首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell fusion-inducing (fusogenic) proteoliposomes of defined chemical composition were reconstituted from purified glycoproteins of hemagglutinating virus of Japan (Sendai virus) either with lipids extracted from the virus particles or with a chemically defined lipid mixture. Cell fusion reactions induced by the reconstituted system have several important characteristics similar to the virus-induced fusion reaction: fusogenic activity of the proteoliposomes depends on the presence of active fusion protein in the vesicles and, in the case of Ehrlich tumor cells, the fusion is almost completely inhibited by adding cytochalasin D to a final concentration of 4 microgram/ml. The only known difference between the original and reconstituted systems is that a greater amount of the latter is necessary for the same degree of fusogenic activity. Thus, the reconstituted system can be used as a model for the Sendai virus-induced fusion reaction. A lipid mixture (phosphatidylcholine:phosphatidylethanolamine:phosphatidylserine:sphingomyelin = 1:2:1:1, by weight, and cholesterol equimolar to the total phospholipids) similar to that of the virion was active for reconstitution, whereas a mixture containing the same composition of phospholipids but no cholesterol, and ones containing cholesterol with only a single species of phospholipid were not reconstitutively active.  相似文献   

2.
K Hong  V D Vacquier 《Biochemistry》1986,25(3):543-549
Lysin, a protein of Mr 16 000 from the acrosome granule of the abalone, is responsible for the dissolution of the egg vitelline layer. The primary structure of this cationic protein projects some hydrophobic domains in the secondary structure. Lysin was found to associate nonselectively with phospholipid bilayers and cause a spontaneous release of encapsulated carboxyfluorescein in liposomes. The association of lysin with phosphatidylcholine liposomes suggests that there is a hydrophobic interaction between lysin and lipid bilayers. Binding of lysin to phospholipid resulted in the aggregation of phosphatidylserine-containing liposomes, but aggregation was not observed in neutral phosphatidylcholine liposomes. Resonance energy transfer and dequenching of fluorescent 1-palmitoyl-2-cis-parinaroylphosphatidylcholine were both used to determine the fusogenic activity of lysin in aggregated liposomes. Results from both assays are consistent. Lysin-induced fusion was observed in all the phosphatidylserine-containing liposomes, and the general trend of fusion susceptibility was phosphatidylserine/phosphatidylcholine (1:2) approximately equal to phosphatidylserine/phosphatidylcholine/phosphatidylethanolamine (1:1:1) greater than phosphatidylserine/phosphatidylethanolamine (1:2). Cholesterol up to 30% did not affect the intrinsic fusion susceptibility. A hydrophobic penetration by protein molecules and the packing of phospholipid bilayers are used to interpret the fusion susceptibility. Lysin-induced liposome aggregation was highly independent of the state of self-association of lysin in ionic medium. However, the fusogenic activity of self-associated lysin was found to be much less than the monodispersed one. Liposomes preincubated with Ca2+ did not fuse initially as readily as those without Ca2+ treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Viral glycoproteins, such as influenza hemagglutinin (HA) and human immunodeficiency virus gp41, are anchored by a single helical segment transmembrane domain (TMD) on the viral envelope membrane. The fusion peptides (FP) of the glycoproteins insert into the host membrane and initiate membrane fusion. Our previous study showed that the FP or TMD alone perturbs membrane structure. Interaction between the influenza HA FP and TMD has previously been shown, but its role is unclear. We used PC spin labels dipalmitoylphospatidyl-tempo-choline (on the headgroup), 5PC and 14PC (5-C and 14-C positions on the acyl chain) to detect the combined effect of FP-TMD interaction by titrating HA FP to TMD-reconstituted 1,2-dimyristoyl-sn-glycero-3-phosphocholine/1,2-dimyristoyl-sn-glycero-3-phospho-(1’-rac-glycerol)/cholesterol lipid bilayers using electron spin resonance. We found that the FP-TMD increases the lipid order at all positions, which has a greater lipid ordering effect than the sum of the FP or TMD alone, and this effect reaches deeper into the membranes. Although HA-mediated membrane fusion is pH dependent, this combined effect is observed at both pH 5 and pH 7. In addition to increasing lipid order, multiple components are found for 5PC at increased concentration of FP-TMD, indicating that distinct domains are induced. However, the mutation of Gly1 in the FP and L187 in the TMD eliminates the perturbations, consistent with their fusogenic phenotypes. Electron spin resonance on spin-labeled peptides confirms these observations. We suggest that this interaction may provide a driving force in different stages of membrane fusion: initialization, transition from hemifusion stalk to transmembrane contact, and fusion pore formation.  相似文献   

4.
The hypothesis whether alpha-latrotoxin (LTX) could directly regulate the secretory machinery was tested in pancreatic beta cells using combined techniques of membrane capacitance (Cm) measurement and Ca2+ uncaging. Employing ramp increase in [Ca2+]i to stimulate exocytosis, we found that LTX lowers the Ca2+ threshold required for exocytosis without affecting the size of the readily releasable pool (RRP). The burst component of exocytosis in response to step-like [Ca2+]i increase generated by flash photolysis of caged Ca2+ was also speeded up by LTX treatment. LTX increased the maximum rate of exocytosis compared with control responses with similar postflash [Ca2+]i and shifted the Ca2+ dependence of the exocytotic machinery toward lower Ca2+ concentrations. LTXN4C, a LTX mutant which cannot form membrane pores or penetrate through the plasma membrane but has similar affinity for the receptors as the wild-type LTX, mimicked the effect of LTX. Moreover, the effects of both LTX and LTXN4C) were independent of intracellular or extracellular Ca2+ but required extracellular Mg2+. Our data propose that LTX, by binding to the membrane receptors, sensitizes the fusion machinery to Ca2+ and, hence, may permit release at low [Ca2+]i level. This sensitization is mediated by activation of protein kinase C.  相似文献   

5.
The fusion peptides of HIV and influenza virus are crucial for viral entry into a host cell. We report the membrane-perturbing and structural properties of fusion peptides from the HA fusion protein of influenza virus and the gp41 fusion protein of HIV. Our goals were to determine: 1), how fusion peptides alter structure within the bilayers of fusogenic and nonfusogenic lipid vesicles and 2), how fusion peptide structure is related to the ability to promote fusion. Fluorescent probes revealed that neither peptide had a significant effect on bilayer packing at the water-membrane interface, but both increased acyl chain order in both fusogenic and nonfusogenic vesicles. Both also reduced free volume within the bilayer as indicated by partitioning of a lipophilic fluorophore into membranes. These membrane ordering effects were smaller for the gp41 peptide than for the HA peptide at low peptide/lipid ratio, suggesting that the two peptides assume different structures on membranes. The influenza peptide was predominantly helical, and the gp41 peptide was predominantly antiparallel beta-sheet when membrane bound, however, the depths of penetration of Trps of both peptides into neutral membranes were similar and independent of membrane composition. We previously demonstrated: 1), the abilities of both peptides to promote fusion but not initial intermediate formation during PEG-mediated fusion and 2), the ability of hexadecane to compete with this effect of the fusion peptides. Taken together, our current and past results suggest a hypothesis for a common mechanism by which these two viral fusion peptides promote fusion.  相似文献   

6.
The fusion peptide of HIV-1 gp41 is formed by the 16 N-terminal residues of the protein. This 16-amino acid peptide, in common with several other viral fusion peptides, caused a reduction in the bilayer to hexagonal phase transition temperature of dipalmitoleoylphosphatidylethanolamine (T(H)), suggesting its ability to promote negative curvature in membranes. Surprisingly, an elongated peptide corresponding to the 33 N-terminal amino acids raised T(H), although it was more potent than the 16-amino acid fusion peptide in inducing lipid mixing with large unilamellar liposomes of 1:1:1 dioleoylphosphatidylethanolamine/dioleoylphosphatidylcholine/choleste rol. The 17-amino acid C-terminal fragment of the peptide can induce membrane fusion by itself, if it is anchored to a membrane by palmitoylation of the amino terminus, indicating that the additional 17 hydrophilic amino acids contribute to the fusogenic potency of the peptide. This is not solely a consequence of the palmitoylation, as a random peptide with the same amino acid composition with a palmitoyl anchor was less potent in promoting membrane fusion and palmitic acid itself had no fusogenic activity. The 16-amino acid N-terminal fusion peptide and the longer 33-amino acid peptide were labeled with NBD. Fluorescence binding studies indicate that both peptides bind to the membrane with similar affinities, indicating that the increased fusogenic activity of the longer peptide was not a consequence of a greater extent of membrane partitioning. We also determined the secondary structure of the peptides using FTIR spectroscopy. We find that the amino-terminal fusion peptide is inserted into the membrane as a beta-sheet and the 17 C-terminal amino acids lie on the surface of the membrane, adopting an alpha-helical conformation. It was further demonstrated with the use of rhodamine-labeled peptides that the 33-amino acid peptide self-associated in the membrane while the 16-amino acid N-terminal peptide did not. Thus, the 16-amino acid N-terminal fusion peptide of HIV inserts into the membrane and, like other viral fusion peptides, lowers T(H). In addition, the 17 consecutive amino acids enhance the fusogenic activity of the fusion peptide presumably by promoting its self-association.  相似文献   

7.
A latrotoxin-like protein isolated from the bovine brain promoted fusion of negatively charged liposomes consisting of phosphatidylcholine, phosphatidylethanolamine, and cardiolipin in a molar ratio of 2:3:5. The fusogenic effect significantly increased at mild acidic pH 6.0 and under denaturation (4 M urea, 0.1% SDS). Using ANS as the fluorescent probe, it was found that hydrophobicity of the latrotoxin-like protein increases along with the fusogenic activity. We hypothesize the existence in the protein molecule of conformational changes promoting the fusion, and the possible participation of the protein in neurosecretion processes.Neirofiziologiya/Neurophysiology, Vol. 25, No. 5, pp. 329–334, September–October, 1993.  相似文献   

8.
The pH-induced conformational change of influenza virus hemagglutinin (HA) has been investigated by calculating the change of electrostatic energy of the fragment of HA2 upon pH change. The average charge and electrostatic free energy are calculated as a function of pH for the fusion peptide (residues 1-20 of HA2) and the polypeptide of residues 54-77 of HA2 by using the finite difference Poisson-Boltzmann method. It is found that as pH decreases from 8 to 5, the electrostatic free energy of the fusogenic state is lowered by approximately 2 kcal/mol and the fusogenic state is less ionized compared to that of the native state for both polypeptides. For the fusion peptide at the fusogenic state, most of ionizable residues are neutral at acidic pH except Glu-11. For the polypeptide of residues 54-77 at the fusogenic state, most of residues except Glu-74 and His-64 are fully charged between pH 5 and pH 8.  相似文献   

9.
Yang R  Yang J  Weliky DP 《Biochemistry》2003,42(12):3527-3535
In the HIV-1 gp41 and other viral fusion proteins, the minimal oligomerization state is believed to be trimeric with three N-terminal fusion peptides inserting into the membrane in close proximity. Previous studies have demonstrated that the fusion peptide by itself serves as a useful model fusion system, at least to the hemifusion stage in which the viral and target cell lipids are mixed. In the present study, HIV-1 fusion peptides were chemically synthesized and cross-linked at their C-termini to form dimers or trimers. C-terminal trimerization is their likely topology in the fusogenic form of the intact gp41 protein. The fusogenicity of the peptides was then measured in an intervesicle lipid mixing assay, and the assay results were compared to those of the monomer. For monomer, dimer, and trimer at peptide strand/lipid mol ratios between 0.0050 and 0.010, the final extent of lipid mixing for the dimer and trimer was 2-3 times greater than for the monomer. These data suggest that the higher local concentration of peptide strands in the cross-linked peptides enhances fusogenicity and that oligomerization of the fusion peptide in gp41 may enhance the rate of viral/target cell membrane fusion. For gp41, this effect is in addition to the role of the trimeric coiled-coil structure in bringing about apposition of viral and target cell membranes. NMR measurements on the membrane-associated dimeric fusion peptide were consistent with an extended structure at Phe-8, which is the same as has been observed for the membrane-bound monomer in the same lipid composition.  相似文献   

10.
The intestinal brush-border membrane contains one or several membrane proteins that mediate fusion and/or aggregation of small unilamellar egg phosphatidylcholine vesicles. The fusion is accompanied by a partial loss of vesicle contents. Proteolytic treatment of the brush-border membrane with proteinase K abolishes the fusogenic property. This finding suggests that the fusogenic activity is associated with a membrane protein exposed on the external or luminal side of the brush-border membrane. Activation of intrinsic proteinases of the brush-border membrane liberates water-soluble proteins (supernate proteins). These proteins behave in an analogous way to intact brush-border membrane vesicles; they induce fusion of egg phosphatidylcholine vesicles and render the egg phosphatidylcholine bilayer permeable to ions and small molecules (Mr less than or equal to 5000). Furthermore, supernate proteins mediate phosphatidylcholine and cholesterol exchange between two populations of small, unilamellar phospholipid vesicles. Supernate proteins are fractionated on Sephadex G-75 SF yielding three protein peaks of apparent Mr greater than or equal to 70,000, Mr = 22,000 and Mr = 11,500. All three protein fractions show similar phosphatidylcholine-exchange activity, but they differ in their effects on the stability of egg phosphatidylcholine vesicles. The protein fraction with an apparent Mr greater than or equal to 70,000 has the highest fusogenic activity while the protein fraction of apparent Mr = 11,500 appears to be most effective in rendering the egg phosphatidylcholine bilayer permeable.  相似文献   

11.
BACKGROUND: Hybrids obtained by fusion between tumour cells (TC) and dendritic cells (DC) have been proposed as anti-tumour vaccines because of their potential to combine the expression of tumour-associated antigens with efficient antigen presentation. The classical methods used for fusion, polyethylene glycol (PEG) and electrofusion, are cytotoxic and generate cell debris that can be taken up by DC rendering the identification of true hybrids difficult. METHODS: We have established a stable cell line expressing a viral fusogenic membrane glycoprotein (FMG) that is not itself susceptible to fusion. This cell line has been used to generate hybrids and to evaluate the relevance of tools used for hybrid detection. RESULTS: This FMG-expressing cell line promotes fusion between autologous or allogeneic TC and DC in any combination, generating 'tri-parental hybrids'. At least 20% of TC are found to be integrated into hybrids. CONCLUSIONS: It is speculated that this tri-parental hybrid approach offers new possibilities to further modulate the anti-tumour effect of the DC/TC hybrids since it allows the expression of relevant immunostimulatory molecules by appropriate engineering of the fusogenic cell line.  相似文献   

12.
A novel procedure of alpha-latrotoxin (alpha LTX) purification has been developed. Pure alpha LTX has been demonstrated to exist as a very stable homodimer. Such dimers further assemble into tetramers, and Ca(2+), Mg(2+) or higher toxin concentrations facilitate this process. However, when the venom is treated with EDTA, purified alpha LTX loses the ability to tetramerise spontaneously; the addition of Mg(2+) or Ca(2+) restores this ability. This suggests that alphaLTX has some intrinsically bound divalent cation(s) that normally support its tetramerisation. Single-particle cryoelectron microscopy and statistical image analysis have shown that: 1) the toxin has a non-compact, branching structure; 2) the alpha LTX dimers are asymmetric; and 3) the tetramers are symmetric and have a 25 A-diameter channel in the centre. Both alpha LTX oligomers bind to the same receptors in synaptosomes and rat brain sections. To study the effects of the dimers and tetramers on norepinephrine release from rat cerebrocortical synaptosomes, we used the EDTA-treated and untreated toxin preparations. The number of tetramers present in a preparation correlates with alpha LTX pore formation, suggesting that the tetramers are the pore-forming species of alpha LTX. The toxin actions mediated by the pore include: 1) Ca(2+) entry from the extracellular milieu; and 2) passive efflux of neurotransmitters via the pore that occurs independently of Ca(2+). The Ca(2+)-dependent alpha LTX-stimulated secretion conforms to all criteria of vesicular exocytosis but also depends upon intact intracellular Ca(2+) stores and functional phospholipase C (PLC). The Ca(2+)-dependent effect of the toxin is stronger when dimeric alpha LTX is used, indicating that higher receptor occupancy leads to its stronger activation, which contributes to stimulation of neuroexocytosis. In contrast, the Ca(2+)-independent release measured biochemically represents leakage of neurotransmitters through the toxin pore. These results are discussed in relation to the previously published observations.  相似文献   

13.
The influence of cholesterol on divalent cation-induced fusion and isothermal phase transitions of large unilamellar vesicles composed of phosphatidylserine (PS) was investigated. Vesicle fusion was monitored by the terbium/dipicolinic acid assay for the intermixing of internal aqueous contents, in the temperature range 10-40 degrees C. The fusogenic activity of the cations decreases in the sequence Ca2+ greater than Ba2+ greater than Sr2+ much greater than Mg2+ for cholesterol concentrations in the range 20-40 mol%, and at all temperatures. Increasing the cholesterol concentration decreases the initial rate of fusion in the presence of Ca2+ and Ba2+ at 25 degrees C, reaching about 50% of the rate for pure PS at a mole fraction of 0.4. From 10 to 25 degrees C, Mg2+ is ineffective in causing fusion at all cholesterol concentrations. However, at 30 degrees C, Mg2+-induced fusion is observed with vesicles containing cholesterol. At 40 degrees C, Mg2+ induces slow fusion of pure PS vesicles, which is enhanced by the presence of cholesterol. Increasing the temperature also causes a monotonic increase in the rate of fusion induced by Ca2+, Ba2+ and Sr2+. The enhancement of the effect of cholesterol at high temperatures suggests that changes in hydrogen bonding and interbilayer hydration forces may be involved in the modulation of fusion by cholesterol. The phase behavior of PS/cholesterol membranes in the presence of Na+ and divalent cations was studied by differential scanning calorimetry. The temperature of the gel-liquid crystalline transition (Tm) in Na+ is lowered as the cholesterol content is increased, and the endotherm is broadened. Addition of divalent cations shifts the Tm upward, with a sequence of effectiveness Ba2+ greater than Sr2+ greater than Mg2+. The Tm of these complexes decreases as the cholesterol content is increased. Although the transition is not detectable for cholesterol concentrations of 40 and 50 mol% in the presence of Na+, Sr2+ or Mg2+, the addition of Ba2+ reveals endotherms with Tm progressively lower than that observed at 30 mol%. Although the presence of cholesterol appears to induce an isothermal gel-liquid crystalline transition by decreasing the Tm, this change in membrane fluidity does not enhance the rate of fusion, but rather decreases it. The effect of cholesterol on the fusion of PS/phosphatidylethanolamine (PE) vesicles was investigated by utilizing a resonance energy transfer assay for lipid mixing. The initial rate of fusion of PS/PE and PS/PE/cholesterol vesicles is saturated at high Mg2+ concentrations. With Ca2+, saturation is not observed for cholesterol-containing vesicles.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Vesicular transfer of membrane components to bovine epididymal spermatozoa   总被引:1,自引:0,他引:1  
Epididymosomes (apocrine secreted epididymal vesicles) are assumed to play a crucial role in sperm maturation. Our aim has been to analyze the fusogenic properties of bovine epididymosomes and their involvement in the transfer of membrane components (lipids, proteins, plasma membrane Ca2+-ATPase 4 [PMCA4]) into bovine sperm. The fusogenic properties of epididymosomes with spermatozoa were investigated in vitro by using octadecyl rhodamine-B (R18)-labeled epididymosomes. Spermatozoa isolated from the epididymal caput showed a higher fusion rate than those taken from the cauda. The fusion rate was dependent on pH and time. Furthermore, the lipid and protein content in spermatozoa changed during epididymal transit and after in vitro fusion with epididymosomes. Following the in vitro fusion of caput spermatozoa with epididymosomes, the cholesterol/total phospholipid ratio of the sperm plasma membrane decreased. The effect was comparable with the cholesterol/total phospholipid ratio of native cauda spermatozoa. Co-incubation experiments of spermatozoa with biotinylated epididymosomes additionally revealed that proteins were transferred from epididymosomes to sperm. To examine the potential transfer of epididymis-derived PMCA4 to spermatozoa, immunofluorescence analysis and Ca2+-ATPase activity assays were performed. In caput spermatozoa, the PMCA4 fluorescence signal was slightly raised and Ca2+-ATPase activity increased after in vitro fusion. Thus, our experiments indicate significant changes in the lipid and protein composition of epididymal sperm following interaction with epididymosomes. Moreover, our results substantiate the presumption that PMCA4 is transferred to spermatozoa via epididymosomes.  相似文献   

15.
We have studied the internalization of targeted fusogenic liposome content to leukemic T cells (CEM) in vitro. We describe a method for the covalent coupling of T101 antibody to the surface of liposomes and the incorporation of fusogenic viral protein into the liposome membrane. Hygromycin B, an impermeant inhibitor of protein synthesis, was encapsulated in the targeted fusogenic liposomes and delivered directly to the cytoplasm of leukemic T cells by fusion between the two membranes. The cytotoxic effect was measured by [3H]thymidine incorporation. We show that CEM are rapidly and specifically killed by the drug encapsulated in the targeted fusogenic liposomes. This effect is due to the binding of the liposome by means of the antibody and then to the fusion of the liposome with the targeted cell membrane, mediated by F protein.  相似文献   

16.
We have studied a group of fusion peptides of influenza hemagglutinin in which the N-terminal amino acid, Gly (found in the wild-type peptide), has been systematically substituted with Ala, Ser, Val, or Glu. The activity of the intact hemagglutinin protein with these same substitutions has already been reported. As a measure of the extent of modulation of intrinsic membrane curvature by these peptides, we determined their effects on the polymorphic phase transition of dipalmitoleoylphosphatidylethanolamine. The wild-type peptide is the only one that, at pH 5, can substantially decrease the temperature of this transition. This is also the only form in which the intact protein promotes contents mixing in cells. The Ala and Ser mutant hemagglutinins exhibit a hemifusion phenotype, and their fusion peptides have little effect on lipid polymorphism at low pH. The two mutant proteins that are completely fusion inactive are the Val and Glu mutant hemagglutinins. The fusion peptides from these forms significantly increase the polymorphic phase transition temperature at low pH. We find that the effect of the fusion peptides on membrane curvature, as monitored by a shift in the temperature of this polymorphic phase transition, correlates better with the fusogenic activities of the corresponding protein than do measurements of the isotropic (31)P NMR signals or the ability to induce the fusion of liposomes. The inactivity of the hemagglutinin protein with the hydrophobic Val mutation can be explained by the change in the angle of membrane insertion of the helical fusion peptide as measured by polarized FTIR. Thus, the nature of the interactions of the fusion peptides with membranes can, in large part, explain the differences in the fusogenic activity of the intact protein.  相似文献   

17.
The peptide-induced fusion of neutral and acidic liposomes was studied in relation to the amphiphilicities evaluated by alpha-helical contents of peptides by means of a carboxyfluorescein leakage assay, light scattering, a membrane intermixing assay and electron microscopy. An amphipathic mother peptide, Ac-(Leu-Ala-Arg-Leu)3-NHCH3 (4(3], and its derivatives, [Pro6]4(3) (1), [Pro2,6]4(3) (2), and [Pro2,6,10]4(3) (3), which have very similar hydrophobic moments, caused a leakage of contents from small unilamellar vesicles composed of egg yolk phosphatidylcholine and egg yolk phosphatidic acid (3:1). The abilities of the peptides to induce the fusion of the acidic liposomes increased with increasing alpha-helical content: in acidic liposomes the helical contents were in the order of 4(3) greater than 1 greater than 2 greater than 3 (Lee et al. (1989) Chem. Lett., 599-602). Electron microscopic data showed that 1 caused a transformation of the small unilamellar vesicles (20-50 nm in diameter) to large ones (100-300 nm). Based on the fact that these peptides have very similar hydrophobic moments despite of decreasing in the mean residue hydrophobicities to some extent, it was concluded that the abilities of the peptides to induce the fusion of liposomes depend on the extent of amphiphilic conformation evaluated by alpha-helical contents of the peptides in the presence of liposomes. For neutral liposomes of egg yolk phosphatidylcholine, all the proline-containing peptides showed no fusogenic ability but weak leakage abilities, suggesting that the charge interaction between the basic peptides and acidic phospholipid is an important factor to induce the perturbation and fusion of the bilayer.  相似文献   

18.
The ability of lipid asymmetry to regulate Ca(2+)-stimulated fusion between large unilamellar vesicles has been investigated. It is shown that for 100-nm-diameter LUVs composed of dioleoylphosphatidylcholine, dioleoylphosphatidylethanolamine, phosphatidylinositol, and dioleoylphosphatidic acid (DOPC/DOPE/PI/DOPA; 25:60:5:10) rapid and essentially complete fusion is observed by fluorescent resonance energy transfer techniques when Ca2+ (8 mM) is added. Alternatively, for LUVs with the same lipid composition but when DOPA was sequestered to the inner monolayer by incubation in the presence of a pH gradient (interior basic), little or no fusion is observed on addition of Ca2+. It is shown that the extent of Ca(2+)-induced fusion correlates with the amount of exterior DOPA. Further, it is shown that LUVs containing only 2.5 mol % DOPA, but where all the DOPA is in the outer monolayer, can be induced to fuse to the same extent and with the same rate as LUVs containing 5 mol % DOPA. These results strongly support a regulatory role for lipid asymmetry in membrane fusion and indicate that the fusogenic tendencies of lipid bilayers are largely determined by the properties of the monolayers proximate to the fusion interface.  相似文献   

19.
We present a method that makes it possible to trigger, observe, and quantify membrane aggregation and fusion of giant liposomes in microfluidic chambers. Using electroformation from spin-coated films of lipids on transparent indium tin oxide electrodes, we formed two-dimensional networks of closely packed, surface-attached giant liposomes. We investigated the effects of fusogenic agents by simply flowing these molecules into the chambers and analyzing the resulting shape changes of more than 100 liposomes in parallel. We used this setup to quantify membrane fusion by several well-studied mechanisms, including fusion triggered by Ca2+, polyethylene glycol, and biospecific tethering. Directly observing many liposomes simultaneously proved particularly useful for studying fusion events in the presence of low concentrations of fusogenic agents, when fusion was rare and probabilistic. We applied this microfluidic fusion assay to investigate a novel 30-mer peptide derived from a recently identified human receptor protein, B5, that is important for membrane fusion during the entry of herpes simplex virus into host cells. This peptide triggered fusion of liposomes at an approximately 6 times higher probability than control peptides and caused irreversible interactions between adjacent membranes; it was, however, less fusogenic than Ca2+ at comparable concentrations. Closely packed, surface-attached giant liposomes in microfluidic chambers offer a method to observe membrane aggregation and fusion in parallel without requiring the use of micromanipulators. This technique makes it possible to characterize rapidly novel fusogenic agents under well-defined conditions.  相似文献   

20.
Treatment of erythrocyte ghosts in random positions in a suspension with membrane fusion-inducing direct current electric field pulses causes the membranes to become fusogenic. Significant fusion yields are observed if the membranes are dielectrophoretically aligned into membrane-membrane contact with a weak alternating electric field as much as 5 min after the application of the pulses. This demonstrates that a long-lived membrane structural alteration is involved in this fusion mechanism. Other experiments indicate that the areas on the membrane which become fusogenic after treatment with the pulses may be very highly localized. The locations of these fusogenic areas coincide with where the trans-membrane electric field strength was greatest during the pulse. The fusogenic membrane alteration, or components thereof, in these areas laterally diffuses very slowly or not at all, or, to be fusogenic, must be present at concentrations in the membrane above a certain threshold. The loss of soluble 0.9-3-nm-diameter fluorescent probes from resealed cytoplasmic compartments of randomly positioned erythrocyte ghosts occurs through electric field pulse-induced pores only during a pulse but not between pulses or after a train of pulses if the probe diameter is 1.2 nm or greater. For a given pulse treatment of membranes in random positions in suspensions, an increase in ionic strength of the medium results in (a) a decrease in loss during the pulse, (b) no difference in loss between pulses, and (c) an increase in fusion yield when membrane-membrane contact is established. The latter two results (b and c) are incompatible with a fusion mechanism that proposes a simple relationship between electric field-induced pores and fusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号