵌套格局,而由3级至5级河流其变化主要呈周转格局。方差分解结果显示,局域栖息地、陆地景观和支流空间位置3类解释变量对分类群和功能群空间变化的解释率分别为33.6%和38.5%,其中,分类群受局域栖息地和支流空间位置变量的显著影响,而功能群受局域栖息地和陆地景观变量的显著影响。研究表明,沿着新安江的"上游-下游"纵向梯度,鱼类分类群和功能群的空间格局基本一致,但两者的形成机制不同:分类群的纵向梯度变化受环境过滤和扩散过程的联合影响,而功能群则主要受环境过滤影响。  相似文献   

15.
Abstract 1. Current views in ecology emphasise that community structure is the sum of multiple processes, with imprints of both regional and local drivers. However, the degree to which stream insect assemblages are structured by spatial configuration (complying with the dispersal‐based neutral hypothesis) and local environmental features (complying with the niche‐based species sorting hypothesis) has not been rigorously examined based on surveys in multiple years. 2. Stream sites in a boreal drainage system were surveyed during three consecutive years and the relative contribution of spatial configuration and local environmental variables to aquatic insect assemblage structure (characterised by both abundance and presence–absence data) was assessed. Separate analyses were conducted for mayflies (Ephemeroptera), stoneflies (Plecoptera), caddisflies (Trichoptera), and non‐biting midges (Diptera: Chironomidae) in each year. 3. There were no relationships between the spatial location and local environmental features of streams in Mantel tests, facilitating exploration of their independent effects on assemblage structure. The study found virtually no effects of spatial location on stream insect assemblages across the study drainage system, as evidenced by Mantel tests and canonical correspondence analyses (CCA). The environmental variables were also rather weakly associated with assemblage structure, with the total amount of explained variation ranging from 9.8% to 31.7% in the CCAs. There were no appreciable differences in the amount of environment‐related explained variation in assemblage structure between mayflies, stoneflies, caddisflies, and midges, but some between‐year differences were noticeable in most insect groups. The environmental variables that were significantly related to assemblage structure exhibited some between‐group and between‐year variability. In general, patterns shown by abundance and presence–absence data were highly similar. 4. It appears that stream insect assemblages comply with the niche‐based species sorting hypothesis in the context of metacommunity ecology. In contrast, the absence of spatial structuring suggests that stream insect assemblages do not comply with the neutral hypothesis, being not strongly dispersal limited at the within‐drainage basin scale.  相似文献   

16.
17.
Ecosystem service‐based management requires an accurate understanding of how human modification influences ecosystem processes and these relationships are most accurate when based on functional traits. Although trait variation is typically sampled at local scales, remote sensing methods can facilitate scaling up trait variation to regional scales needed for ecosystem service management. We review concepts and methods for scaling up plant and animal functional traits from local to regional spatial scales with the goal of assessing impacts of human modification on ecosystem processes and services. We focus our objectives on considerations and approaches for (1) conducting local plot‐level sampling of trait variation and (2) scaling up trait variation to regional spatial scales using remotely sensed data. We show that sampling methods for scaling up traits need to account for the modification of trait variation due to land cover change and species introductions. Sampling intraspecific variation, stratification by land cover type or landscape context, or inference of traits from published sources may be necessary depending on the traits of interest. Passive and active remote sensing are useful for mapping plant phenological, chemical, and structural traits. Combining these methods can significantly improve their capacity for mapping plant trait variation. These methods can also be used to map landscape and vegetation structure in order to infer animal trait variation. Due to high context dependency, relationships between trait variation and remotely sensed data are not directly transferable across regions. We end our review with a brief synthesis of issues to consider and outlook for the development of these approaches. Research that relates typical functional trait metrics, such as the community‐weighted mean, with remote sensing data and that relates variation in traits that cannot be remotely sensed to other proxies is needed. Our review narrows the gap between functional trait and remote sensing methods for ecosystem service management.  相似文献   

18.
Null model analyses have greatly improved our understanding of species co‐occurrence. Null model analyses have shown, for example, that cold‐blooded animals show less segregated distributions than warm‐blooded animals. This topic has rarely been studied simultaneously across multiple metacommunities. We analysed data on 10 stream metacommunities (with 10 communities in each metacommunity) of a cold‐blooded animal group, benthic macroinvertebrates, and examined co‐occurrence within five ecological guilds. We found that the segregated species co‐occurrence was not the rule in stream invertebrate guilds. This was evidenced by the finding that only 10% of the 50 guild matrices we analyzed showed significant segregation and no matrices showed significant aggregation in the within‐stream analyses. However, in the across‐streams analysis, all guilds showed significant segregation. We neither found differences in the degree of segregation among the guilds, the degree of species segregation did not increase with overall environmental heterogeneity, and there were no differences in the relationships between species segregation and overall environmental heterogeneity among the guilds. Expanding the spatial extent from single stream metacommunities (i.e. within each stream) to the whole study region (i.e. across the streams) increased significantly segregation in all guilds. Because environmental heterogeneity across streams was much higher than within single streams, overall environmental heterogeneity may nevertheless have effects on species segregation. It also seems that the effects of overall heterogeneity on species segregation were masked by mass effects in the within‐stream analyses.  相似文献   

19.
In the autumn of 2004, a typhoon caused a catastrophic flood of the Miyagawa River in Japan. Based upon snorkeling surveys conducted every autumn from 2005 to 2009, we monitored the post flood fluctuation of the local fish assemblages at nine sites of both the main stream and subsidiary streams of the river. Results revealed that species richness significantly increased from 2005 to 2009. In addition, the fish densities of eight species significantly increased over the same period, whereas the density of one species decreased, and that of eight others remained unchanged. Categorization based on Euclidean distance revealed five main clusters from the nine sites. Among these sites, fish assemblages within subsidiary streams were stable as they remained within the same clusters while those in the main stream were dynamically variable through time as they changed cluster membership. In addition, the Euclidean distance between two arbitrary fish assemblages was positively correlated with environmental distance (the Euclidean distance calculated based on river width, depth, velocity and pebble size), time distance, and spatial distance along the river. In conclusion, the fish assemblages were dynamically and regularly altered and varied in the five years after the flood, except for those in the subsidiary streams, and such variation was related to environmental, temporal and spatial variation.  相似文献   

20.
1. Fish and invertebrate assemblage data collected from 670 stream sites in Minnesota (U.S.A.) were used to calculate concordance across three nested spatial scales (statewide, ecoregion and catchment). Predictive taxa richness models, calibrated using the same data, were used to evaluate whether concordant communities exhibited similar trends in human‐induced taxa loss across all three scales. Finally, we evaluated the strength of the relationship between selected environmental variables and the composition of both assemblages at all three spatial scales. 2. Significant concordance between fish and invertebrate communities occurred at the statewide scale as well as in six of seven ecoregions and 17 of the 21 major catchments. However, concordance was not consistently indicative of significant relationships between rates of fish and invertebrate taxa loss at those same scales. 3. Fish and invertebrate communities were largely associated with different environmental variables, although the composition of both communities was strongly correlated with stream size across all three scales. 4. Predictive taxa‐loss models for fish assemblages were less sensitive and precise than models for invertebrate assemblages, likely because of the relatively low number of common fish taxa in our data set. Both models, however, distinguished reference from non‐reference sites. 5. The importance of concordance, geographic context and scale are discussed in relation to the design and interpretation of stream integrity indicators. In particular, our findings suggest that community concordance should not be viewed as a substitute for an evaluation of how assemblages respond to environmental stressors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号