首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S K Silverman  T R Cech 《Biochemistry》1999,38(27):8691-8702
Tertiary interactions that allow RNA to fold into intricate three-dimensional structures are being identified, but little is known about the thermodynamics of individual interactions. Here we quantify the tertiary structure contributions of individual hydrogen bonds in a "ribose zipper" motif of the recently crystallized Tetrahymena group I intron P4-P6 domain. The 2'-hydroxyls of P4-P6 nucleotides C109/A184 and A183/G110 participate in forming the "teeth" of the zipper. These four nucleotides were substituted in all combinations with their 2'-deoxy and (separately) 2'-methoxy analogues, and thermodynamic effects on the tertiary folding DeltaG degrees ' were assayed by the Mg2+ dependence of electrophoretic mobility in nondenaturing gels. The 2'-deoxy series showed a consistent trend with an average contribution to the tertiary folding DeltaG degrees' of -0.4 to -0.5 kcal/mol per hydrogen bond. Contributions were approximately additive, reflecting no cooperativity among the hydrogen bonds. Each "tooth" of the ribose zipper (comprising two hydrogen bonds) thus contributes about -1.0 kcal/mol to the tertiary folding DeltaG degrees'. Single 2'-methoxy substitutions destabilized folding by approximately 1 kcal/mol, but the trend reversed with multiple 2'-methoxy substitutions; the folding DeltaG degrees' for the quadruple 2'-methoxy derivative was approximately unchanged relative to wild-type. On the basis of these data and on temperature-gradient gel results, we conclude that entropically favorable hydrophobic interactions balance enthalpically unfavorable hydrogen bond deletions and steric clashes for multiple 2'-methoxy substitutions. Because many of the 2'-deoxy derivatives no longer have the characteristic hydrogen-bond patterns of the ribose zipper motif but simply have individual long-range ribose-base or ribose-ribose hydrogen bonds, we speculate that the energetic value of -0.4 to -0.5 kcal/mol per tertiary hydrogen bond may be more generally applicable to RNA folding.  相似文献   

2.
Kim H  Jeong E  Lee SW  Han K 《FEBS letters》2003,552(2-3):231-239
Structural analysis of protein-RNA complexes is labor-intensive, yet provides insight into the interaction patterns between a protein and RNA. As the number of protein-RNA complex structures reported has increased substantially in the last few years, a systematic method is required for automatically identifying interaction patterns. This paper presents a computational analysis of the hydrogen bonds in the most representative set of protein-RNA complexes. The analysis revealed several interesting interaction patterns. (1) While residues in the beta-sheets favored unpaired nucleotides, residues in the helices showed no preference and residues in turns favored paired nucleotides. (2) The backbone hydrogen bonds were more dominant than the base hydrogen bonds in the paired nucleotides, but the reverse was observed in the unpaired nucleotides. (3) The protein-RNA complexes contained more paired nucleotides than unpaired nucleotides, but the unpaired nucleotides were observed more frequently interacting with the proteins. And (4) Arg-U, Thr-A, Lys-A, and Asn-U were the most frequently observed pairs. The interaction patterns discovered from the analysis will provide us with useful information in predicting the structure of the RNA binding protein and the structure of the protein binding RNA.  相似文献   

3.
A statistical analysis of strong and weak hydrogen bonds in the minor groove of DNA was carried out for a set of 70 drug-DNA complexes. The terms ‘strong’ and ‘weak’ pertain to the inherent strengths and weakness of the donor and acceptor fragments rather than to any energy considerations. The dataset was extracted from the protein data bank (PDB). The analysis was performed with an in-house software, hydrogen bond analysis tool (HBAT). In addition to strong hydrogen bonds such as O—H⋯O and N—H⋯O, the ubiquitous presence of weak hydrogen bonds such as C—H⋯O is implicated in molecular recognition. On an average, there are 1.4 weak hydrogen bonds for every strong hydrogen bond. For both categories of interaction, the N(3) of purine and the O(2) of pyrimidine are favoured acceptors. Donor multifurcation is common with the donors generally present in the drug molecules, and shared by hydrogen bond acceptors in the minor groove. Bifurcation and trifurcation are most commonly observed. The metrics for strong hydrogen bonds are consistent with established trends. The geometries are variable for weak hydrogen bonds. A database of recognition geometries for 26 literature amidinium-based inhibitors of Human African Trypanosomes (HAT) was generated with a docking study using seven inhibitors which occur in published crystal structures included in the list of 70 complexes mentioned above, and 19 inhibitors for which the drug-DNA complex crystal structures are unknown. The virtual geometries so generated correlate well with published activities for these 26 inhibitors, justifying our assumption that strong and weak hydrogen bonds are optimized in the active site.  相似文献   

4.
Density functional theory (DFT) calculations are performed to study the hydrogen-bonding in the DMSO-water and DMF-water complexes. Quantitative molecular electrostatic potential (MESP) and atoms-in-molecules (AIM) analysis are applied to quantify the relative complexation of DMSO and DMF with water molecules. The interaction energy of DMSO with water molecules was higher than in DMF-water complexes. The existence of cooperativity effect helps in the strong complex formation. A linear dependence was observed between the hydrogen bond energies EHB, and the total electron densities in the BCP’s of microsolvated complexes which supports the existence of cooperativity effect for the complexation process. Due to the stronger DMSO/DMF and water interaction, the water molecules in the formed complexes have a different structure than the isolated water clusters. NCI analysis shows that the steric area is more pronounced in DMF-water complex than the DMSO-water complex which accounts for the low stability of DMF-water complexes compared to the DMSO-water complex.
Graphical abstract NCI analysis shows that the steric area is more pronounced in DMF-water complex than the DMSO-water complex which accounts for the low stability of DMF-water complexes compared to the DMSO-water complex.
  相似文献   

5.
Quantum chemical calculations have been per-formed for the complexes of formamidine (FA) and hypohalous acid (HOX, X = F, Cl, Br, I) to study their structures, properties, and competition of hydrogen bonds with halogen bonds. Two types of complexes are formed mainly through a hydrogen bond and a halogen bond, respectively, and the cyclic structure is more stable. For the F, Cl, and Br complexes, the hydrogen-bonded one is more stable than the halogen-bonded one, while the halogen-bonded structure is favorable for the I complexes. The associated H-O and X-O bonds are elongated and exhibit a red shift, whereas the distant ones are contracted and display a blue shift. The strength of hydrogen and halogen bonds is affected by F and Li substitutents and it was found that the latter tends to smooth differences in the strength of both types of interactions. The structures, properties, and interaction nature in these complexes have been understood with natural bond orbital (NBO) and atoms in molecules (AIM) theories.  相似文献   

6.
Fernández A 《FEBS letters》2002,527(1-3):166-170
A few backbone hydrogen bonds (HBS) in native protein folds are poorly protected from water attack: their desolvation shell contains an inordinately low number of hydrophobic residues. Thus, an approach by solvent-structuring moieties of a binding partner should contribute significantly to enhance their stability. This effect represents an important factor in the site specificity inherent to protein binding, as inferred from a strong correlation between poorly desolvated HBs and binding sites. The desolvation shells were also examined in a dynamic context: except for a few singular under-protected bonds, the size of desolvation shells is preserved along the folding trajectory.  相似文献   

7.
The mechanism underlying the excitation of the hydrogen bond with ATP hydrolysis was considered. Coulomb interactions of the proton of the hydrogen bond A-H...B with the electrical field of the covalent bond of ADP-P were calculated. It was shown that the electrical field of the covalent bond of ADP-P excites oscillations of the proton in the complex with the hydrogen bond A-H...B and displaces it from the equilibrium towards the covalent bond. The distortion of the potential curve depends on a change in the length of the covalent bond of ADP-P. Adiabatic potentials U0 and UN of the ADP-P system were calculated, which correspond to the ground and excited states of the H-bond proton. It was found that as the length of the bond of ADP-P (rho) increases, the branches of the adiabatic potential U0(rho) and UN(rho) intersect. At the intersection point, the system can transit to the branch UN(rho), which can lead to a reduction of the barrier and a break of the covalent bond of ADP-P. Presumably, this mechanism is universal for processes of transformation of the chemical energy of ATP to the energy of excited hydrogen bond, a mechanism for the maintenance of heat balance and reduction of entropy in a living organism.  相似文献   

8.
Extensive DFT and ab initio calculations were performed to characterize the conformational space of pamidronate, a typical pharmaceutical for bone diseases. Mono-, di- and tri-protic states of molecule, relevant for physiological pH range, were investigated for both canonical and zwitterionic tautomers. Semiempirical PM6 method were used for prescreening of the single bond rotamers followed by geometry optimizations at the B3LYP/6-31++G(d,p) and B3LYP/6-311++G(d,p) levels. For numerous identified low energy conformers the final electronic energies were determined at the MP2/6-311++G(2df,2p) level and corrected for thermal effects at B3LYP level. Solvation effects were also considered via the COSMO and C-PCM implicit models. Reasonable agreement was found between bond lengths and angle values in comparison with X-ray crystal structures. Relative equilibrium populations of different conformers were determined from molecular partition functions and the role of electronic, vibrational and rotational degrees of freedom on the stability of conformers were analyzed. For no level of theory is a zwitterionic structure stable in the gas-phase while solvation makes them available depending on the protonation state. Geometrically identified intramolecular hydrogen bonds were analyzed by QTAIM approach. All conformers exhibit strong inter-phosphonate hydrogen bonds and in most of them the alkyl-amine side chain is folded on the P-C-P backbone for further hydrogen bond formation.
Figure
The most stable conformers of pamidronate at different protonation states in gas-phase and solution.  相似文献   

9.
The success of highly active antiretroviral therapy (HAART) in anti-HIV therapy is severely compromised by the rapidly developing drug resistance. HIV-1 protease inhibitors, part of HAART, are losing their potency and efficacy in inhibiting the target. Multi-drug resistant (MDR) 769 HIV-1 protease (resistant mutations at residues 10, 36, 46, 54, 62, 63, 71, 82, 84, 90) was selected for the present study to understand the binding to its natural substrates. The nine crystal structures of MDR769 HIV-1 protease substrate hepta-peptide complexes were analyzed in order to reveal the conserved structural elements for the purpose of drug design against MDR HIV-1 protease. Our structural studies demonstrated that highly conserved hydrogen bonds between the protease and substrate peptides, together with the conserved crystallographic water molecules, played a crucial role in the substrate recognition, substrate stabilization and protease stabilization. In addition, the absence of the key flap-ligand bridging water molecule might imply a different catalytic mechanism of MDR769 HIV-1 protease compared to that of wild type (WT) HIV-1 protease.  相似文献   

10.
The principles of structural kinetics allow one to define the thermodynamic conditions that are sufficient to generate a certain type of kinetic behavior. If subunits are loosely coupled, that is if no quaternary constraint exists between them, the kinetic behavior of the polymeric enzyme is qualitatively defined by the behavior of an ideal dimer. The nature and the extent of the kinetic cooperativity are defined by the energy of interaction, delta G rho, between two subunits. This energy of interaction is that of an ideal dimer relative to that of the A2 and B2 states. This thermodynamic formulation of a given type of cooperativity holds whatever the degree of polymerization of the enzyme. Under these conditions of loose coupling between subunits, positive kinetic cooperativity cannot be associated with any sigmoidicity of the rate curve. The range of energy coupling where positive kinetic cooperativity must, of necessity, be observed becomes more and more narrow as the number of subunit interactions is increased. This range, however, is independent of the number of subunits. The same situation is not observed for negative cooperativity which appears to be independent of both the number of subunits and the number of subunit interactions. If the subunits are tightly coupled, that is if quaternary constraints exist between them, three thermodynamic parameters, delta G' rho, delta G lambda, delta G mu, are required to define the nature of kinetic cooperativity. delta G' rho is the free energy of an ideal strained dimer relative to that of strained A2 and B2 states. delta G lambda and delta G mu represent the difference of strain energies between conformations A and B and B and B relative to that existing between conformations A and A. One may determine in the parametric space (delta G' rho, delta G lambda, delta G mu) the boundaries between the sufficient conditions that generate a certain type of cooperativity and the lack of these conditions. The kinetic parameters of the rate equation are not all independent. A number of constraint conditions exist between them which depend upon the subunit design of the polymeric enzyme. The existence of these constraint conditions may be diagnostic of a certain type of subunit interactions.  相似文献   

11.
In the present investigation, we performed a thorough study of potential energy curves, rovibrational spectra, and spectroscopic constants for complexes pairing via dihydrogen bonds. In particular, we dealt with LiH???HX (X = F, CN, CCH, CCF, CCCl) complexes by employing accurate electronic energy calculations at the MP2/aug-cc-pVDZ level of theory. Following this, the Numerov method was applied to solve the nuclear Schrödinger equation, thus obtaining spectroscopic constants and rovibrational spectra. Good linear correlation between the magnitudes of the interaction energies for interaction of HX with LiH, and the most positive electrostatic potentials of hydrogen in HX, was established.  相似文献   

12.
Panigrahi SK 《Amino acids》2008,34(4):617-633
Strong and weak hydrogen bonds between protein and ligand are analyzed in a group of 233 X-ray crystal structures of the kinase family. These kinases are from both eukaryotic and prokaryotic organisms. The dataset comprises of 44 sub-families, out of which 35 are of human origin and the rest belong to other organisms. Interaction analysis was carried out in the active sites, defined here as a sphere of 10 A radius around the ligand. A majority of the interactions are observed between the main chain of the protein and the ligand atoms. As a donor, the ligand frequently interacts with amino acid residues like Leu, Glu and His. As an acceptor, the ligand interacts often with Gly, and Leu. Strong hydrogen bonds N-H...O, O-H...O, N-H...N and weak bonds C-H...O, C-H...N are common between the protein and ligand. The hydrogen bond donor capacity of Gly in N-H...O and C-H...O interactions is noteworthy. Similarly, the acceptor capacity of main chain Glu is ubiquitous in several kinase sub-families. Hydrogen bonds between protein and ligand form characteristic hydrogen bond patterns (supramolecular synthons). These synthon patterns are unique to each sub-family. The synthon locations are conserved across sub-families due to a higher percentage of conserved sequences in the active sites. The nature of active site water molecules was studied through a novel classification scheme, based on the extent of exposure of water molecules. Water which is least exposed usually participates in hydrogen bond formation with the ligand. These findings will help structural biologists, crystallographers and medicinal chemists to design better kinase inhibitors.  相似文献   

13.
Kim S  Cross TA 《Biophysical journal》2002,83(4):2084-2095
Protein environments substantially influence the balance of molecular interactions that generate structural stability. Transmembrane helices exist in the relatively uniform low dielectric interstices of the lipid bilayer, largely devoid of water and with a very hydrophobic distribution of amino acid residues. Here, through an analysis of bacteriorhodopsin crystal structures and the transmembrane helix structure from M2 protein of influenza A, some helices are shown to be exceptionally uniform in hydrogen bond geometry, peptide plane tilt angle, and backbone torsion angles. Evidence from both the x-ray crystal structures and solid-state NMR structure suggests that the intramolecular backbone hydrogen bonds are shorter than their counterparts in water-soluble proteins. Moreover, the geometry is consistent with a dominance of electrostatic versus covalent contributions to these bonds. A comparison of structure as a function of resolution shows that as the structures become better characterized the helices become much more uniform, suggesting that there is a possibility that many more uniform helices will be observed, even among the moderate resolution membrane protein structures that are currently in the Protein Data Bank that do not show such features.  相似文献   

14.
The formation of complexes between the self-complementary ribo-dinucleoside monophosphate CpG and ethidium ion is observed by use of an ethidium ion selective electrode. The ratio of total CpG to total ethidium was varied from 50:1 to .4:1, with CpG concentrations ranging from 0.2 to 1.1 mM. Scatchard plots show that the system is strongly cooperative with respect to ethidium ion; cooperativity with respect to dinucleoside has been previously reported (Krugh, T.R., Wittlin, F.N., and Cramer, S.P. (1975) Biopolymers 14,197-210). Cooperative behavior with respect to ethidium ion implies the existence of complexes containing at least two molecules of ethidium ion in combination with one or more CpG molecules.  相似文献   

15.
Empirical criteria for identification of hydrogen bonds were analyzed to produce a set of geometrically consistent criteria. For a data set of 30 structures, application of a set of purely geometrical criteria, along with exclusion of abnormal backbone conformations, also excluded a common interaction of Ser/Thr side chains with Asp/Glu side chains ([ST]/[DE] pairs). These interactions were termed "bifurcated hydrogen bonds", which implies delocalization of a positively charged hydrogen of hydroxyl between the two acceptor atoms of the carboxylic group. These "bifurcated" interactions are among the most common packing patterns for [ST]/[DE] pairs of side chains. Therefore, the identification of hydrogen bonds cannot be based on geometrical criteria only and requires introduction of some physico-chemical criteria.  相似文献   

16.
In this work, the intermolecular distribution of the electronic charge density in the aromatic hydrogen/halogen bonds is studied within the framework of the atoms in molecules (AIM) theory and the molecular electrostatic potentials (MEP) analysis. The study is carried out in nine complexes formed between benzene and simple lineal molecules, where hydrogen, fluorine and chlorine atoms act as bridge atoms. All the results are obtained at MP2 level theory using cc-pVTZ basis set. Attention is focused on topological features observed at the intermolecular region such as bond, ring and cage critical points of the electron density, as well as the bond path, the gradient of the density maps, molecular graphs and interatomic surfaces. The strength of the interaction increases in the following order: F⋅⋅⋅π < Cl⋅⋅⋅π < H⋅⋅⋅π. Our results show that the fluorine atom has the capability to interact with the π−cloud to form an aromatic halogen bond, as long as the donor group is highly electron withdrawing. The Laplacian topology allows us to state that the halogen atoms can act as nucleophiles as well as electrophiles, showing clearly their dual character.  相似文献   

17.
The behavior in solution and in the solid state of 3(5)-phenyl-1H-pyrazole (7), 3(5)-phenyl-4-chloro-1H-pyrazole (6), 3(5)-phenyl-4-bromo-1H-pyrazole (1), and 3(5)-p-chlorophenyl-4-bromo-1H-pyrazole (8) is discussed in relation to their 3-phenyl (a)/5-phenyl (b) annular tautomerism. Two new X-ray structures are reported: a new polymorph of 1 and the structure of 6. The new polymorph is a 3-phenyl-1H-pyrazole 1a′ trimer while the new structure is a 5-phenyl-1H-pyrazole 6b trimer. The combined use of NMR at low temperature and DFT calculations allows to discuss the tautomerism of the first three pyrazoles and to predict that the fourth one should be a tetramer formed by both tautomers, 8a and 8b.  相似文献   

18.
In this work, halogen bonding (XB) and hydrogen bonding (HB) complexes were studied with the aim of analyzing the variation of the total electronic energy density H(r b ) with the interaction strengthening. The calculations were performed at the MP2/6?311++G(2d,2p) level of approximation. To explain the nature of such interactions, the atoms in molecules theory (AIM) in conjunction with reduced variational space self-consistent field (RVS) energy decomposition analysis were carried out. Based on the local virial theorem, an equation to decompose the total electronic energy density H(r b ) in two energy densities, (?G(r b )) and 1/4?2ρ(r b ), was derived. These energy densities were linked with the RVS interaction energy components. Through the connection between both decomposition schemes, it was possible to conclude that the decrease in H(r b ) with the interaction strengthening observed in the HB as well as the XB complexes, is mainly due to the increase in the attractive electrostatic part of the interaction energy and in lesser extent to the increase in its covalent character, as is commonly considered.  相似文献   

19.
An energy term, representing the N-H...O type of hydrogen bond, which is a function of the hydrogen bond length (R) and angle (theta) has been introduced in an energy minimization program, taking into consideration its interpolation with the non-bonded energy for borderline values of R and theta. The details of the mathematical formulation of the derivatives of the hydrogen bond function as applicable to the energy minimization have been given. The minimization technique has been applied to hydrogen bonded two and three linked peptide units (gamma-turns and beta-turns), and having Gly, Ala and Pro side chains. Some of the conformational highlights of the resulting minimum energy conformations are a) the occurrence of the expected 4----1 hydrogen bond in all of the burn-turn tripeptide sequences and b) the presence of an additional 3----1 hydrogen bond in some of the type I and II tripeptides with the hydrogen bonding scheme in such type I beta-turns occurring in a bifurcated form. These and other conformational features have been discussed in the light of experimental evidence and theoretical predictions of other workers.  相似文献   

20.
Four polymeric complexes [M(SCN)2(4-abaH)2]n [M=Co(II) (1) or Cd(II) (2), 4-abaH=4-aminobenzoic acid], [Zn(N3)(4-aba)]n (3) and [Cd(N3)(4-aba)(H2O)]n (4) were prepared from the reactions of 4-abaH with M(SCN)2 [M=Co(II) or Cd(II)] and M(N3)2 [M=Zn(II) or Cd(II)] at different pH values. Their crystal structures have been determined by single-crystal X-ray diffraction. Both 1 and 2 consist of one-dimensional chains [M(μ-1,3-SCN)2(4-abaH)2]n, in which each pair of the lateral carboxylic groups form double hydrogen bonds to furnish infinite two-dimensional sheets. In 3, the Zn(II) atoms are bridged by μ-1,1-azide groups and μ2-carboxylate-O,O′ groups into an infinite zigzag chain featuring six-membered (ZnNZnOCO)n rings, which are further connected by the 4-aba-N,O,O′ groups to generate a two-dimensional network. In 4, however, adjacent Cd(II) atoms are bridged by μ-1,1,3-azide groups to form an infinite chain with both four-membered Cd2(μ-1,1-N3)2 and eight-membered Cd2(μ-1,3-N3)2 rings. These chains are further connected by the 4-aba-N,O groups to generate a three-dimensional brickwall-like network. The results show significant effect of pH on the formation of the network structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号