首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1. Explaining resource–diversity relationships is a long‐standing goal in ecology, and there is currently little consensus as to the relative contributions of neutral versus a variety of proposed niche‐related mechanisms. 2. The resource–diversity relationship of insect detritivores was examined in a survey of 25 small, parallel streams flowing into the Bay of Fundy in eastern Canada, with the objective of determining whether neutral processes (sampling effects) could account for the observed patterns. 3. Detritivore taxonomic richness showed a positive, but decelerating relationship with quantity of detritus. Richness also increased with catchment area and with stream permanence. 4. Species distribution patterns were significantly nested, and low resource streams (little detritus) tended to have species with large ranges (i.e. found in many or most streams). 5. Sampling effects could explain only part of the positive relationship between richness and detrital resources, but accounted for the species richness–area relationship. 6. Two mechanisms that could potentially increase niche space as resource abundance increased were rejected: there was no evidence that riparian forest diversity or beta diversity increased with detrital resources. 7. Two niche‐related mechanisms were consistent with existing data, but will require further testing. First, flood disturbance may decrease species richness by eliminating species that require benign habitat, and lowering detritus retention, producing a positive correlation between detritivore richness and resources. Second, large wood in streams located in older riparian forest may increase habitat heterogeneity (number of niches) and the retention of organic matter, again leading to a positive relationship between detritivore diversity and detrital resources. 8. It was concluded that the positive ‘productivity–diversity’ relationship for stream detritivores was most likely produced in part by sampling effects, but also by ecological processes (disturbance and succession) that simultaneously influence resource level and niche availability.  相似文献   

2.
3.
Effects of floods on fish assemblages in an intermittent prairie stream   总被引:2,自引:0,他引:2  
1. Floods are major disturbances to stream ecosystems that can kill or displace organisms and modify habitats. Many studies have reported changes in fish assemblages after a single flood, but few studies have evaluated the importance of timing and intensity of floods on long‐term fish assemblage dynamics. 2. We used a 10‐year dataset to evaluate the effects of floods on fishes in Kings Creek, an intermittent prairie stream in north‐eastern, Kansas, U.S.A. Samples were collected seasonally at two perennial headwater sites (1995–2005) and one perennial downstream flowing site (1997–2005) allowing us to evaluate the effects of floods at different locations within a watershed. In addition, four surveys during 2003 and 2004 sampled 3–5 km of stream between the long‐term study sites to evaluate the use of intermittent reaches of this stream. 3. Because of higher discharge and bed scouring at the downstream site, we predicted that the fish assemblage would have lowered species richness and abundance following floods. In contrast, we expected increased species richness and abundance at headwater sites because floods increase stream connectivity and create the potential for colonisation from downstream reaches. 4. Akaike Information Criteria (AIC) was used to select among candidate regression models that predicted species richness and abundance based on Julian date, time since floods, season and physical habitat at each site. At the downstream site, AIC weightings suggested Julian date was the best predictor of fish assemblage structure, but no model explained >16% of the variation in species richness or community structure. Variation explained by Julian date was primarily attributed to a long‐term pattern of declining abundance of common species. At the headwater sites, there was not a single candidate model selected to predict total species abundance and assemblage structure. AIC weightings suggested variation in assemblage structure was associated with either Julian date or local habitat characteristics. 5. Fishes rapidly colonised isolated or dry habitats following floods. This was evidenced by the occurrence of fishes in intermittent reaches and the positive association between maximum daily discharge and colonisation events at both headwater sites. 6. Our study suggests floods allow dispersal into intermittent habitats with little or no downstream displacement of fishes. Movement of fishes among habitats during flooding highlights the importance of maintaining connectivity of stream networks of low to medium order prairie streams.  相似文献   

4.
Spatial variation in extinction and colonization is expected to influence community composition over time. In stream fish communities, local species richness (alpha diversity) and species turnover (beta diversity) are thought to be regulated by high extinction rates in headwater streams and high colonization rates in downstream areas. We evaluated the spatiotemporal structure of fish communities in streams originally surveyed by Burton and Odum 1945 (Ecology 26: 182–194) in Virginia, USA and explored the effects of species traits on extinction and colonization dynamics. We documented dramatic changes in fish community structure at both the site and stream scales. Of the 34 fish species observed, 20 (59%) were present in both time periods, but 11 (32%) colonized the study area and three (9%) were extirpated over time. Within streams, alpha diversity increased in two of three streams but beta diversity decreased dramatically in all streams due to fish community homogenization caused by colonization of common species and extirpation of rare species. Among streams, however, fish communities differentiated over time. Regression trees indicated that reproductive life‐history traits such as spawning mound construction, associations with mound‐building species, and high fecundity were important predictors of species persistence or colonization. Conversely, native fishes not associated with mound‐building exhibited the highest rates of extirpation from streams. Our results demonstrate that stream fish colonization and extinction dynamics exhibit hierarchical spatial structure and suggest that mound‐building fishes serve as keystone species for colonization of headwater streams.  相似文献   

5.
6.
Little is known about the ecology of stream fishes in Zimbabwe and this study investigated fish communities in the Nyagui River basin and is one of the first to examine the relationship between fish assemblages and habitat diversity in Zimbabwe. Fourteen sampling stations were, for convenience, divided into three groups; upper (>1400 m above sea level), middle (1000–14000 m) and lower stations (<1000 m). A total of 24 species were collected, four of which were introduced, and the species composition differed according to the location of the stations. Species that favoured running water and/or rocks were generally absent from the upper stations, reflecting the fact that they were mostly sandy‐bottomed and still. Diversity and relative abundance increased in the mid‐ and low‐altitude stations, which were rockier and faster flowing. Both species diversity and relative abundance increased with the catchment area above each station, which was attributed to increased habitat diversity in larger streams. This view was supported by a strong correlation between habitat diversity and catchment area, and between habitat diversity and species richness and relative abundance. At present, the Nyagui system is relatively unregulated but the Kunzvi Dam, presently under construction, will change this situation and species diversity is likely to decrease owing to the loss of rheophilic species while other groups, notably cichlids and introduced species will increase.  相似文献   

7.
The loss of riparian forests can disrupt the structure and function of lotic ecosystems through increased habitat homogenization and decreased resource diversity. We conducted a field experiment and manipulated structural complexity and basal resource diversity to determine their effect on multiple aspects of community and food‐web structure of degraded tropical streams. In‐stream manipulations included the addition of woody debris (WD) and the addition of wood and leaf packs (WLP). The addition of structural complexity to degraded streams promoted detritus retention and had a positive effect on stream taxonomic richness, abundance and biomass. At the conclusion of the experiment, abundance and richness in the WD‐treated reaches increased by over 110% and 80%, respectively, while abundance and richness in the WLP‐treated reaches increased by over 280% and 170% respectively. Wood debris and leaves were consumed only by few taxa. Detritivorous taxa were the most abundant trophic guild at the beginning and at the end of the experiment. Food webs in treated reaches were relatively more complex in terms of links and species at the conclusion of the experiment, with highest maximum food chain length in the WD treatments and highest number of trophic species, links, link density, predators and prey at the WLP treatment. Despite differences observed in diet‐based food webs, there was little variation in isotopic niche space, likely due to the high degree of omnivory and trophic redundancy, which was attributed to the importance of fine detritus that supported a broad range of consumers. Even in these degraded streams, aquatic taxa responded to the addition of increased complexity suggesting that these efforts may be an effective first step to restoring the structure and function of these food webs.  相似文献   

8.
1. The structure of lotic macroinvertebrate communities may be strongly influenced by land‐use practices within catchments. However, the relative magnitude of influence on the benthos may depend upon the spatial arrangement of different land uses in the catchment. 2. We examined the influence of land‐cover patterns on in‐stream physico‐chemical features and macroinvertebrate assemblages in nine southern Appalachian headwater basins characterized by a mixture of land‐use practices. Using a geographical information system (GIS)/remote sensing approach, we quantified land‐cover at five spatial scales; the entire catchment, the riparian corridor, and three riparian ‘sub‐corridors’ extending 200, 1000 and 2000 m upstream of sampling reaches. 3. Stream water chemistry was generally related to features at the catchment scale. Conversely, stream temperature and substratum characteristics were strongly influenced by land‐cover patterns at the riparian corridor and sub‐corridor scales. 4. Macroinvertebrate assemblage structure was quantified using the slope of rank‐abundance plots, and further described using diversity and evenness indices. Taxon richness ranged from 24 to 54 among sites, and the analysis of rank‐abundance curves defined three distinct groups with high, medium and low diversity. In general, other macroinvertebrate indices were in accord with rank‐abundance groups, with richness and evenness decreasing among sites with maximum stream temperature. 5. Macroinvertebrate indices were most closely related to land‐cover patterns evaluated at the 200 m sub‐corridor scale, suggesting that local, streamside development effectively alters assemblage structure. 6. Results suggest that differences in macroinvertebrate assemblage structure can be explained by land‐cover patterns when appropriate spatial scales are employed. In addition, the influence of riparian forest patches on in‐stream habitat features (e.g. the thermal regime) may be critical to the distribution of many taxa in headwater streams draining catchments with mixed land‐use practices.  相似文献   

9.
1. There has recently been increasing interest in patterns of beta diversity but we still lack a comprehensive understanding of these patterns in various regions (e.g. the tropics), ecosystems (e.g. streams) and organism groups (e.g. invertebrates). 2. Our aim was to investigate the patterns of beta diversity of stream macroinvertebrates in relation to key environmental (i.e. stream size, pH and habitat degradation) and geographical variables (i.e. latitude, longitude, altitude) in a tropical region. We surveyed a total of 8–10 riffle sites in each of 34 streams (altogether 337 riffle sites were sampled) in Peninsular Malaysia to examine variation in macroinvertebrate community composition at within‐stream and among‐stream scales. 3. Based on test of homogeneity of dispersion, we found that the streams studied differed significantly in within‐stream variation in community composition (i.e. among‐site variation of within stream beta diversity). The patterns were similar based on Bray–Curtis coefficient on abundance data, Sorensen coefficient on presence–absence data and Simpson coefficient on presence–absence data. We also found that within‐stream beta diversity was significantly related to stream size, pH and latitude, with each of these variables individually accounting for around 20% of the variation in beta diversity in simple regressions, while the total variation explained by the three significant variables amounted to around 50% in multiple regressions. By contrast, habitat degradation, longitude and altitude were not significantly related to beta diversity. We also found that the factor drainage basin accounted for much of the variation in beta diversity in general linear models, suppressing the effects of environmental variables. 4. We concluded that within‐stream beta diversity is mainly related to a combination of the identity of a drainage basin and stream environmental factors. Our findings provide important background for stream environmental assessment and conservation planning by emphasising that (i) macroinvertebrate communities within streams are not homogeneous, but show considerable beta diversity, (ii) streams differ in their degree of within‐stream beta diversity, (iii) stream size and water pH should be considered in applied contexts related to within‐stream beta diversity and (iv) historical effects may be different in different drainage basins and may affect present‐day patterns of within‐stream beta diversity.  相似文献   

10.
1. Benthic stream animals, in particular macroinvertebrates, are good indicators of water quality, but sampling can be laborious to obtain accurate indices of biotic integrity. Thus, tools for bioassessment that include measurements other than macroinvertebrates would be valuable additions to volunteer monitoring protocols. 2. We evaluated the usefulness of a stream‐dependent songbird, the Louisiana waterthrush (waterthrush, Seiurus motacilla) and the Environmental Protection Agency Visual Habitat Assessment (EPA VHA) as indicators of the macrobenthos community in headwater streams of the Georgia Piedmont, U.S.A. We sampled macrobenthos, surveyed waterthrushes and measured habitat characteristics along 39 headwater reaches across 17 catchments ranging from forested to heavily urbanised or grazed by cattle. 3. Of the indicators considered, waterthrush occupancy was best for predicting relative abundances of macrobenthic taxa, while the EPA VHA was best for predicting Ephemeroptera–Plecoptera–Trichoptera (EPT) richness. Individual components of EPA VHA scores were much less useful as indicators of EPT richness and % EPT when compared with the total score. Waterthrushes were found along streams with higher % EPT, a lower Family Biotic Index (FBI) values and greater macrobenthos biomass. 4. While macroinvertebrates remain one of the most direct indicators of stream water quality, stream bird surveys and reach‐scale habitat assessments can serve as cost‐effective indicators of benthic macroinvertebrate communities. Using stream‐dependent birds as an early warning signal for degradation of stream biotic integrity could improve the efficacy of catchment monitoring programmes in detecting and identifying perturbations within the catchment.  相似文献   

11.
Local species coexistence is the outcome of abiotic and biotic filtering processes which sort species according to their trait values. However, the capacity of trait‐based approaches to predict the variation in realized species richness remains to be investigated. In this study, we asked whether a limited number of plant functional traits, related to the leaf‐height‐seed strategy scheme and averaged at the community level, is able to predict the variation in species richness over a flooding disturbance gradient. We further investigated how these mean community traits are able to quantify the strength of abiotic and biotic processes involved in the disturbance–productivity–diversity relationship. We thus tested the proposal that the deviation between the fundamental species richness, assessed from ecological niche‐based models, and realized species richness, i.e. field‐observed richness, is controlled by species interactions. Flooding regime was determined using a detailed hydrological model. A precise vegetation sampling was performed across 222 quadrats located throughout the flooding gradient. Three core functional traits were considered: specific leaf area (SLA), plant height and seed mass. Species richness showed a hump‐shaped response to disturbance and productivity, but was better predicted by only two mean community traits: SLA and height. On the one hand, community SLA that increased with flooding, controlled the disturbance‐diversity relationship through habitat filtering. On the other hand, species interactions, the strength of which was captured by community height values, played a strong consistent role throughout the disturbance gradient by reducing the local species richness. Our study highlights that a limited number of simple, quantitative, easily measurable functional traits can capture the variation in plant species richness at a local scale and provides a promising quantification of key community assembly mechanisms.  相似文献   

12.
Richness, structure and functioning in metazoan parasite communities   总被引:4,自引:0,他引:4  
Ecosystem functioning, characterized by components such as productivity and stability, has been extensively linked with diversity in recent years, mainly in plant ecology. The aim of our study was thus to quantify general relationships between diversity, community structure and ecosystem functions in metazoan parasite communities. We used data on parasite communities from 15 species of marine fish hosts from coastal Chile. The volumetric abundance (volume of all parasite species per individual host, in mm3) was used as a surrogate for productivity. Species diversity was measured using both species richness and evenness, while community structure was estimated using the co‐occurrence indices V‐ratio, C‐score and a new C‐scores index standardized for the number of host replicates. After correcting for fish size, 47% of host species show no relationship, 13% show a hump shaped curve and 40% show positive monotonic relationships between productivity and parasite richness across all host individuals in a sample. We obtained a logarithmically decreasing relationship between evenness and productivity for all fish species, and propose a ‘dominance‐resistance’ hypothesis based on immunity to explain this pattern. The stability of the parasite community, measured as the coefficient of variation in productivity among individual hosts, was strongly and positively related to mean species richness across the 15 host species. The C‐scores index, based on the number of checkerboard units in the host‐parasite presence/absence matrix, increases linearly with mean productivity across the 15 host species, suggesting that parasite communities tend to be more structured when they are more productive. This is the likely reason why linear relationships between richness and productivity were not observed consistently in all fish species. Parasite communities provide some clear patterns for the diversity–ecosystem functioning debate in ecology, although other factors, such as the history of community assembly, may also influence these patterns.  相似文献   

13.
1. Studies of North American streams have shown that hydraulic parameters and stream geomorphology can explain unionid mussel abundance at both the reach and catchment scale. However, few studies have examined applicability of hydrogeomorphic variables across broader spatial scales, such as across whole catchments, or have elucidated conditions under which spates can affect mussel populations in streams. 2. We quantified freshwater mussel abundance and species richness and their physical habitat at 24 sites in eight streams in southern Appalachian catchments in 2000 and 2001. In addition, we modelled site‐specific hydraulic parameters during summer baseflow and bankfull stages to estimate high‐ and low‐discharge conditions, respectively. 3. Mussel abundance was related to stream geomorphology, whereas richness was related to stream size. Baseflow habitat parameters explained only minor variation in abundance or richness, and both measures were highly correlated with mean current velocity or stream size. Bankfull shear stress composed a relatively low proportion of overall mussel habitat variability, but it accounted for significant variation in abundance and richness. 4. Mussel abundance was highly variable at sites subject to low‐shear stress during spates, whereas abundance always was low at sites subject to high‐shear stress. These data suggest that habitat conditions during floods, rather than those at summer baseflow, limit the abundance of mussels in Appalachian streams. These data also suggest that mussel abundance and assemblage structure may be sensitive to any changes in channel geomorphology and hydraulic conditions that might result from land use in the catchment.  相似文献   

14.
Landscape-scale patterns of freshwater fish diversity and assemblage structure remain poorly documented in many areas of Central America, while aquatic ecosystems throughout the region have been impacted by habitat degradation and hydrologic alterations. Diadromous fishes may be especially vulnerable to these changes, but there is currently very little information available regarding their distribution and abundance in Central American river systems. We sampled small streams at 20 sites in the Sixaola River basin in southeastern Costa Rica to examine altitudinal variation in the diversity and species composition of stream fish assemblages, with a particular focus on diadromous species. A set of environmental variables was also measured in the study sites to evaluate how changes in fish assemblage structure were related to gradients in stream habitat. Overall, fish diversity and abundance declined steeply with increasing elevation, with very limited species turnover. The contribution of diadromous fishes to local species richness and abundance increased significantly with elevation, and diadromous species dominated assemblages at the highest elevation sites. Ordination of the sampling sites based on fish species composition generally arranged sites by elevation, but also showed some clustering based on geographic proximity. The dominant gradient in fish community structure was strongly correlated with an altitudinal habitat gradient identified through ordination of the environmental variables. The variation we observed in stream fish assemblages over relatively small spatial scales has significant conservation implications and highlights the ecological importance of longitudinal connectivity in Central American river systems.  相似文献   

15.
Alpine streams are typically fed from a range of water sources including glacial meltwater, snowmelt, groundwater flow, and surface rainfall runoff. These contributions are projected to shift with climate change, particularly in the Japanese Alps where snow is expected to decrease, but rainfall events increase. The overarching aim of the study was to understand the key variables driving macroinvertebrate community composition in groundwater and snowmelt‐fed streams (n = 6) in the Kamikochi region of the northern Japanese Alps (April–December 2017). Macroinvertebrate abundance, species richness, and diversity were not significantly different between the two stream types. Community structure, however, was different between groundwater and snowmelt‐fed streams with macroinvertebrate taxa specialized for the environmental conditions present in each system. Temporal variation in the abundance, species richness, and diversity of macroinvertebrate communities was also significantly different between groundwater and snowmelt streams over the study period, with snowmelt streams exhibiting far higher levels of variation. Two snowmelt streams considered perennial proved to be intermittent with periodic drying of the streambed, but the macroinvertebrates in these systems rebounded rapidly after flows resumed with no reduction in taxonomic diversity. These same streams, nevertheless, showed a major reduction in diversity and abundance following periods of high flow, indicating floods rather than periodic drying was a major driver of community structure. This conclusion was also supported from functional analyses, which showed that the more variable snowmelt streams were characterized by taxa with resistant, rather than resilient, life‐history traits. The findings demonstrate the potential for significant turnover in species composition with changing environmental conditions in Japanese alpine stream systems, with groundwater‐fed streams potentially more resilient to future changes in comparison to snowmelt‐fed streams.  相似文献   

16.
Parasites of fishes vary in community structure and species abundance in response to environmental conditions and pollutants. As a result, the use of parasites as bioindicators of habitat degradation has been proposed and successfully applied in recent years. Here, helminth parasites of juvenile pumpkinseed Lepomis gibbosus from three streams representing a gradient of watershed development and habitat quality were examined to assess variation in parasite communities. Health assessment indices were also generated for each host to quantify the influence of habitat on the observed health of individuals. A total of 22 parasite taxa were recovered from examined fish, comprising 11 digeneans, 3 cestodes, 2 acanthocephalans, 5 monogeneans and 1 crustacean. In the most disturbed stream, parasite species richness was lowest and total abundance was highest, while parasite abundance was lowest and diversity highest in the least disturbed stream. There was no significant difference in health indices among streams. Analysis of similarities (ANOSIM) and Bray–Curtis dissimilarity in species composition (SIMPER) identified Posthodiplostomum spp. and Actinocleidus sp. as the species driving parasite community dissimilarity. These taxa are relatively easy to identify to genus level and thus could be appropriate for use as indicators of environmental health, where increased abundance would suggest negative changes in habitat quality. However, larger scale study including more streams would be necessary to establish baseline community data before such implementation would be feasible.  相似文献   

17.
Understanding the species diversity patterns along elevational gradients is critical for biodiversity conservation in mountainous regions. We examined the elevational patterns of species richness and turnover, and evaluated the effects of spatial and environmental factors on nonvolant small mammals (hereafter “small mammal”) predicted a priori by alternative hypotheses (mid‐domain effect [MDE], species–area relationship [SAR], energy, environmental stability, and habitat complexity]) proposed to explain the variation of diversity. We designed a standardized sampling scheme to trap small mammals at ten elevational bands across the entire elevational gradient on Yulong Mountain, southwest China. A total of 1,808 small mammals representing 23 species were trapped. We observed the hump‐shaped distribution pattern of the overall species richness along elevational gradient. Insectivores, rodents, large‐ranged species, and endemic species richness showed the general hump‐shaped pattern but peaked at different elevations, whereas the small‐ranged species and endemic species favored the decreasing richness pattern. The MDE and the energy hypothesis were supported, whereas little support was found for the SAR, the environmental stability hypothesis, and the habitat complexity. However, the primary driver(s) for richness patterns differed among the partitioning groups, with NDVI (the normalized difference vegetation index) and MDE being the most important variables for the total richness pattern. Species turnover for all small mammal groups increased with elevation, and it supported a decrease in community similarity with elevational distance. Our results emphasized for increased conservation efforts in the higher elevation regions of the Yulong Mountain.  相似文献   

18.
19.
Woody debris (CWD) is an important habitat component in northern Gulf of Mexico coastal plain streams, where low gradients and low flows allow accumulation of CWD and promote low dissolved oxygen (DO) concentrations. We tested the influences of CWD and DO on stream macroinvertebrates experimentally by placing two surface area CWD treatments each in three concentrations of ambient DO in two streams in Louisiana, USA, with macroinvertebrates collected from ambient woody debris used as a control. We also sampled macroinvertebrates in benthic and woody debris habitats in three streams twice yearly over 2 years to examine the applicability of the experimental results. Total abundance, richness (generic), and Shannon–Wiener diversity were all higher in lower DO conditions during the experiment, and total abundance was higher in the larger CWD treatment. Stream sampling corroborated the relationship between higher diversity and low DO in both benthic and woody debris habitats, but the relationship between richness and low DO only was supported in benthic habitats. Few taxa correlated with DO or CWD in the experiment (5 of 21 taxa) or stream survey (2 of 54 taxa). Whereas most taxa were uncorrelated with experimentally manipulated and in-stream measured variables, we suggest these taxa respond as generalists to stream habitat and physicochemistry. Based on this experiment and stream sampling, we believe the majority of macroinvertebrates in these streams are tolerant of seasonally low DO conditions.  相似文献   

20.
Macroinvertebrate diversity in headwater streams: a review   总被引:1,自引:0,他引:1  
1. Headwater streams are ubiquitous in the landscape and are important sources of water, sediments and biota for downstream reaches. They are critical sites for organic matter processing and nutrient cycling, and may be vital for maintaining the 'health' of whole river networks.
2. Macroinvertebrates are an important component of biodiversity in stream ecosystems and studies of macroinvertebrate diversity in headwater streams have mostly viewed stream systems as linear reaches rather than as networks, although the latter may be more appropriate to the study of diversity patterns in headwater systems.
3. Studies of macroinvertebrate diversity in headwater streams from around the world illustrated that taxonomic richness is highly variable among continents and regions, and studies addressing longitudinal changes in taxonomic richness of macroinvertebrates generally found highest richness in mid-order streams.
4. When stream systems are viewed as networks at the landscape-scale, α-diversity may be low in individual headwater streams but high β-diversity among headwater streams within catchments and among catchments may generate high γ-diversity.
5. Differing ability and opportunity for dispersal of macroinvertebrates, great physical habitat heterogeneity in headwater streams, and a wide range in local environmental conditions may all contribute to high β-diversity among headwater streams both within and among catchments.
6. Moving beyond linear conceptual models of stream ecosystems to consider the role that spatial structure of river networks might play in determining diversity patterns at the landscape scale is a promising avenue for future research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号