首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The question of when modern birds (Neornithes) first diversified has generated much debate among avian systematists. Fossil evidence generally supports a Tertiary diversification, whereas estimates based on molecular dating favor an earlier diversification in the Cretaceous period. In this study, we used an alternate approach, the inference of historical biogeographic patterns, to test the hypothesis that the initial radiation of the Order Psittaciformes (the parrots and cockatoos) originated on the Gondwana supercontinent during the Cretaceous. We utilized broad taxonomic sampling (representatives of 69 of the 82 extant genera and 8 outgroup taxa) and multilocus molecular character sampling (3,941 bp from mitochondrial DNA (mtDNA) genes cytochrome oxidase I and NADH dehydrogenase 2 and nuclear introns of rhodopsin intron 1, tropomyosin alpha-subunit intron 5, and transforming growth factor ss-2) to generate phylogenetic hypotheses for the Psittaciformes. Analyses of the combined character partitions using maximum parsimony, maximum likelihood, and Bayesian criteria produced well-resolved and topologically similar trees in which the New Zealand taxa Strigops and Nestor (Psittacidae) were sister to all other psittaciforms and the cockatoo clade (Cacatuidae) was sister to a clade containing all remaining parrots (Psittacidae). Within this large clade of Psittacidae, some traditionally recognized tribes and subfamilies were monophyletic (e.g., Arini, Psittacini, and Loriinae), whereas several others were polyphyletic (e.g., Cyclopsittacini, Platycercini, Psittaculini, and Psittacinae). Ancestral area reconstructions using our Bayesian phylogenetic hypothesis and current distributions of genera supported the hypothesis of an Australasian origin for the Psittaciformes. Separate analyses of the timing of parrot diversification constructed with both Bayesian relaxed-clock and penalized likelihood approaches showed better agreement between geologic and diversification events in the chronograms based on a Cretaceous dating of the basal split within parrots than the chronograms based on a Tertiary dating of this split, although these data are more equivocal. Taken together, our results support a Cretaceous origin of Psittaciformes in Gondwana after the separation of Africa and the India/Madagascar block with subsequent diversification through both vicariance and dispersal. These well-resolved molecular phylogenies will be of value for comparative studies of behavior, ecology, and life history in parrots.  相似文献   

2.
Aim We investigate spatial and temporal patterns of diversification within the Neotropical avifauna using the phylogenetic history of parrots traditionally belonging to the genus Pionopsitta Bonaparte 1854. This genus has long been of interest for those studying Neotropical biogeography and diversity, as it encompasses species that occur in most Neotropical forest areas of endemism. Location The Neotropical lowland forests in South and Central America. Methods Phylogenetic relationships were investigated for all species of the genus Pionopsitta and five other short‐tailed parrot genera using complete sequences of the mitochondrial genes cyt b and ND2 as well as 26 plumage characters. The resulting phylogeny was used to test the monophyly of the genus, investigate species limits, and as a framework for reconstructing their historical biogeography and patterns of diversification. Results We found that the genus Pionopsitta, as previously defined, is not monophyletic and thus the Chocó, Central American and Amazonian species will now have to be placed in the genus Gypopsitta. The molecular and morphological phylogenies are largely congruent, but disagree on the position of one of the Amazon basin taxa. Using molecular sequence data, we estimate that species within Gypopsitta diversified between 8.7 and 0.6 Ma, with the main divergences occurring between 3.3 and 6.4 Ma. These temporal results are compared to other taxa showing similar vicariance patterns. Main conclusions The results suggest that diversification in Gypopsitta was influenced mainly by geotectonic events, marine transgressions and river dynamics, whereas Quaternary glacial cycles of forest change seem to have played a minor role in the origination of the currently recognized species.  相似文献   

3.
Abstract Most biogeographical studies propose that southern temperate faunal disjunctions are either the result of vicariance of taxa originated in Gondwana or the result of transoceanic dispersal of taxa originated after the breakup of Gondwana. The aim of this paper is to show that this is a false dichotomy. Antarctica retained a mild climate until mid‐Cenozoic and had lasting connections, notably with southern South America and Australia. Both taxa originally Gondwanan and taxa secondarily on Gondwanan areas were subjected to tectonic‐induced vicariance, and there is no need to invoke ad hoc transoceanic dispersal, even for post‐Gondwanan taxa. These different elements with circumantarctic distributions are here called ‘allochronic taxa’– taxa presently occupying the same area, but whose presence in that area does not belong to the same time period. This model allows accommodation of conflicting sources of evidence now available for many groups with circumantarctic distributions. The fact that the species from both layers are mixed up in the current biodiversity implies the need to use additional sources of evidence – such as biogeographical, palaeontological, geological and molecular – to discriminate which are the original Gondwanan and which are post‐Gondwanan elements in austral landmasses.  相似文献   

4.
Specialization to nectarivory is associated with radiations within different bird groups, including parrots. One of them, the Australasian lories, were shown to be unexpectedly species rich. Their shift to nectarivory may have created an ecological opportunity promoting species proliferation. Several morphological specializations of the feeding tract to nectarivory have been described for parrots. However, they have never been assessed in a quantitative framework considering phylogenetic nonindependence. Using a phylogenetic comparative approach with broad taxon sampling and 15 continuous characters of the digestive tract, we demonstrate that nectarivorous parrots differ in several traits from the remaining parrots. These trait‐changes indicate phenotype–environment correlations and parallel evolution, and may reflect adaptations to feed effectively on nectar. Moreover, the diet shift was associated with significant trait shifts at the base of the radiation of the lories, as shown by an alternative statistical approach. Their diet shift might be considered as an evolutionary key innovation which promoted significant non‐adaptive lineage diversification through allopatric partitioning of the same new niche. The lack of increased rates of cladogenesis in other nectarivorous parrots indicates that evolutionary innovations need not be associated one‐to‐one with diversification events.  相似文献   

5.
Gondwanan vicariance, long‐distance dispersal (LDD), and boreotropical migration have been proposed as alternative hypotheses explaining the pantropical distribution pattern of organisms. In this study, the historical biogeography of the pond skater genus Limnogonus was reconstructed to evaluate the impact of biogeographical scenarios in shaping their modern transoceanic disjunction. We sampled almost 65% of recognized Limnogonus species. Four DNA fragments including 69 sequences were used to reconstruct a phylogram. Divergence time was estimated using a Bayesian relaxed clock method and three fossil calibrations. Diversification dynamics and ancestral area reconstruction were investigated by using maximum likelihood and Bayesian approaches. Our results showed the crown group of Limnogonus originated and diversified in Africa in the early Eocene (49 Ma, HPD: 38–60 Ma), subsequently expanding into other regions via dispersal. The colonization of the New World originated from the Oriental Region probably via the Bering Land Bridge in the late Eocene. Two split events between the Old World and New World were identified: one between Neotropics and Oriental region around the middle Oligocene (30 Ma, HPD: 22–38 Ma), and the other between Neotropics and Africa during the middle Miocene (14 Ma, HPD: 8–21 Ma). The evolutionary history of Limnogonus involved two biogeographical processes. Gondwanan vicariance was not supported in our analyses. The diversification of Limnogonus among Africa, Oriental, and Neotropical regions corresponded with the age of land bridge connection and dispersed as a member associated with the broad boreotropical belt before local cooling (34 Ma). The current transoceanic disjunctions in Limnogonus could be better explained by the disruption of “mixed‐mesophytic” forest belt; however, the direct transoceanic LDD between the Neotropics and Africa could not be ruled out. In addition, the “LDD” model coupled with island hopping could be a reasonable explanation for the diversification of the Oriental and Australian regions during the Oligocene.  相似文献   

6.
Aim To investigate distributional patterns and derivation of skates in the Australasian realm. Location Australasia. Methods Genus‐group skate taxa were defined for this region for the first time and new systematic information, as well as bathymetric and geographical data, used to identify distribution patterns. Results The extant skate fauna of Australasia (Australia, New Zealand, New Caledonia and adjacent subAntarctic dependencies) is highly diverse and endemic with sixty‐two species from twelve currently recognized, nominal genus‐group taxa. These include the hardnose skate (rajin) groups Anacanthobatis, Amblyraja, Dipturus, Okamejei, Rajella and Leucoraja, and softnose skate (arhynchobatin) genera Arhynchobatis, Bathyraja, Insentiraja, Irolita, Pavoraja and Notoraja. Additional new and currently unrecognized nominal taxa of both specific and supraspecific ranks also occur in the region. The subfamily Arhynchobatinae is particularly speciose in Australasia, and the New Zealand/New Caledonian fauna is dominated by undescribed supraspecific taxa and species. The Australian fauna, although well represented by arhynchobatins, is dominated by Dipturus‐like skates and shows little overlap in species composition with the fauna of New Zealand and New Caledonia. Similarly, these faunas exhibit no overlap with the polar faunas of the Australian subAntarctic dependencies (Heard and Macdonald Islands) to the south. Skates appear to be absent from the Macquarie Ridge at the southern margin of the New Zealand Plateau. Their absence off New Guinea probably reflects inadequate sampling and the subsequent poor knowledge of that region's deepwater fish fauna. Main conclusions Skates appear to have existed in the eastern, Australasian sector of Gondwana before fragmentation in the late Cretaceous. The extant fauna appears to be derived from elements of Gondwanan origin, dispersal from the eastern and western Tethys Sea, and intraregional vicariance speciation.  相似文献   

7.
Vicariance is thought to have played a major role in the evolution of modern parrots. However, as the relationships especially of the African taxa remained mostly unresolved, it has been difficult to draw firm conclusions about the roles of dispersal and vicariance. Our analyses using the broadest taxon sampling of old world parrots ever based on 3219 bp of three nuclear genes revealed well-resolved and congruent phylogenetic hypotheses. Agapornis of Africa and Madagascar was found to be the sister group to Loriculus of Australasia and Indo-Malayasia and together they clustered with the Australasian Loriinae, Cyclopsittacini and Melopsittacus. Poicephalus and Psittacus from mainland Africa formed the sister group of the Neotropical Arini and Coracopsis from Madagascar and adjacent islands may be the closest relative of Psittrichas from New Guinea. These biogeographic relationships are best explained by independent colonization of the African continent via trans-oceanic dispersal from Australasia and Antarctica in the Paleogene following what may have been vicariance events in the late Cretaceous and/or early Paleogene. Our data support a taxon pulse model for the diversification of parrots whereby trans-oceanic dispersal played a more important role than previously thought and was the prerequisite for range expansion into new continents.  相似文献   

8.
Aim  The flowering plant family Proteaceae is putatively of Gondwanan age, with modern and fossil lineages found on all southern continents. Here we test whether the present distribution of Proteaceae can be explained by vicariance caused by the break-up of Gondwana.
Location  Africa, especially southern Africa, Australia, New Zealand, South America, New Caledonia, New Guinea, Southeast Asia, Sulawesi, Tasmania.
Methods  We obtained chloroplast DNA sequence data from the rbc L gene, the rbc L- atp B spacer, and the atp B gene from leaf samples of forty-five genera collected from the field and from living collections. We analysed these data using Bayesian phylogenetic and molecular dating methods, with five carefully selected fossil calibration points to obtain age estimates for the nodes within the family.
Results  Four of eight trans-continental disjunctions of sister groups within our sample of the Proteaceae post-date the break-up of Gondwana. These involve independent lineages, two with an Africa-Australia disjunction, one with an Africa–South America disjunction, and one with a New Zealand–Australasia disjunction. The date of the radiation of the bird-pollinated Embothriinae corresponds approximately to the hypothesized date of origin of nectar-feeding birds in Australia.
Main conclusions  The findings suggest that disjunct distributions in Proteaceae result from both Gondwanan vicariance and transoceanic dispersal. Our results imply that ancestors of some taxa dispersed across oceans rather than rafting with Gondwanan fragments as previously thought. This finding agrees with other studies of Gondwanan plants in dating the divergence of Australian, New Zealand and New Caledonian taxa in the Eocene, consistent with the existence of a shared, ancestral Eocene flora but contrary to a vicariance scenario based on accepted geological knowledge.  相似文献   

9.
Aim  To describe New Zealand's historical terrestrial biogeography and place this history in a wider Southern Hemisphere context.
Location  New Zealand.
Methods  The analysis is based primarily on literature on the distributions and relationships of New Zealand's terrestrial flora and fauna.
Results  New Zealand is shown to have a biota that has broad relationships, primarily around the cool Southern Hemisphere, as well as with New Caledonia to the north. There are hints of ancient Gondwanan taxa, although the long-argued predominance of taxa derived by vicariant processes, driven by plate tectonics and the fragmentation of Gondwana, is no longer accepted as a principal explanation of the biota's origins and relationships.
Main conclusions  Most of the terrestrial New Zealand flora and fauna has clearly arrived in New Zealand much more recently than the postulated separation of New Zealand from Gondwana, dated at c. 80 Ma. There is a view that New Zealand may have disappeared completely beneath the sea in the early Cenozoic, and acceptance of this would mean derivation of the entire biota by transoceanic dispersal. However, there are elements in the biota that seem to have broad distributions that date back to Gondwanan times, and also some that are thought unlikely to have been able to disperse to New Zealand across ocean gaps, especially freshwater organisms. Very strong connections to the biota of Australia, rather than to South America, are inconsistent with the timing of New Zealand's ancient and early separation from Gondwana and seem likely to have resulted from dispersal.  相似文献   

10.
Although ratites have been studied in considerable detail, avian systematists have been unable to reach a consensus regarding their relationships. Morphological studies indicate a basal split separating Apterygidae from all other extant ratites, and a sister‐group relationship between Rheidae and Struthionidae. Molecular studies have provided evidence for the paraphyly of the Struthionidae and Rheidae, with respect to a clade of Australasian extant ratites. The position of the extinct Dinornithidae and Aepyornithidae also remains hotly debated. A novel pattern of diversification of ratites is presented herein. The phylogenetic analysis is based on 17 taxa and 129 morphological characters, including 77 new characters. The resultant tree yields a sister‐group relationship between New Zealand ratites (Apterygidae plus Dinornithidae) and all other ratites. Within this clade, the Aepyornithidae and Struthionidae are successive sister taxa to a new, strongly supported clade comprising the Rheidae, Dromaiidae, and Casuariidae. The link between South American and Australian biotas proposed here is congruent with numerous studies that have evidenced closely related taxa on opposite sides of the Southern Pacific. These repeated patterns of area relationships agree with current knowledge on Gondwana break‐up, which indicates that Australia and South America remained in contact across Antarctica until the earliest Tertiary. © 2009 The Linnean Society of London, Zoological Journal of the Linnean Society, 2009, 156 , 641–663.  相似文献   

11.
Biogeographic dispersal is supported by numerous phylogenetic results. In particular, transoceanic dispersal, rather than vicariance, is suggested for some plant lineages despite current long distances between America and Europe. However, few studies on the biogeographic history of plants have also studied the role of diaspore syndromes in long‐distance dispersal (LDD). Species of the tribe Omphalodeae (Boraginaceae) offer a suitable study system because the species have a wide variety of diaspore traits related to LDD and different lineages conform to patched worldwide distributions on three distant continents (Europe, America and New Zealand). Our aim is to reconstruct the biogeographical history of the Omphalodeae and to investigate the role of diaspore traits favoring LDD and current geographic distributions. To this end, a time‐calibrated phylogeny with 29 of 32 species described for Omphalodeae was reconstructed using biogeographical analyses (BioGeoBEARS, Lagrange) and models (DEC and DIVA) under different scenarios of land connectivity. Character‐state reconstruction (SIMMAP) and diversification rate estimations of the main lineages were also performed. The main result is that epizoochorous traits have been the ancestral state of LDD syndromes in most clades. An early diversification age of the tribe is inferred in the Western Mediterranean during late Oligocene. Colonization of the New World by Omphalodeae, followed by fast lineage differentiation, took place sometime in the Oligocene‐Miocene boundary, as already inferred for other angiosperm genera. In contrast, colonization of remote islands (New Zealand, Juan Fernández) occurred considerably later in the Miocene‐Pliocene boundary.  相似文献   

12.
The geological history of Australasia, New Caledonia, and Southeast Asia, has been complex, resulting in competing biogeographic hypotheses for taxa found here. Alternative hypotheses-Gondwanan vicariance, rafting terranes, long-distance dispersal-may be distinguished by different predicted divergence times between disjunct sister taxa. Taxa within Rutaceae subfamily Aurantioideae are ideal for testing these hypotheses because of their distributions. Therefore, the ages of Rutaceae and Aurantioideae were estimated using molecular dating. One data set comprised 51 sequences of rbcL and atpB with sampling across rosids and three fossil calibrations: crown Fabales+Fagales+Rosales (>94 Ma), Fabaceae (>51 Ma) and stem Ailanthus, Simaroubaceae (>52 Ma). Another data set comprised 81 Aurantioideae using >8 kb of chloroplast sequence and secondary calibration. Confidence in estimated divergence times was explored by varying the root age, dating method (strict, local, and relaxed clocks), and inclusion of internal calibrations. We conclude that the Rutaceae crown diverged in the Eocene (36.4-56.8 Ma, mean 47.6), whereas the Aurantioideae crown originated in the early Miocene (12.1-28.2 Ma, mean 19.8). This young age suggests that Gondwanan vicariance does not explain the distributions of extant Aurantioideae. Taxa found in New Caledonia may have arrived by separate transoceanic dispersal events.  相似文献   

13.
Water beetles of the tribe Hydrobiusini are globally distributed in the northern hemisphere and all austral continents except Antarctica. A remarkable clade also occurs in the Hawaiian Islands. The phylogenetic relationships among genera were recently investigated using a combination of molecules and morphology. Here, we use this phylogenetic framework to address the biogeographic evolution of this group using Bayesian fossil‐based divergence times, and model‐based maximum likelihood ancestral range estimations. We recover an origin of the tribe in the Cretaceous ca. 100 Ma. Our biogeographic analyses support an origin of the tribe in Laurasia followed by the colonization of Australia. However, a Gondwanan origin of the group cannot be ruled out when considering the fossil record. The timeframe of the tribe's evolution as well as the model‐based approach of ancestral range estimation favour a scenario invoking multiple transoceanic dispersal events over a Gondwana vicariance hypothesis. The Hawaiian radiation originated from long‐distance dispersal to now‐submerged islands, paired with dispersal to new islands as they formed.  相似文献   

14.
Phylogenetic relationships among genera of pigeons and doves (Aves, Columbiformes) have not been fully resolved because of limited sampling of taxa and characters in previous studies. We therefore sequenced multiple nuclear and mitochondrial DNA genes totaling over 9000 bp from 33 of 41 genera plus 8 outgroup taxa, and, together with sequences from 5 other pigeon genera retrieved from GenBank, recovered a strong phylogenetic hypothesis for the Columbiformes. Three major clades were recovered with the combined data set, comprising the basally branching New World pigeons and allies (clade A) that are sister to Neotropical ground doves (clade B), and the Afro-Eurasian and Australasian taxa (clade C). None of these clades supports the monophyly of current families and subfamilies. The extinct, flightless dodo and solitaires (Raphidae) were embedded within pigeons and doves (Columbidae) in clade C, and monophyly of the subfamily Columbinae was refuted because the remaining subfamilies were nested within it. Divergence times estimated using a Bayesian framework suggest that Columbiformes diverged from outgroups such as Apodiformes and Caprimulgiformes in the Cretaceous before the mass extinction that marks the end of this period. Bayesian and maximum likelihood inferences of ancestral areas, accounting for phylogenetic uncertainty and divergence times, respectively, favor an ancient origin of Columbiformes in the Neotropical portion of what was then Gondwana. The radiation of modern genera of Columbiformes started in the Early Eocene to the Middle Miocene, as previously estimated for other avian groups such as ratites, tinamous, galliform birds, penguins, shorebirds, parrots, passerine birds, and toucans. Multiple dispersals of more derived Columbiformes between Australasian and Afro-Eurasian regions are required to explain current distributions.  相似文献   

15.
Dawkins  Kathryn L.  Furse  James M.  Hughes  Jane M. 《Hydrobiologia》2021,848(2):403-420

Biogeographic investigations of Gondwanan mesic Australian fauna are scarce. The burrowing clade of Australian freshwater crayfish represent an ideal group to provide biogeographic inferences, due to their extensive distribution across the continent and their presumed ancient origin. This study tested the competing hypotheses of a ‘early’ versus ‘late’ origin of this clade, coinciding with the early or late fragmentation of Gondwana, respectively. The biogeographic history of this group was investigated through: (a) examination of the phylogenetic relationships between the seven extant taxon groups; (b) reconstruction of four species trees, each using a different calibration method; and (c) reconstruction of ancestral ranges and correlation of estimated dispersal and vicariance events with historical geological data to propose plausible mechanisms responsible for driving diversification. The phylogenetic relationships between the taxon groups were generally well supported (although some uncertainty exists for the oldest genera), and all calibration methods produced concordant results. The hypothesis that the clade arose during the early fragmentation of Gondwana in southern Australia is supported. Divergence between the extant taxa likely resulted from a combination of both short- and long-distance dispersal events (often followed by later vicariance), coincident with phases of sea level oscillation and changing climate continuing into the Eocene.

  相似文献   

16.
Throughout the Southern Hemisphere many terrestrial taxa have circum-Antarctic distributions. This pattern is generally attributed to ongoing dispersal (by wind, water, or migrating birds) or relict Gondwanan distributions. Few of these terrestrial taxa have extant representatives in Antarctica, but such taxa would contribute to our understanding of the evolutionary origins of the continental Antarctic fauna. Either these taxa have survived the harsh climate cooling in Antarctica over the last 23 Myr (Gondwanan/vicariance origin) or they have dispersed there more recently (<2 MYA). In this context, we examined mtDNA (COI) sequence variation in Cryptopygus and related extant Antarctic and subantarctic terrestrial springtails (Collembola). Sequence divergence was estimated under a maximum likelihood model (general time reversible+I+Gamma) between individuals from subantarctic islands, Australia, New Zealand, Patagonia, Antarctic Peninsula, and continental Antarctica. Recent dispersal/colonization (<2 MYA) of Cryptopygus species was inferred between some subantarctic islands, and there was a close association between estimated times of divergences based on a molecular clock and proposed geological ages of islands. Most lineages generally grouped according to geographic proximity or by inferred dispersal/colonization pathways. In contrast, the deep divergences found for the four endemic Antarctic species indicate that they represent a continuous chain of descent dating from the break up of Gondwana to the present. We suggest that the diversification of these springtail species (21-11 MYA) in ice-free glacial refugia throughout the Trans-Antarctic Mountains was caused by the glaciation of the Antarctic continent during the middle to late Miocene.  相似文献   

17.
This study describes 12 microsatellite loci identified in the African grey parrot Psittacus erithacus. Eleven were polymorphic, with observed heterozygosities 42–94% (average 68) and exclusion powers of PE1 = 0.996 and PE2 = 0.999. Microsatellites have previously been developed for a number of other parrots but showed limited cross‐species polymorphism. Here high levels of cross‐species amplification were observed: 71% of 32 Psittacines (22 genera). At least seven loci, 58%, were polymorphic in other African parrots as well as Neotropical and Australasian parrots, which diverged from the African parrots c30.6 and over 41.4 million years ago, respectively.  相似文献   

18.
Schweizer, M., Güntert, M. & Hertwig, S. T. (2012). Out of the Bassian province: historical biogeography of the Australasian platycercine parrots (Aves, Psittaciformes). —Zoologica Scripta, 42, 13–27. Aridification from mid‐Miocene onwards led to a fragmentation of mesic biomes in Australia and an expansion of arid habitats. This influenced the diversification of terrestrial organisms, and the general direction of their radiations is supposed to have been from mesic into drier habitats. We tested this hypothesis in the platycercine parrots that occur in different habitats in Australia and also colonized Pacific islands. We inferred their temporal and spatial diversification patterns using a Bayesian relaxed molecular clock approach based on three nuclear and two mitochondrial genes and model‐based biogeographic reconstructions. The Bassian biota was found to be the centre of origin of platycercine parrots and diversification within two of their three clades coincided with the beginning of aridification of Australia. The associated habitat changes may have catalysed their radiation through adaptation to arid environments and vicariance because of the fragmentation of non‐arid habitats. The small oceanic islands of Melanesia contributed as stepping stones for the colonization of New Zealand from Australia.  相似文献   

19.
The relative importance of dispersal and vicariance in the diversification of taxa has been much debated. Within butterflies, a few studies published so far have demonstrated vicariant patterns at the global level. We studied the historical biogeography of the genus Junonia (Nymphalidae: Nymphalinae) at the intercontinental level based on a molecular phylogeny. The genus is distributed over all major biogeographical regions of the world except the Palaearctic. We found dispersal to be the dominant process in the diversification of the genus. The genus originated and started diversifying in Africa about 20 Ma and soon after dispersed into Asia possibly through the Arabian Peninsula. From Asia, there were dispersals into Africa and Australasia, all around 5 Ma. The origin of the New World species is ambiguous; the ancestral may have dispersed from Asia via the Beringian Strait or from Africa over the Atlantic, about 3 Ma. We found no evidence for vicariance at the intercontinental scale. We argue that dispersal is as important as vicariance, if not more, in the global diversification of butterflies.  相似文献   

20.
The moss bugs of the Peloridiidae, a small group of cryptic and mostly flightless insects, is the only living family in Coleorrhyncha (Insecta: Hemiptera). Today 37 species in 17 genera are known from eastern Australia, New Zealand, New Caledonia and Patagonia, and the peloridiids are thereby a group with a classical southern Gondwanan distribution. To explicitly test whether the present-day distribution of the Peloridiidae actually results from the sequential breakup of southern Gondwana, we provide the first total-evidence phylogenetic study based on morphological and molecular characters sampled from about 75% of recognized species representing 13 genera. The results largely confirm the established morphological phylogenetic context except that South American Peloridium hammoniorum constitutes the sister group to the remaining peloridiids. A timescale analysis indicates that the Peloridiidae began to diversify in the land mass that is today's Patagonia in the late Jurassic (153 Ma, 95% highest posterior density: 78–231 Ma), and that splitting into the three extant well-supported biogeographical clades (i.e. Australia, Patagonia and New Zealand/New Caledonia) is consistent with the sequential breakup of southern Gondwana in the late Cretaceous, indicating that the current transoceanic disjunct distributions of the Peloridiidae are best explained by a Gondwanan vicariance hypothesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号