首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 68 毫秒
1.
Calanus finmarchicus is a key‐structural species of the North Atlantic polar biome. The species plays an important trophic role in subpolar and polar ecosystems as a grazer of phytoplankton and as a prey for higher trophic levels such as the larval stages of many fish species. Here, we used a recently developed ecological niche model to assess the ecological niche (sensu Hutchinson) of C. finmarchicus and characterize its spatial distribution. This model explained about 65% of the total variance of the observed spatial distribution inferred from an independent dataset (data of the continuous plankton recorder survey). Comparisons with other types of models (structured population and ecophysiological models) revealed a clear similarity between modeled spatial distributions at the scale of the North Atlantic. Contemporary models coupled with future projections indicated a progressive reduction of the spatial habitat of the species at the southern edge and a more pronounced one in the Georges Bank, the Scotian Shelf and the North Sea and a potential increase in abundance at the northern edge of its spatial distribution, especially in the Barents Sea. These major changes will probably lead to a major alteration of the trophodynamics of North Atlantic ecosystems affecting the trophodynamics and the biological carbon pump.  相似文献   

2.
Protected areas are essential conservation tools for mitigating the rapid decline of biodiversity. However, climate change represents one of the main challenges to their long-term effectiveness, as it induces rapid changes in the geographical distribution of many species. We used ecological niche modelling to predict the impacts of climate change on the distribution of five endemic owls in the Atlantic Forest and evaluated the effectiveness of the protected areas network for their conservation. The results indicate that the protected areas network is currently effective in terms of representativeness for most species; however, there will be a decline for all species in the coming decades because of climate change. We found that the ecoregions in the northern part of the Atlantic Forest will experience a higher loss of species, whereas those ecoregions in the southern part will be important stable climatic refuges in the future. Therefore, we emphasize the need to complement the network of protected areas to increase their representativeness in the distribution of species that will be affected by climate change, reducing species loss and increasing connectivity between suitable areas. We hope the results presented herein will serve as a basis for decision-makers to re-evaluate and improve current conservation policies and decisions in order to address the challenges posed by climate change and secure the survival of these species.  相似文献   

3.
Aim  To provide a test of the conservatism of a species' niche over the last 20,000 years by tracking the distribution of eight pollen taxa relative to climate type as they migrated across eastern North America following the Last Glacial Maximum (LGM).
Location  North America.
Methods  We drew taxon occurrence data from the North American pollen records in the Global Pollen Database, representing eight pollen types – all taxa for which ≥5 distinct geographic occurrences were available in both the present day and at the LGM (21,000 years ago ± 3000 years). These data were incorporated into ecological niche models based on present-day and LGM climatological summaries available from the Palaeoclimate Modelling Intercomparison Project to produce predicted potential geographic distributions for each species at present and at the LGM. The output for each time period was projected onto the 'other' time period, and tested using independent known occurrence information from that period.
Results  The result of our analyses was that all species tested showed general conservatism in ecological characteristics over the climate changes associated with the Pleistocene-to-Recent transition.
Main conclusions  This analysis constitutes a further demonstration of general and pervasive conservatism in ecological niche characteristics over moderate periods of time despite profound changes in climate and environmental conditions. As such, our results reinforce the application of ecological niche modelling techniques to the reconstruction of Pleistocene biodiversity distribution patterns, and to project the future potential distribution range of species in the face of global-scale climatic changes.  相似文献   

4.
Aim We explore the impact of calibrating ecological niche models (ENMs) using (1) native range (NR) data versus (2) entire range (ER) data (native and invasive) on projections of current and future distributions of three Hieracium species. Location H. aurantiacum, H. murorum and H. pilosella are native to Europe and invasive in Australia, New Zealand and North America. Methods Differences among the native and invasive realized climatic niches of each species were quantified. Eight ENMs in BIOMOD were calibrated with (1) NR and (2) ER data. Current European, North American and Australian distributions were projected. Future Australian distributions were modelled using four climate change scenarios for 2030. Results The invasive climatic niche of H. murorum is primarily a subset of that expressed in its native range. Invasive populations of H. aurantiacum and H. pilosella occupy different climatic niches to those realized in their native ranges. Furthermore, geographically separate invasive populations of these two species have distinct climatic niches. ENMs calibrated on the realized niche of native regions projected smaller distributions than models incorporating data from species’ entire ranges, and failed to correctly predict many known invasive populations. Under future climate scenarios, projected distributions decreased by similar percentages, regardless of the data used to calibrate ENMs; however, the overall sizes of projected distributions varied substantially. Main conclusions This study provides quantitative evidence that invasive populations of Hieracium species can occur in areas with different climatic conditions than experienced in their native ranges. For these, and similar species, calibration of ENMs based on NR data only will misrepresent their potential invasive distribution. These errors will propagate when estimating climate change impacts. Thus, incorporating data from species’ entire distributions may result in a more thorough assessment of current and future ranges, and provides a closer approximation of the elusive fundamental niche.  相似文献   

5.
Intraspecific genetic variability is critical for species adaptation and evolution and yet it is generally overlooked in projections of the biological consequences of climate change. We ask whether ongoing climate changes can cause the loss of important gene pools from North Atlantic relict kelp forests that persisted over glacial–interglacial cycles. We use ecological niche modelling to predict genetic diversity hotspots for eight species of large brown algae with different thermal tolerances (Arctic to warm temperate), estimated as regions of persistence throughout the Last Glacial Maximum (20,000 YBP), the warmer Mid‐Holocene (6,000 YBP), and the present. Changes in the genetic diversity within ancient refugia were projected for the future (year 2100) under two contrasting climate change scenarios (RCP2.6 and RCP8.5). Models predicted distributions that matched empirical distributions in cross‐validation, and identified distinct refugia at the low latitude ranges, which largely coincide among species with similar ecological niches. Transferred models into the future projected polewards expansions and substantial range losses in lower latitudes, where richer gene pools are expected (in Nova Scotia and Iberia for cold affinity species and Gibraltar, Alboran, and Morocco for warm‐temperate species). These effects were projected for both scenarios but were intensified under the extreme RCP8.5 scenario, with the complete borealization (circum‐Arctic colonization) of kelp forests, the redistribution of the biogeographical transitional zones of the North Atlantic, and the erosion of global gene pools across all species. As the geographic distribution of genetic variability is unknown for most marine species, our results represent a baseline for identification of locations potentially rich in unique phylogeographic lineages that are also climatic relics in threat of disappearing.  相似文献   

6.
Aim Climate changes are thought to be responsible for the retreat and eventual extinction of subtropical lauroid species that covered much of Europe and North Africa during the Palaeogene and early Neogene; little is known, however, of the spatial and temporal patterns of this demise. Herein we calibrate ecological niche models to assess the climatic requirements of Laurus L. (Lauraceae), an emblematic relic from the Tethyan subtropical flora, subsequently using these models to infer how the range dynamics of Laurus were affected by Plio‐Pleistocene climate changes. We also provide predictions of likely range changes resulting from future climatic scenarios. Location The Mediterranean Basin and Macaronesian islands (Canaries, Madeira, Azores). Methods We used a maximum‐entropy algorithm (Maxent) to model the relationship between climate and Laurus distribution over time. The models were fitted both to the present and to the middle Pliocene, based on fossil records. We employed climatic reconstructions for the mid‐Pliocene (3 Ma), the Last Glacial Maximum (21 ka) and a CO2‐doubling future scenario to project putative species distribution in each period. We validated the model projections with Laurus fossil and present occurrences. Results Laurus preferentially occupied warm and moist areas with low seasonality, showing a marked stasis of its climatic niche. Models fitted to Pliocene conditions successfully predicted the current species distribution. Large suitable areas existed during the Pliocene, which were strongly reduced during the Pleistocene, but humid refugia within the Mediterranean Basin and Macaronesian islands enabled long‐term persistence. Future climate conditions are likely to re‐open areas suitable for colonization north of the current range. Main conclusions The climatic requirements of Laurus remained virtually unchanged over the last 3 Myr. This marked niche conservatism imposed largely deterministic range dynamics driven by climate conditions. This species's relatively high drought tolerance might account for the survival of Laurus in continental Europe throughout the Quaternary whilst other Lauraceae became extinct. Climatic scenarios for the end of this century would favour an expansion of the species's range towards northern latitudes, while severely limiting southern populations due to increased water stress.  相似文献   

7.
Ecological niche modeling is an effective tool to characterize the spatial distribution of suitable areas for species, and it is especially useful for predicting the potential distribution of invasive species. The widespread submerged plant Hydrilla verticillata (hydrilla) has an obvious phylogeographical pattern: Four genetic lineages occupy distinct regions in native range, and only one lineage invades the Americas. Here, we aimed to evaluate climatic niche conservatism of hydrilla in North America at the intraspecific level and explore its invasion potential in the Americas by comparing climatic niches in a phylogenetic context. Niche shift was found in the invasion process of hydrilla in North America, which is probably mainly attributed to high levels of somatic mutation. Dramatic changes in range expansion in the Americas were predicted in the situation of all four genetic lineages invading the Americas or future climatic changes, especially in South America; this suggests that there is a high invasion potential of hydrilla in the Americas. Our findings provide useful information for the management of hydrilla in the Americas and give an example of exploring intraspecific climatic niche to better understand species invasion.  相似文献   

8.
粗毛牛膝菊在中国的入侵与生态位漂移有关 在外来物种入侵和扩散过程中,生态位的漂移可能起到了重要作用。粗毛牛膝菊(Galinsoga quadriradiata) 在中国已造成了较为严重的入侵,占据了许多与其原产地不同的气候区。为此,本研究力图揭示粗毛牛膝菊入侵过程中的气候生态位漂移,分析其在该物种入 侵中国过程中可能发挥的作用。本研究结合粗毛牛膝菊原 产地和入侵地的分布点与气候数据, 采用Maxent模型预测了其在中国潜在的分布,并采用主成分分析的方法评估 了在入侵中国过程中粗毛牛膝菊气候生态位的漂移。模型结果显示,该物种原产地种群和入侵地种群之间只 有32.7%的生态位重叠,两个种群的生态位相似性较低(Schoener's D = 0.093, P < 0.005),这暗示了在其入侵过程中发生了生态位漂移。相比于其原产地种群,其在中国的入侵种群气候生态位的整体范围和中心都明 显地漂移向了温度更低、降水更少的区域;中国南方大部分区域属于粗毛牛膝菊的稳定适生区,而位于入侵 前沿的北方地区则存在局域适应和潜在拓殖区域。这些研究结果说明,粗毛牛膝菊在中国的入侵种群仍处于准平衡阶段,未来有可能继续向新的适生区扩散入侵,其生态位的变化有力地解释了为什么该物种在中国的入侵性强、危害范围大。  相似文献   

9.
To generate realistic projections of species’ responses to climate change, we need to understand the factors that limit their ability to respond. Although climatic niche conservatism, the maintenance of a species’s climatic niche over time, is a critical assumption in niche-based species distribution models, little is known about how universal it is and how it operates. In particular, few studies have tested the role of climatic niche conservatism via phenological changes in explaining the reported wide variance in the extent of range shifts among species. Using historical records of the phenology and spatial distribution of British plants under a warming climate, we revealed that: (i) perennial species, as well as those with weaker or lagged phenological responses to temperature, experienced a greater increase in temperature during flowering (i.e. failed to maintain climatic niche via phenological changes); (ii) species that failed to maintain climatic niche via phenological changes showed greater northward range shifts; and (iii) there was a complementary relationship between the levels of climatic niche conservatism via phenological changes and range shifts. These results indicate that even species with high climatic niche conservatism might not show range shifts as instead they track warming temperatures during flowering by advancing their phenology.  相似文献   

10.
Empirical and mechanistic models have both been used to assess the potential impacts of climate change on species distributions, and each modeling approach has its strengths and weaknesses. Here, we demonstrate an approach to projecting climate‐driven changes in species distributions that draws on both empirical and mechanistic models. We combined projections from a dynamic global vegetation model (DGVM) that simulates the distributions of biomes based on basic plant functional types with projections from empirical climatic niche models for six tree species in northwestern North America. These integrated model outputs incorporate important biological processes, such as competition, physiological responses of plants to changes in atmospheric CO2 concentrations, and fire, as well as what are likely to be species‐specific climatic constraints. We compared the integrated projections to projections from the empirical climatic niche models alone. Overall, our integrated model outputs projected a greater climate‐driven loss of potentially suitable environmental space than did the empirical climatic niche model outputs alone for the majority of modeled species. Our results also show that refining species distributions with DGVM outputs had large effects on the geographic locations of suitable habitat. We demonstrate one approach to integrating the outputs of mechanistic and empirical niche models to produce bioclimatic projections. But perhaps more importantly, our study reveals the potential for empirical climatic niche models to over‐predict suitable environmental space under future climatic conditions.  相似文献   

11.
Pelagic fishes are among the most ecologically and economically important fish species in European seas. In principle, these pelagic fishes have potential to demonstrate rapid abundance and distribution shifts in response to climatic variability due to their high adult motility, planktonic larval stages, and low dependence on benthic habitat for food or shelter during their life histories. Here, we provide evidence of substantial climate‐driven changes to the structure of pelagic fish communities in European shelf seas. We investigated the patterns of species‐level change using catch records from 57 870 fisheries‐independent survey trawls from across European continental shelf region between 1965 and 2012. We analysed changes in the distribution and rate of occurrence of the six most common species, and observed a strong subtropicalization of the North Sea and Baltic Sea assemblages. These areas have shifted away from cold‐water assemblages typically characterized by Atlantic herring and European sprat from the 1960s to 1980s, to warmer‐water assemblages including Atlantic mackerel, Atlantic horse mackerel, European pilchard and European anchovy from the 1990s onwards. We next investigated if warming sea temperatures have forced these changes using temporally comprehensive data from the North Sea region. Our models indicated the primary driver of change in these species has been sea surface temperatures in all cases. Together, these analyses highlight how individual species responses have combined to result in a dramatic subtropicalization of the pelagic fish assemblage of the European continental shelf.  相似文献   

12.
Combining genetic data with ecological niche models is an effective approach for exploring climatic and nonclimatic environmental variables affecting spatial patterns of intraspecific genetic variation. Here, we adopted this combined approach to evaluate genetic structure and ecological niche of the Indian gray mongoose (Urva edwardsii) in Iran, as the most western part of the species range. Using mtDNA, we confirmed the presence of two highly differentiated clades. Then, we incorporated ensemble of small models (ESMs) using climatic and nonclimatic variables with genetic data to assess whether genetic differentiation among clades was coupled with their ecological niche. Climate niche divergence was also examined based on a principal component analysis on climatic factors only. The relative habitat suitability values predicted by the ESMs for both clades revealed their niche separation. Between‐clade climate only niche comparison revealed that climate space occupied by clades is similar to some extent, but the niches that they utilize differ between the distribution ranges of clades. We found that in the absence of evidence for recent genetic exchanges, distribution models suggest the species occurs in different niches and that there are apparent areas of disconnection across the species range. The estimated divergence time between the two Iranian clades (4.9 Mya) coincides with the uplifting of the Zagros Mountains during the Early Pliocene. The Zagros mountain‐building event seems to have prevented the distribution of U. edwardsii populations between the western and eastern parts of the mountains as a result of vicariance events. Our findings indicated that the two U. edwardsii genetic clades in Iran can be considered as two conservation units and can be utilized to develop habitat‐specific and climate change‐integrated management strategies.  相似文献   

13.
Ecological opportunity has been associated with increases in diversification rates across the tree of life. Under an ecological diversification model, the emergence of novel environments is hypothesized to promote morpho- and ecospace evolution. Whether this model holds at the clade level within the most species-rich angiosperm genus found in North America (Carex, Cyperaceae) is yet to be tested. Recent works demonstrate a temporal coupling of climate cooling and widespread colonization of Carex in North America, implicating ecological diversification. In addition, research has consistently found asymmetric patterns of lineage-level diversification in the genus. Why does variation in clade sizes exist in the genus? Is ecological diversification involved? In this study, we tested whether rates of morphological and ecological trait evolution are correlated with clade-level species richness in Carex of North America north of Mexico. We constructed a phylogeny of 477 species—an almost complete regional sample. We estimated rates of evolution of morphological traits, habitat, and climatic niche and assessed whether differences in rates of evolution correlate with species richness differences in replicate non-nested sister clades. Our work demonstrates significant positive correlations between climatic niche rates, habitat and reproductive morphological evolution, and species richness. This coupling of trait and niche evolution and species richness in a diverse, continental clade sample strongly suggests that the ability of clades to explore niche and functional space has shaped disparities in richness and functional diversity across the North American flora region. Our findings highlight the importance of the evolutionary history of trait and niche evolution in shaping continental and regional floras.  相似文献   

14.
Long‐distance migration in birds is relatively well studied in nature; however, one aspect of this phenomenon that remains poorly understood is the pattern of distribution presented by species during arrival to and establishment of wintering areas. Some studies suggest that the selection of areas in winter is somehow determined by climate, given its influence on both the distribution of bird species and their resources. We analyzed whether different migrant passerine species of North America present climatic preferences during arrival to and departure from their wintering areas. We used ecological niche modeling to generate monthly potential climatic distributions for 13 migratory bird species during the winter season by combining the locations recorded per month with four environmental layers. We calculated monthly coefficients of climate variation and then compared two GLM (generalized linear models), evaluated with the AIC (Akaike information criterion), to describe how these coefficients varied over the course of the season, as a measure of the patterns of establishment in the wintering areas. For 11 species, the sites show nonlinear patterns of variation in climatic preferences, with low coefficients of variation at the beginning and end of the season and higher values found in the intermediate months. The remaining two species analyzed showed a different climatic pattern of selective establishment of wintering areas, probably due to taxonomic discrepancy, which would affect their modeled winter distribution. Patterns of establishment of wintering areas in the species showed a climatic preference at the macroscale, suggesting that individuals of several species actively select wintering areas that meet specific climatic conditions. This probably gives them an advantage over the winter and during the return to breeding areas. As these areas become full of migrants, alternative suboptimal sites are occupied. Nonrandom winter area selection may also have consequences for the conservation of migratory bird species, particularly under a scenario of climate change.  相似文献   

15.
Evidence of climatic niche shift during biological invasion   总被引:10,自引:1,他引:9  
Niche-based models calibrated in the native range by relating species observations to climatic variables are commonly used to predict the potential spatial extent of species' invasion. This climate matching approach relies on the assumption that invasive species conserve their climatic niche in the invaded ranges. We test this assumption by analysing the climatic niche spaces of Spotted Knapweed in western North America and Europe. We show with robust cross-continental data that a shift of the observed climatic niche occurred between native and non-native ranges, providing the first empirical evidence that an invasive species can occupy climatically distinct niche spaces following its introduction into a new area. The models fail to predict the current invaded distribution, but correctly predict areas of introduction. Climate matching is thus a useful approach to identify areas at risk of introduction and establishment of newly or not-yet-introduced neophytes, but may not predict the full extent of invasions.  相似文献   

16.
Accelerated climate change represents a major threat to the health of the planet's biodiversity. Particularly, lizards of the genus Xenosaurus might be negatively affected by this phenomenon because several of its species have restricted distributions, low vagility, and preference for low temperatures. No study, however, has examined the climatic niche of the species of this genus and how their distribution might be influenced by different climate change scenarios. In this project, we used a maximum entropy approach to model the climatic niche of 10 species of the genus Xenosaurus under present and future suitable habitat, considering a climatic niche conservatism context. Therefore, we performed a similarity analysis of the climatic niche between each species of the genus Xenosaurus. Our results suggest that a substantial decrease in suitable habitat for all species will occur by 2070. Among the most affected species, Xtzacualtipantecus will not have suitable conditions according to its climatic niche requirements and Xphalaroanthereon will lose 85.75% of its current suitable area. On the other hand, we found low values of conservatism of the climatic niche among species. Given the limited capacity of dispersion and the habitat specificity of these lizards, it seems unlikely that fast changes would occur in the distribution of these species facing climate change. The low conservatism in climatic niche we found in Xenosaurus suggests that these species might have the capacity to adapt to the new environmental conditions originated by climate change.  相似文献   

17.
With rates of climate change exceeding the rate at which many species are able to shift their range or adapt, it is important to understand how future changes are likely to affect biodiversity at all levels of organisation. Understanding past responses and extent of niche conservatism in climatic tolerance can help predict future consequences. We use an integrated approach to determine the genetic consequences of past and future climate changes on a bat species, Plecotus austriacus. Glacial refugia predicted by palaeo‐modelling match those identified from analyses of extant genetic diversity and model‐based inference of demographic history. Former refugial populations currently contain disproportionately high genetic diversity, but niche conservatism, shifts in suitable areas and barriers to migration mean that these hotspots of genetic diversity are under threat from future climate change. Evidence of population decline despite recent northward migration highlights the need to conserve leading‐edge populations for spearheading future range shifts.  相似文献   

18.
Shifts of distributions have been attributed to species tracking their fundamental climate niches through space. However, several studies have now demonstrated that niche tracking is imperfect, that species’ climate niches may vary with population trends, and that geographic distributions may lag behind rapid climate change. These reports of imperfect niche tracking imply shifts in species’ realized climate niches. We argue that quantifying climate niche shifts and analyzing them for a suite of species reveal general patterns of niche shifts and the factors affecting species’ ability to track climate change. We analyzed changes in realized climate niche between 1984 and 2012 for 46 species of North American birds in relation to population trends in an effort to determine whether species differ in the ability to track climate change and whether differences in niche tracking are related to population trends. We found that increasingly abundant species tended to show greater levels of niche expansion (climate space occupied in 2012 but not in 1980) compared to declining species. Declining species had significantly greater niche unfilling (climate space occupied in 1980 but not in 2012) compared to increasing species due to an inability to colonize new sites beyond their range peripheries after climate had changed at sites of occurrence. Increasing species, conversely, were better able to colonize new sites and therefore showed very little niche unfilling. Our results indicate that species with increasing trends are better able to geographically track climate change compared to declining species, which exhibited lags relative to changes in climate. These findings have important implications for understanding past changes in distribution, as well as modeling dynamic species distributions in the face of climate change.  相似文献   

19.
Aim The use of ecological niche models (ENMs) to predict potential distributions of species is steadily increasing. A necessary assumption is that climatic niches are conservative, but recent findings of niche shifts during biological invasion indicate that this assumption is not always valid. Selection of predictor variables may be one reason for the observed shifts. In this paper we assess differences in climatic niches in the native and invaded ranges of the Mediterranean house gecko (Hemidactylus turcicus) in terms of commonly applied climate variables in ENMs. We analyse which variables are more conserved versus relaxed (i.e. subject to niche shift). Furthermore, we study the predictive power of different sets of climate variables. Location The Mediterranean region and North America. Methods We developed models using Maxent and various subsets of variables out of 19 bioclimatic layers including: (1) two subsets comprising almost all variables excluding only highly collinear ones; (2) two subsets with minimalistic variable sets of water availability and energy measures; (3) two subsets focused on temperature‐related parameters; (4) two subsets with precipitation‐related parameters; and (5) one subset comprising variables combining temperature and precipitation characteristics. Occurrence data from the native Mediterranean range were used to predict the potential introduced range in North America and vice versa. Degrees of niche similarity and conservatism were assessed using both Schoener's index and Hellinger distances. The significance of the results was tested using null models. Results The degree of niche similarity and conservatism varied greatly among the predictors and variable sets applied. Shifts observed in some variables could be attributed to active habitat selection while others apparently reflected background effects. Main conclusions The study was based on comprehensive occurrence data from all regions where Hemidactylus turcicus is present in Europe and North America, providing a robust foundation. Our results clearly indicate that the degree of conservatism of niches in H. turcicus largely varies among predictors and variable sets applied. Therefore, the extent of niche conservatism of variables applied should always be tested in ENMs. This has an important impact on studies of biological invasion, impacts of climate change and niche evolution.  相似文献   

20.

Premise

Researchers often use ecological niche models to predict where species might establish and persist under future or novel climate conditions. However, these predictive methods assume species have stable niches across time and space. Furthermore, ignoring the time of occurrence data can obscure important information about species reproduction and ultimately fitness. Here, we assess compare ecological niche models generated from full-year averages to seasonal models.

Methods

In this study, we generate full-year and monthly ecological niche models for Capsella bursa-pastoris in Europe and North America to see if we can detect changes in the seasonal niche of the species after long-distance dispersal.

Results

We find full-year ecological niche models have low transferability across continents and there are continental differences in the climate conditions that influence the distribution of C. bursa-pastoris. Monthly models have greater predictive accuracy than full-year models in cooler seasons, but no monthly models can predict North American summer occurrences very well.

Conclusions

The relative predictive ability of European monthly models compared to North American monthly models suggests a change in the seasonal timing between the native range to the non-native range. These results highlight the utility of ecological niche models at finer temporal scales in predicting species distributions and unmasking subtle patterns of evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号