首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phylogenetic analysis of Sicilian goats reveals a new mtDNA lineage   总被引:1,自引:0,他引:1  
The mitochondrial hypervariable region 1 (HVR1) sequence of 67 goats belonging to the Girgentana, Maltese and Derivata di Siria breeds was partially sequenced in order to present the first phylogenetic characterization of Sicilian goat breeds. These sequences were compared with published sequences of Indian and Pakistani domestic goats and wild goats. Mitochondrial lineage A was observed in most of the Sicilian goats. However, three Girgentana haplotypes were highly divergent from the Capra hircus clade, indicating that a new mtDNA lineage in domestic goats was found.  相似文献   

2.
Population structure of pests is an important issue when designing management strategies to optimize control measures. In this study, we investigated a spatial pattern of genetic and phenotypic variation within seven urban and within six rural populations of Culex pipiens from Vojvodina Province (Serbia) incorporating landscape genetic methods (using allozyme data) and wing size and shape (using geometric morphometric approach). Comparing rural samples, no strong genetic groupings of individuals were detected. Nevertheless, traditional approaches where individuals are pre‐assigned to populations, including F statistics and amova (analysis of molecular variance), revealed low, but significant genetic differentiation among samples. Similarly, phenotypic data (wing size and shape) indicated some level of heterogeneity among rural samples. Contrary to genetic homogeneity found within rural biotype, the individual‐based structuring characterized urban biotype. Geneland revealed the presence of two genetic clusters within urban group which is in concordance with FST and amova results. These results showed that sample from Novi Sad (NS) is a distinct genetic unit, which has been likely resulted in intensive insecticide use over several decades. Furthermore, phenotypic differentiation supported the existence of spatial structuring. Therefore, complementary use of molecular markers and phenotypic traits may be a powerful tool for revealing hidden spatial diversity within Cx. pipiens.  相似文献   

3.
The silver pomfret (Pampus argenteus) is a commercially important species native to the Indo‐western Pacific area. In the present study, the genetic structure of five P. argenteus populations from the Arabian Sea, Bay of Bengal, and South China Sea were investigated using sequences of the mitochondrial cytochrome c oxidase subunit I (COI) gene. All populations showed high levels of haplotype diversity (h) and low levels of nucleotide diversity (π). Phylogenetic trees indicated that the haplotypes could be divided into three clusters, indicating the geographic distribution of the five populations. Analysis of molecular variance (amova ) indicated the intra‐region variation among these populations to be highly significant. The average pairwise differences and Fst values among the three regions were also found to be significant. These results suggest that P. argenteus in these regions has strong geographic genetic structure. The present results provide new information for the genetic assessment, fishery management, and conservation of this species.  相似文献   

4.
Genetic variation of the globally threatened obligatorily myrmecophilous Large Blue butterfly Phengaris (Maculinea) arion (Lepidoptera) was studied, using six microsatellite markers, in a country where its decline is dramatic (Poland). Material was collected on 13 sites showing considerable ecological variation as far as biotope, larval food plant and host ants of the butterfly were concerned. Genetic variability, estimated in terms of number of alleles and heterozygosity, was the lowest in the most isolated populations. However on sites localized in areas where suitable biotopes were extensive and interconnected, P. arion still held relatively high genetic diversity. Pairwise F ST values indicated small and moderate differentiation among samples (F ST = 0.01–0.15), with the exceptions of two isolated localities (0.20). We did not find clear evidence of isolation by distance. The presence of four or five genetic clusters was indicated. Analysis of the membership of each individual to each cluster showed that the vast majority of individuals from three isolated populations were clustered in three separate genetic groups. The most distinct population was the one, which had been found to be specialized towards Myrmica lobicornis in previous studies. Individuals from the remaining populations could not be clustered in separate genetic groups, however some dominance of different clusters in geographical regions was observed. Some portion of the population’s genetic variability could be explained by geographical distribution, however the percentage of variation, explaining the differences between two main regions (S and NE Poland), was very low. We conclude that the main factor shaping the current genetic structure of P. arion in Poland is the recent isolation of populations related to habitat fragmentation but local ecological specializations may be also a potential factor. Therefore the necessity of activities aiming to halt the further reduction of genetic variability, as well as the monitoring of priority populations (e.g. those belonging to unique host races), should be emphasized in future action plans in Central Europe.  相似文献   

5.
The pattern of genetic differentiation between diverging species receives much attention as one of the key observable features of speciation. It has often been suggested that introgression between closely related species occurs commonly where their distributions overlap, leading to their becoming more morphologically and genetically similar, but there are a few opposite results. However, most of these studies have been carried out with animals and separate species; few have looked at intraspecific cases, especially in plants. Here, we conduct a comparative study on patterns of genetic differentiation among populations of two varieties of Oreocharis benthamii in allopatry and sympatry based on ISSR data for 754 individuals from 26 populations, in order to understand the processes leading to speciation. Contrary to expectations, the facultative xenogamy (mixed mating) species O. benthamii has a relatively low genetic diversity within populations (H = 0.1014, I = 0.1528) and high genetic differentiation among populations (GST = 0.5867, ФST = 0.659), as is typically found for selfing species. Genetic variance between the two varieties in sympatric populations (44%, ФST = 0.444) is significantly more than that in allopatric populations (14%, ФST = 0.138). Consistent with the taxonomical delimitation of the two varieties, all sampled individuals of O. benthamii clustered into two genetic groups. Moreover, the genetic structures of populations of both varieties are correlated with their different geographical origins. Our studies show that significant divergence between sympatric populations of the two varieties could be attributed primarily to reinforcement by genetic divergent selection in sympatry where secondary contact had occurred. The major proportion of the genetic variation in outcrossing and mixed mating plants may exist among populations when the populations are distributed in fragmented habitats, due to the paucity of suitable habitat combined with inefficient seed dispersal mechanism and limited pollinator foraging area that may limit the gene flow.  相似文献   

6.
Aim We aimed to elucidate how the current geographic distribution of alpine plants in the Japanese archipelago was shaped during Quaternary climatic oscillations, using Potentilla matsumurae as a case study. According to previous phylogeographic studies, post‐glacial range fragmentation (vicariance scenario) and stepwise migration (dispersal scenario) are both possible. We thus aimed to assess which scenario is more probable for the distribution changes of alpine plants in the Japanese archipelago. Location The alpine zone in the Japanese archipelago. Methods Using amplified fragment length polymorphism we determined the genotype of 161 individuals of P. matsumurae from 22 populations. Relationships among individuals and populations were examined using principal coordinates analysis and a neighbour‐joining (NJ) tree, respectively. To examine the genetic population structure, we performed analysis of molecular variance (amova ) and structure analysis. Results Differentiation between central Honshu and northern Japan was not very strong based on the principal coordinates analysis among individuals, the NJ tree of populations (59% bootstrap support), or amova (12% of genetic variation). Moreover, structure analysis did not detect clear geographic differentiation across populations. Although the populations in central Honshu were structured geographically (Mantel test: r = 0.45, P < 0.005; NJ tree), those in northern Japan did not exhibit geographic structure regardless of geographic distance (Mantel test: r = 0.26, P = 0.03; NJ tree). Population relationships in the NJ tree did not always reflect the geographic location. Main conclusions The current geographic structure of P. matsumurae could not be explained by stepwise migration. This suggests that a single continuous distribution during the last glacial period was later fragmented, perhaps by recovering forest, during the post‐glacial period, resulting in the current distribution and phylogeographic structure of P. matsumurae. Our data support the vicariance scenario.  相似文献   

7.
Aim We inferred the phylogeography of the alpine butterfly Colias meadii Edwards (Pieridae) and compared its genetic structure with that of another high elevation, co‐distributed butterfly, Parnassius smintheus Doubleday (Papilionidae), to test if the two Rocky Mountain butterflies responded similarly to the palaeoclimatic cycles of the Quaternary. Location Specimens were collected from 18 alpine sites in the Rocky Mountains of North America, from southern Colorado to northern Montana. Methods We sequenced 867 and 789 nucleotides of cytochrome oxidase I from an average of 19 and 20 individuals for C. meadii and P. smintheus, respectively, from each of the same 18 localities. From the sequence data, we calculated measures of genetic diversity within each population (H, θ), genetic divergence among populations (FST), and tested for geographic structure through an analysis of molecular variance (amova ). Population estimates were compared against latitude and between species using a variety of statistical tests. Furthermore, nested clade analysis was implemented to infer historic events underlying the geographic distribution of genetic variation in each species. Then, we compared the number of inferred population events between species using a nonparametric Spearman's rank correlation test. Finally, we ran coalescent simulations on each species’ genealogy to test whether the two species of Lepidoptera fit the same model of population divergence. Results Our analyses revealed that: (1) measures of within‐population diversity were not correlated with latitude for either species, (2) within‐site diversity was not correlated between species, (3) within a species, nearly all populations were genetically isolated, (4) both species exhibited significant and nearly identical partitioning of genetic variation at all hierarchical levels of the amova , including a strong break between populations across the Wyoming Basin, (5) both species experienced similar cycles of expansion and contraction, although fewer were inferred for C. meadii, and (6) data from both species fit a model of three refugia diverging during the Pleistocene. Main conclusions While our findings supported a shared response of the two butterfly species to historic climate change across coarse spatial scales, a common pattern was not evident at finer spatial and temporal scales. The shared demographic history of the two species is consistent with an expanding–contracting archipelago model, suggesting that populations persisted across the geographic range throughout the climate cycles, experiencing isolation on ‘sky islands’ during interglacial periods and becoming connected as they migrated down‐slope during cool, wet climates.  相似文献   

8.
One hundred ninety-four germplasm accessions of fig representing the four fig types, Common, Smyrna, San Pedro, and Caprifig were analyzed for genetic diversity, structure, and differentiation using genetic polymorphism at 15 microsatellite loci. The collection showed considerable polymorphism with observed number of alleles per locus ranging from four for five different loci, MFC4, LMFC14, LMFC22, LMFC31 and LMFC35 to nine for LMFC30 with an average of 4.9 alleles per locus. Seven of the 15 loci included in the genetic structure analyses exhibited significant deviation from panmixia, of which two showed excess and five showed deficiency of heterozygote. The cluster analysis (CA) revealed ten groups with 32 instances of synonymy among cultivars and groups differed significantly for frequency and composition of alleles for different loci. The principal components analysis (PCA) confirmed the results of CA with some groups more differentiated than the others. Further, the model based Bayesian approach clustering suggested a subtle population structure with mixed ancestry for most figs. The gene diversity analysis indicated that much of the total variation is found within groups (H G /H T = 0.853; 85.3%) and the among groups within total component (G GT = 0.147) accounted for the remaining 14.7%, of which ~64% accounted for among groups within clusters (G GC = 0.094) and ~36% among clusters (G CT = 0.053). The analysis of molecular variance (AMOVA) showed approximately similar results with nearly 87% of variation within groups and ~10% among groups within clusters, and ~3% among clusters. Overall, the gene pool of cultivated fig analyzed possesses substantial genetic polymorphism but exhibits narrow differentiation. It is evident that fig accessions from Turkmenistan are somewhat genetically different from the rest of the Mediterranean and the Caucasus figs. The long history of domestication and cultivation with widespread dispersal of cultivars with many synonyms has resulted in a great deal of confusion in the identification and classification of cultivars in fig.  相似文献   

9.
Population structure of the sablefish (Anoplopoma fimbria) in the northeastern Pacific Ocean was determined using three approaches: geometric morphometrics (14 landmarks), mitochondrial DNA (fragment of COI gene), and nuclear DNA (four microsatellite loci). Samples came from the Bering Sea, Gulf of Alaska, offshore Oregon, and offshore the mid‐Baja California Peninsula (at San Quintin). Differences in body shape were grouped in the samples from the north (Bering Sea and Gulf of Alaska). A slight but significant population structure was also observed in allele frequencies of microsatellites, FST values, amova , and Bayesian individual assignment tests; however, analyses of population structure using mtDNA did not reveal any population differentiation. Differences in population structure detected by distinct approaches, in addition to the moderately high haplotype diversity and low nucleotide diversity of the COI fragment, suggest recent and developing population differentiation in the sablefish.  相似文献   

10.
Genetic studies of waterfowl (Anatidae) have observed the full spectrum of mitochondrial (mt) DNA population divergence, from apparent panmixia to deep, reciprocally monophyletic lineages. Yet, these studies often found weak or no nuclear (nu) DNA structure, which was often attributed to male‐biased gene flow, a common behaviour within this family. An alternative explanation for this ‘conflict’ is that the smaller effective population size and faster sorting rate of mtDNA relative to nuDNA lead to different signals of population structure. We tested these alternatives by sequencing 12 nuDNA introns for a Holarctic pair of waterfowl subspecies, the European goosander (Mergus merganser merganser) and the North American common merganser (M. m. americanus), which exhibit strong population structure in mtDNA. We inferred effective population sizes, gene flow and divergence times from published mtDNA sequences and simulated expected differentiation for nuDNA based on those histories. Between Europe and North America, nuDNA ФST was 3.4‐fold lower than mtDNA ФST, a result consistent with differences in sorting rates. However, despite geographically structured and monophyletic mtDNA lineages within continents, nuDNA ФST values were generally zero and significantly lower than predicted. This between‐ and within‐continent contrast held when comparing mtDNA and nuDNA among published studies of ducks. Thus, male‐mediated gene flow is a better explanation than slower sorting rates for limited nuDNA differentiation within continents, which is also supported by nonmolecular data. This study illustrates the value of quantitatively testing discrepancies between mtDNA and nuDNA to reject the null hypothesis that conflict simply reflects different sorting rates.  相似文献   

11.
Marine populations are typically characterized by weak genetic differentiation due to the potential for long‐distance dispersal favouring high levels of gene flow. However, strong directional advection of water masses or retentive hydrodynamic forces can influence the degree of genetic exchange among marine populations. To determine the oceanographic drivers of genetic structure in a highly dispersive marine invertebrate, the giant California sea cucumber (Parastichopus californicus), we first tested for the presence of genetic discontinuities along the coast of North America in the northeastern Pacific Ocean. Then, we tested two hypotheses regarding spatial processes influencing population structure: (i) isolation by distance (IBD: genetic structure is explained by geographic distance) and (ii) isolation by resistance (IBR: genetic structure is driven by ocean circulation). Using RADseq, we genotyped 717 individuals from 24 sampling locations across 2,719 neutral SNPs to assess the degree of population differentiation and integrated estimates of genetic variation with inferred connectivity probabilities from a biophysical model of larval dispersal mediated by ocean currents. We identified two clusters separating north and south regions, as well as significant, albeit weak, substructure within regions (FST = 0.002, = .001). After modelling the asymmetric nature of ocean currents, we demonstrated that local oceanography (IBR) was a better predictor of genetic variation (R2 = .49) than geographic distance (IBD) (R2 = .18), and directional processes played an important role in shaping fine‐scale structure. Our study contributes to the growing body of literature identifying significant population structure in marine systems and has important implications for the spatial management of P. californicus and other exploited marine species.  相似文献   

12.
The multistep method here applied in studying the genetic structure of a low dispersal and philopatric species, such as the Fire Salamander Salamandra salamandra, was proved to be effective in identifying the hierarchical structure of populations living in broad‐leaved forest ecosystems in Northern Italy. In this study, 477 salamander larvae, collected in 28 sampling populations (SPs) in the Prealpine and in the foothill areas of Northern Italy, were genotyped at 16 specie‐specific microsatellites. SPs showed a significant overall genetic variation (Global FST = 0.032, < 0.001). The genetic population structure was assessed by using STRUCTURE 2.3.4. We found two main genetic groups, one represented by SPs inhabiting the Prealpine belt, which maintain connections with those of the Eastern foothill lowland (PEF), and a second group with the SPs of the Western foothill lowland (WF). The two groups were significantly distinct with a Global FST of 0.010 (< 0.001). While the first group showed a moderate structure, with only one divergent SP (Global FST = 0.006, < 0.001), the second group proved more structured being divided in four clusters (Global FST = 0.017, = 0.058). This genetic population structure should be due to the large conurbations and main roads that separate the WF group from the Prealpine belt and the Eastern foothill lowland. The adopted methods allowed the analysis of the genetic population structure of Fire Salamander from wide to local scale, identifying different degrees of genetic divergence of their populations derived from forest fragmentation induced by urban and infrastructure sprawl.  相似文献   

13.
In order to explain the present distribution area of natural populations of two forage grasses species (Lolium perenne and L. rigidum), we studied genetic variation for maternally inherited chloroplast DNA (cpDNA) in 447 individual plants from 51 natural populations sampled throughout Europe and the Middle East. The detection of polymorphism by restriction analysis of PCR-amplified cpDNA fragments resulted in the identification of 15 haplotypes. Hierarchical analysis of chloroplastic diversity showed a high level of within-population diversity while, for both species, we found that about 40% of the total diversity still remains among populations. The use of previous isozymes data enabled us to estimate the pollen to seed flow ratio: pollen flow appears to be 3.5 times greater than seed flow for L. perenne and 2.2 times higher for L. rigidum. A stepwise weighted genetic distance between pairs of populations was calculated using the haplotypes frequencies of populations. A hierarchical clustering of populations clearly divides the two species, while two main clusters of L. perenne populations show a strong geographical structure. Different scenario are proposed for explaining the distribution area of the two species. Finally, evidence attesting that these geographical structures are related to the spread of agriculture in Europe are presented and discussed. Received: 5 November 1999 / Accepted: 24 November 1999  相似文献   

14.
Aim This work investigates the population genetic effects of periodic altitudinal migrations and interstadial fragmentation episodes in long‐term Scots pine (Pinus sylvestris L.) populations at a regional scale. Location The study focuses on Scots pine populations in the northern Meseta and peripheral mountain chains, central and north‐western Iberian Peninsula. The ample macrofossil record in the area shows that this 60,000‐km2 region represent a glacial refugium for Scots pine. The species occupied large areas on the Meseta plains during glacial cold stages, but it has periodically sheltered at high elevation in the surrounding mountain chains during warm episodes, conforming to a fragmented pattern similar to its present‐day distribution. Methods We perform a fine‐scale chloroplast microsatellite (cpSSR) survey to assess the genetic structure of 13 montane Scots pine isolates in the northern Meseta (total N = 322 individuals). Using a hierarchical analysis of molecular variance (amova ), we test the hypothesis of genetic isolation among disjunct mountain areas. We use a standard coalescence model to estimate genealogical relationship among populations, investigating the potential role of the regional relief as a factor influencing historic gene exchange among Scots pine populations. Results Population haplotypic diversity was high among Scots pine populations (He = 0.978), greater than values reported for other more thermophilic pine species in the Iberian Peninsula. The amova revealed low (but significant) differentiation among populations (ΦST = 0.031, P = 0.010), showed that the disjoint montane distribution could not account for the genetic divergence among areas (ΦCT = 0.012, P = 0.253), and that there was non‐trivial subdivision among populations within the same mountain region (ΦSC = 0.021, P = 0.012). The genealogical relationships among populations showed that Scots pine isolates growing on disjoint mountain blocks, but on slopes flowing to the same basin, were genetically closer than populations growing on different slopes of the same mountain chain, flowing to different basins. Main conclusions The observed genetic structure for Scots pine is consistent with its population history, inferred from the palaeobotanical record, with vertical migrations throughout climatic pulses and with the drainage basins and large long‐term population sizes connecting different mountain blocks during the cooler glacial periods. Overall, the results suggest that, despite periodic interstadial fragmentation episodes, Scots pine biology provides for the long‐term maintenance of high within‐population and low among‐population genetic diversity at neutral genetic markers.  相似文献   

15.
The aim of the present work is to estimate the usefulness of microsatellite genetic markers analysis to characterize and analyze the possible differences between a captive reared population and a wild one from the same species. The first sample consists of 27 chukar partridges (Alectoris chukar) bred in one farm in Argentina. The second one is composed of 31 chukar partridges coming from a wild Cyprus population (A. chukar cypriotes). We analyzed seven microsatellite loci: MCW135, MCW225, MCW276, MCW280, MCW295, LEI31, and ADL0142. The Argentina group showed higher genetic variation than the Cyprus did. Significant global F IS value was found in the Argentina sample. Significant genetic differentiation exists between both groups (F ST=0.394; p<0.01). The Argentina group did not show any signs of bottleneck. Results from Factorial Correspondence Analysis (FCA) suggest that the 58 partridges could be split into two distinct genetic clusters (Cyprus and Argentina). Nevertheless, in the light of PARTITION results, three Argentina individuals might be related to Cyprus. STRUCTURE is unable to assign these three animals to any of the two groups. This could be due to a single or repeated introduction of external individuals into the original Argentina group, so that these results would point to more than one origin for this population. This admixture of individuals could explain the high genetic variation observed in the Argentina farm. Global F IS value would probably be higher without these immigrations; on the other hand, these admixtures could have prevented bottlenecks.  相似文献   

16.
Stipa capillata L. (Poaceae) is a rare grassland species in Central Europe that is thought to have once been widespread in post‐glacial times. Such relict species are expected to show low genetic diversity within populations and high genetic differentiation between populations due to bottlenecks, long‐term isolation and ongoing habitat fragmentation. These patterns should be particularly pronounced in selfing species. We analysed patterns of random amplified polymorphic DNA (RAPD) variation in the facultatively cleistogamous S. capillata to examine whether genetic diversity is associated with population size, and to draw initial conclusions on the migration history of this species in Central Europe. We analysed 31 S. capillata populations distributed in northeastern, central and western Germany, Switzerland and Slovakia. Estimates of genetic diversity at the population level were low and not related to population size. Among all populations, extraordinarily high levels of genetic differentiation (amova : φST = 0.86; Bayesian analysis: θB = 0.758) and isolation‐by‐distance were detected. Hierarchical amova indicated that most of the variability was partitioned among geographic regions (59%), or among populations between regions when the genetically distinct Slovakian populations were excluded. These findings are supported by results of a multivariate ordination analysis. We also found two different groups in an UPGMA cluster analysis: one that contained the populations from Slovakia, and the other that combined the populations from Germany and Switzerland. Our findings imply that Scapillata is indeed a relict species that experienced strong bottlenecks in Central Europe, enhanced by isolation and selfing. Most likely, populations in Slovakia were not the main genetic source for the post‐glacial colonization of Central Europe.  相似文献   

17.
Summary We provide an estimate of genetic variation within and between two populations of Bertholletia excelsa (Brazil nut), a large canopy tree found in the rain forests of South America. Average heterozygosity is 0.190, and 54.3% of the sampled loci are polymorphic. The population structure deviates significantly from Hardy-Weinberg expectations for Fest2 and Pgm2 (F =0.405 and 0.443, respectively) in one population, and highly significantly (F=-0.341) for Gdh in the other population. Although allele frequencies of the two populations differ significantly for Aat2, Est5, Mdh1, and Mdh2B, Nei's coefficient of gene differentiation (Gst) indicates that the between-population component (Dst) of genic diversity represents only 3.75% of the size of the within-population component (Hs). The implications of these findings in terms of conservation genetics are that much of the genetic diversity of this species may be preserved within one or a few populations. However, such populations must be very large because it appears that the large amount of genetic variation in Brazil nut populations is maintained by extensive gene flow and bonds of mating over a large area. The genetic architecture of Bertholletia excelsa is similar to that expected for an extensively diploidized paleopolyploid species.  相似文献   

18.
A study was conducted to investigate genetic diversity and sensitivity to hymexazol among 80 isolates of Fusarium solani complex obtained from date palm (30), citrus (31) and cucumber (19). Characterization based on sequences of the EF1α and ITS rRNA showed that isolates belong to F. solani complex MLST type 3 + 4. AFLP analysis produced 980 polymorphic loci, 80 AFLP genotypes and moderate levels of genetic diversity (H = 0.2494). Clustering of the isolates was not related to the host or the geographical origin of the isolates. Analysis of molecular variance (amova ) indicated the existence of a low level of genetic differentiation among populations obtained from different hosts (Fst = 0.0162) and regions (Fst = 0.0066). This may provide evidence for frequent movement of inoculum among hosts and regions in Oman, which could be attributed to cultural practices employed by farmers. Isolates of F. solani displayed variation in sensitivity to hymexazol, with EC50 values ranging from 2 to 5745 μg/ml (mean = 878 μg/ml); 19% of the isolates have an EC50 value of more than 1000 μg/ml. Findings are discussed in terms of the factors that affect diversity in F. solani isolates. The study reports for the first time the development of resistance to hymexazol among F. solani isolates from date palm, citrus and cucumber.  相似文献   

19.
Inference of genetic structure and demographic history is fundamental issue in evolutionary biology. We examined the levels and patterns of genetic variation of a widespread mangrove species in the Indo‐West Pacific region, Bruguiera gymnorrhiza, using ten nuclear gene regions. Genetic variation of individual populations covering its distribution range was low, but as the entire species it was comparable to other plant species. Genetic differentiation among the investigated populations was high. They could be divided into two genetic clusters: the West and East clusters of the Malay Peninsula. Our results indicated that these two genetic clusters derived from their ancestral population whose effective size of which was much larger compared to the two extant clusters. The point estimate of speciation time between B. gymnorrhiza and Bruguiera sexangula was two times older than that of divergence time between the two clusters. Migration from the West cluster to the East cluster was much higher than the opposite direction but both estimated migration rates were low. The past Sundaland and/or the present Malay Peninsula are likely to prevent gene flow between the West and East clusters and function as a geographical or land barrier.  相似文献   

20.
Malus sieversii (Lebed.) M. Roem. is a wild progenitor species of the domesticated apple. It is found across a mountainous region of central Asia and has been the focus of several collection expeditions by the USDA-ARS-National Plant Germplasm System. This study used microsatellite variation at seven loci to estimate diversity and differentiation within M. sieversii using several complimentary approaches. Multilocus genotypes were amplified from 949 individuals representing seedling trees from 88 half-sib families from eight M. sieversii populations collected in Kazakhstan. Apportioning of genetic variation was estimated at both the family and site level. Analyses using a hierarchical model to estimate F st showed that differentiation among individual families is more than three times greater than differentiation among sites. In addition, average gene diversity and allelic richness varied significantly among sites. A rendering of a genetic network among all sites showed that differentiation is largely congruent with geographical location. In addition, nonhierarchical Bayesian assignment methods were used to infer genetic clusters across the collection area. We detected four genetic clusters in the data set. The quality of these assignments was evaluated over multiple Markov Chain Monte Carlo runs using both posterior likelihood and stability of the assignments. The spatial pattern of genetic assignments among the eight collection sites shows two broadly distributed and two narrowly distributed clusters. These data indicate that the southwestern collection sites are more admixed and more diverse than the northern sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号