首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Body composition assessment during infancy is important because it is a critical period for obesity risk development, thus valid tools are needed to accurately, precisely, and quickly determine both fat and fat‐free mass. The purpose of this study was to compare body composition estimates using dual‐energy x‐ray absorptiometry (DXA) and air displacement plethysmography (ADP) at 6 months old. We assessed the agreement between whole body composition using DXA and ADP in 84 full‐term average‐for‐gestational‐age boys and girls using DXA (Lunar iDXA v11–30.062; Infant whole body analysis enCore 2007 software, GE, Fairfield, CT) and ADP (Infant Body Composition System v3.1.0, COSMED USA, Concord, CA). Although the correlations between DXA and ADP for %fat (r = 0.925), absolute fat mass (r = 0.969), and absolute fat‐free mass (r = 0.945) were all significant, body composition estimates by DXA were greater for both %fat (31.1 ± 3.6% vs. 26.7 ± 4.7%; P < 0.001) and absolute fat mass (2,284 ± 449 vs. 1,921 ± 492 g; P < 0.001), and lower for fat‐free mass (5,022 ± 532 vs. 5,188 ± 508 g; P < 0.001) vs. ADP. Inter‐method differences in %fat decreased with increasing adiposity and differences in fat‐free mass decreased with increasing infant age. Estimates of body composition determined by DXA and ADP at 6 months of age were highly correlated, but did differ significantly. Additional work is required to identify the technical basis for these rather large inter‐method differences in infant body composition.  相似文献   

5.
Dual‐energy X‐ray absorptiometry (DXA) has become a common measurement of human body composition. However, obese subjects have been understudied largely due to weight and scan area restrictions. Newer DXA instruments allow for heavier subjects to be supported by the DXA scanner, but the imaging area is still smaller than the body size of some obese subjects. In this study, we determined the validity of an automated half‐scan methodology by comparing to the standard whole‐body scans in a cohort of obese volunteers. Fifty‐two subjects whose BMI >30 kg/m2 completed whole‐body iDXA (GE Lunar) scans. The resulting scans were analyzed in three ways: the standard whole‐body scan, total body estimated from the left side, and from the right side. Fat mass, nonbone lean mass, bone mineral content (BMC), and percent fat derived from each half scan were compared to the whole‐body scans. Total fat mass, nonbone lean mass, or percent fat was comparable for the whole‐body scans, left, and right side scans (>97% within individuals and >99.9% for the group). The BMC estimate using the right side scan was slightly but statistically higher than the whole‐body BMC (~30 g or 1%, P < 0.001), while the left side scan BMC estimate was lower than the whole‐body BMC by the same magnitude. No significant magnitude bias was found for any of the composition variables. We conclude that the new iDXA half‐body analysis in obese subjects appears to be closely comparable to whole‐body analysis for fat mass, nonbone lean mass, and percent fat.  相似文献   

6.
Although BMI is the most widely used measure of obesity, debate still exists on how accurately BMI defines obesity. In this study, adiposity status defined by BMI and dual‐energy X‐ray absorptiometry (DXA) was compared in a large population to evaluate the accuracy of BMI. A total of 1,691 adult volunteers from Newfoundland and Labrador participated in the study. BMI and body fat percentage (%BF) were measured for all subjects following a 12‐h fasting period. Subjects were categorized as underweight (UW), normal weight (NW), overweight (OW), or obese (OB) based on BMI and %BF criteria. Differences between the two methods were compared within gender and by age‐groups. According to BMI criteria, 1.2% of women were classified as UW, 44.2% as NW, 34.2% as OW, and 20.3% as OB. When women were classified according to %BF criteria, 2.2% were UW, 29.6% were NW, 30.9% were OW, and 37.1% were OB. The overall discrepancy between the two methods for women was substantial at 34.7% (14.6% for NW and 16.8% for OB, P < 0.001). In men, the overall discrepancy was 35.2% between BMI and DXA (17.6% for OW and 13.5% for OB, P < 0.001). Misclassification by BMI was dependent on age, gender, and adiposity status. In conclusion, BMI misclassified adiposity status in approximately one‐third of women and men compared with DXA. Caution should be taken when BMI is used in clinical and scientific research as well as clinical practice.  相似文献   

7.
Objective: To evaluate the precision and accuracy of dual‐energy X‐ray absorptiometry (DXA) for the measurement of total‐bone mineral density (TBMD), total‐body bone mineral (TBBM), fat mass (FM), and bone‐free lean tissue mass (LTM) in mice. Research Methods and Procedures: Twenty‐five male C57BL/6J mice (6 to 11 weeks old; 19 to 29 g) were anesthetized and scanned three times (with repositioning between scans) using a peripheral densitometer (Lunar PIXImus). Gravimetric and chemical extraction techniques (Soxhlet) were used as the criterion method for the determination of body composition; ash content was determined by burning at 600°C for 8 hours. Results: The mean intraindividual coefficients of variation (CV) for the repeated DXA analyses were: TBMD, 0.84%; TBBM, 1.60%; FM, 2.20%; and LTM, 0.86%. Accuracy was determined by comparing the DXA‐derived data from the first scan with the chemical carcass analysis data. DXA accurately measured bone ash content (p = 0.942), underestimated LTM (0.59 ± 0.05g, p < 0.001), and overestimated FM (2.19 ± 0.06g, p < 0.001). Thus, DXA estimated 100% of bone ash content, 97% of carcass LTM, and 209% of carcass FM. DXA‐derived values were then used to predict chemical values of FM and LTM. Chemically extracted FM was best predicted by DXA FM and DXA LTM [FM = ?0.50 + 1.09(DXA FM) ? 0.11(DXA LTM), model r2 = 0.86, root mean square error (RMSE) = 0.233 g] and chemically determined LTM by DXA LTM [LTM = ?0.14 + 1.04(DXA LTM), r2 = 0.99, RMSE = 0.238 g]. Discussion: These data show that the precision of DXA for measuring TBMD, TBBM, FM, and LTM in mice ranges from a low of 0.84% to a high of 2.20% (CV). DXA accurately measured bone ash content but overestimated carcass FM and underestimated LTM. However, because of the close relationship between DXA‐derived data and chemical carcass analysis for FM and LTM, prediction equations can be derived to more accurately predict body composition.  相似文献   

8.
9.
Visceral adipose tissue (VAT) is associated with increased risk for cardiovascular disease, and therefore, accurate methods to estimate VAT have been investigated. Computerized tomography (CT) is the gold standard measure of VAT, but its use is limited. We therefore compared waist measures and two dual‐energy X‐ray absorptiometry (DXA) methods (Ley and Lunar) that quantify abdominal regions of interest (ROIs) to CT‐derived VAT in 166 black and 143 white South African women. Anthropometry, DXA ROI, and VAT (CT at L4–L5) were measured. Black women were younger (P < 0.001), shorter (P < 0.001), and had higher body fat (P < 0.05) than white women. There were no ethnic differences in waist (89.7 ± 18.2 cm vs. 90.1 ± 15.6 cm), waist:height ratio (WHtR, 0.56 ± 0.12 vs. 0.54 ± 0.09), or DXA ROI (Ley: 2.2 ± 1.5 vs. 2.1 ± 1.4; Lunar: 2.3 ± 1.4 vs. 2.3 ± 1.5), but black women had less VAT, after adjusting for age, height, weight, and fat mass (76 ± 34 cm2 vs. 98 ± 35 cm2; P < 0.001). Ley ROI and Lunar ROI were correlated in black (r = 0.983) and white (r = 0.988) women. VAT correlated with DXA ROI (Ley: r = 0.729 and r = 0.838, P < 0.01; Lunar: r = 0.739 and r = 0.847, P < 0.01) in black and white women, but with increasing ROI android fatness, black women had less VAT. Similarly, VAT was associated with waist (r = 0.732 and r = 0.836, P < 0.01) and WHtR (r = 0.721 and r = 0.824, P < 0.01) in black and white women. In conclusion, although DXA‐derived ROIs correlate well with VAT as measured by CT, they are no better than waist or WHtR. Neither DXA nor anthropometric measures are able to accurately distinguish between high and low levels of VAT between population groups.  相似文献   

10.
High‐density lipoproteins (HDLs) play a key role in the protection against oxidative damage. The enzyme paraoxonase‐1 (PON1) associated at the surface of HDL modulates the antioxidant and anti‐inflammatory role of HDL. Previous studies have demonstrated a decrease of serum PON in obese patients. The aim of this study was to investigate whether modifications of PON1 activity reflect in a different ability to protect and/or repair biological membranes against oxidative damage. Thirty obese patients at different grades of obesity (BMI ranging from 30.4 to 64.0 kg/m2) and 62 age‐matched control subjects (BMI <25 kg/m2) were included in the study. The ability of HDL to protect membranes against oxidative damage was studied using erythrocyte membranes oxidized with 2,2‐azobis(2 amidinopropane)dihydrochloride (AAPH) (ox‐membrane). The membrane lipid hydroperoxide levels were evaluated after the incubation of ox‐membranes in the absence or in the presence of HDL of controls or obese patients. The results confirm that HDL exerts a protective effect against lipid peroxidation. The ability of HDL to repair erythrocyte membranes was positively correlated with HDL‐PON activity and negatively correlated with lipid hydroperoxide levels in HDL. These results suggest that PON modulates the HDL repairing ability. HDL from obese patients repaired less efficiently erythrocyte membranes against oxidative damage with respect to HDL from healthy subjects. A negative relationship has been established between BMI of obese patients and the protective effect of HDL. In conclusion, the decrease of HDL‐PON activity and the lower HDL protective action against membrane peroxidation in obese patients could contribute to accelerate the cellular oxidative damage and arteriosclerosis in obesity.  相似文献   

11.
It is estimated that over two thirds of all new crystal structures of proteins are determined via the protein selenium derivatization (selenomethionine (Se‐Met) strategy). This selenium derivatization strategy via MAD (multi‐wavelength anomalous dispersion) phasing has revolutionized protein X‐ray crystallography. Through our pioneer research, similarly, Se has also been successfully incorporated into nucleic acids to facilitate the X‐ray crystal‐structure and function studies of nucleic acids. Currently, Se has been stably introduced into nucleic acids by replacing nucleotide O‐atom at the positions 2′, 4′, 5′, and in nucleobases and non‐bridging phosphates. The Se derivatization of nucleic acids can be achieved through solid‐phase chemical synthesis and enzymatic methods, and the Se‐derivatized nucleic acids (SeNA) can be easily purified by HPLC, FPLC, and gel electrophoresis to obtain high purity. It has also been demonstrated that the Se derivatization of nucleic acids facilitates the phase determination via MAD phasing without significant perturbation. A growing number of structures of DNAs, RNAs, and protein–nucleic acid complexes have been determined by the Se derivatization and MAD phasing. Furthermore, it was observed that the Se derivatization can facilitate crystallization, especially when it is introduced to the 2′‐position. In addition, this novel derivatization strategy has many advantages over the conventional halogen derivatization, such as more choices of the modification sites via the atom‐specific substitution of the nucleotide O‐atom, better stability under X‐ray radiation, and structure isomorphism. Therefore, our Se‐derivatization strategy has great potentials to provide rational solutions for both phase determination and high‐quality crystal growth in nucleic‐acid crystallography. Moreover, the Se derivatization generates the nucleic acids with many new properties and creates a new paradigm of nucleic acids. This review summarizes the recent developments of the atomic site‐specific Se derivatization of nucleic acids for structure determination and function study. Several applications of this Se‐derivatization strategy in nucleic acid and protein research are also described in this review.  相似文献   

12.
13.
X‐ray microscopy can provide unique chemical, electronic, and structural insights into perovskite materials and devices leveraging bright, tunable synchrotron X‐ray sources. Over the last decade, fundamental understanding of halide perovskites and their impressive performance in optoelectronic devices has been furthered by rigorous research regarding their structural and chemical properties. Herein, studies of perovskites are reviewed that have used X‐ray imaging, spectroscopy, and scattering microscopies that have proven valuable tools toward understanding the role of defects, impurities, and processing on perovskite material properties and device performance. Together these microscopic investigations have augmented the understanding of the internal workings of perovskites and have helped to steer the perovskite community toward promising directions. In many ways, X‐ray microscopy of perovskites is still in its infancy, which leaves many exciting paths unexplored including new ptychographic, multimodal, in situ, and operando experiments. To explore possibilities, pioneering X‐ray microscopy along these lines is briefly highlighted from other semiconductor systems including silicon, CdTe, GaAs, CuInxGa1?xSe2, and organic photovoltaics. An overview is provided on the progress made in utilizing X‐ray microscopy for perovskites and present opportunities and challenges for future work.  相似文献   

14.
Recent advances in high‐resolution 3D X‐ray computed tomography (CT) allow detailed, non‐destructive 3D structural mapping of a complete lithium‐ion battery. By repeated 3D image acquisition (time lapse CT imaging) these investigations of material microstructure are extended into the fourth dimension (time) to study structural changes of the device in operando. By digital volume correlation (DVC) of successive 3D images the dimensional changes taking place during charge cycling are quantified at the electrode level and at the Mn2O4 particle scale. After battery discharging, the extent of lithiation of the manganese (III/IV) oxide grains in the electrode is found to be a function of the distance from the battery terminal with grains closest to the electrode/current collector interface having the greatest expansion (≈30%) and grains furthest from the current collector and closest to the counter electrode showing negligible dilation. This implies that the discharge is limited by electrical conductivity. This new CT+DVC technique is widely applicable to the 3D exploration of the microstructural degradation processes for a range of energy materials including fuel cells, capacitors, catalysts, and ceramics.  相似文献   

15.
Objective: To examine the safety and efficacy of topiramate (TPM) for maintaining weight following a low‐calorie diet. Research Methods and Procedures: Obese subjects (30 ≤ BMI < 50 kg/m2) 18 to 75 years old received a low‐calorie diet for 8 weeks. Those who lost ≥8% of their initial weight received TPM (96 or 192 mg/d) or placebo; all were on a lifestyle modification plan. Sixty weeks of medication were planned. Sponsor ended study early to develop a new controlled‐release formulation with the potential to enhance tolerability and simplify dosing in this patient population. Efficacy was analyzed in subjects who completed 44 weeks of treatment before study termination. Results: Of the 701 subjects enrolled, 80% lost ≥8% of their initial body weight and were randomized; 293 were analyzed for efficacy. Most withdrawals were due to premature termination of the study. Subjects receiving TPM lost 15.4% (96 mg/d) and 16.5% (192 mg/d) of their enrollment weight by week 44, compared with 8.9% in the placebo group (p < 0.001). Subjects on TPM continued to lose weight after the run‐in, whereas those on placebo regained weight. Significantly more TPM subjects lost 5%, 10%, or 15% of their randomization weight than placebo. Most adverse events were related to the central nervous system. Discussion: During a treatment period of 44 weeks, TPM was generally well tolerated, and subjects maintained weight loss initially achieved by a low‐calorie diet—and produced additional clinically significant weight loss beyond that achieved by a low‐calorie diet.  相似文献   

16.
Hard carbon is a standard anode material for Na‐ion batteries. However, its low crystallinity and diverse microstructures make obtaining a full understanding of the sodium storage mechanism challenging. Here, the results of a systematic ex situ small and wide angle X‐ray scattering study of a series of nanostructured hard carbons, which reveal clear evidence of sodium storage in the graphene–graphene interlayers and nanopores, are presented. Particularly, an emergence of a broad peak around q ≈ 2.0–2.1 Å?1 in the low voltage region is suggested to be an indicator that sodium is densely confined in the nanopores. Thus, classical X‐ray scattering techniques are demonstrated to be effective in elucidating the overall reaction scheme of Na insertion into hard carbon.  相似文献   

17.
Determination of lipid levels is fundamental in cardiovascular risk assessment. We studied the short‐term effects of fast food‐based hyperalimentation on lipid levels in healthy subjects. Twelve healthy men and six healthy women with a mean age of 26 ± 6.6 years and an aged‐matched control group were recruited for this prospective interventional study. Subjects in the intervention group aimed for a body weight increase of 5–15% by doubling the baseline caloric intake by eating at least two fast food‐based meals a day in combination with adoption of a sedentary lifestyle for 4 weeks. This protocol induced a weight gain from 67.6 ± 9.1 kg to 74.0 ± 11 kg (P < 0.001). A numerical increase in the levels of high‐density lipoprotein (HDL)‐cholesterol occurred in all subjects during the study and this was apparent already at the first week in 16/18 subjects (mean increase at week 1: +22.0 ± 16%, range from ?7 to +50%), whereas the highest level of HDL during the study as compared with baseline values varied from +6% to +58% (mean +31.6 ± 15%). The intake of saturated fat in the early phase of the trial related positively with the HDL‐cholesterol‐increase in the second week (r = 0.53, P = 0.028). Although the levels of insulin doubled at week 2, the increase in low‐density lipoprotein (LDL)‐cholesterol was only +12 ± 17%, and there was no statistically significant changes in fasting serum triglycerides. We conclude that hyperalimentation can induce a fast but transient increase in HDL‐cholesterol that is of clinical interest when estimating cardiovascular risk based on serum lipid levels.  相似文献   

18.
19.
The lipophilization of β‐d ‐riboguanosine ( 1 ) with various symmetric as well as asymmetric ketones is described (→ 3a – 3f ). The formation of the corresponding O‐2′,3′‐ketals is accompanied by the appearance of various fluorescent by‐products which were isolated chromatographically as mixtures and tentatively analyzed by ESI‐MS spectrometry. The mainly formed guanosine nucleolipids were isolated and characterized by elemental analyses, 1H‐, 13C‐NMR and UV spectroscopy. For a drug profiling, static topological polar surface areas as well as 10logPOW values were calculated by an increment‐based method as well as experimentally for the systems 1‐octanol‐H2O and cyclohexane‐H2O. The guanosine‐O‐2′,3′‐ketal derivatives 3b and 3a could be crystallized in (D6)DMSO – the latter after one year of standing at ambient temperature. X‐ray analysis revealed the formation of self‐assembled ribbons consisting of two structurally similar 3b nucleolipid conformers as well as integrated (D6)DMSO molecules. In the case of 3a ? DMSO, the ribbon is formed by a single type of guanosine nucleolipid molecules. The crystalline material 3b ? DMSO was further analyzed by differential scanning calorimetry (DSC) and temperature‐dependent polarization microscopy. Crystallization was also performed on interdigitated electrodes (Au, distance, 5 μm) and visualized by scanning electron microscopy. Resistance and amperage measurements clearly demonstrate that the electrode‐bridging 3b crystals are electrically conducting. All O‐2′,3′‐guanosine ketals were tested on their cytostatic/cytotoxic activity towards phorbol 12‐myristate 13‐acetate (PMA)‐differentiated human THP‐1 macrophages as well as against human astrocytoma/oligodendroglioma GOS‐3 cells and against rat malignant neuroectodermal BT4Ca cells.  相似文献   

20.
This study was undertaken to investigate the association among BMI and lipid hydroperoxide (LH), total antioxidant status (TAS), superoxide dismutase (SOD), and reduced glutathione (GSH). Ninety (n = 90) healthy males and females (n = 23/67) (29 normal weight (BMI: 22.74 ± 0.25 kg/m2), 36 overweight (BMI: 27.18 ± 0.23 kg/m2), and 25 obese (33.78 ± 0.48 kg/m2)) participated in the study. Data collected included anthropometric measures, fasting blood glucose, lipid profile, LH, TAS, and enzymatic antioxidants (SOD, and reduced GSH). The results of the study showed that obese individuals had significantly increased LH levels compared to normal‐weight individuals (obese vs. normal weight (0.88 ± 0.05 vs. 0.67 ± 0.03 µmol/l, P < 0.01)) but the increased levels were not significantly different when compared to the overweight group (obese vs. overweight (0.88 ± 0.05 vs. 0.79 ± 0.05 µmol/l)). No other consistent significant differences in TAS, SOD, and GSH were identified between groups. This study concluded that only obesity and not moderate overweight elevates LH levels. Furthermore, the levels of TAS, SOD, and GSH in obesity do not explain the increased LH levels observed in obesity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号