首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Actin-gelsolin interactions. Evidence for two actin-binding sites   总被引:26,自引:0,他引:26  
We have used a fluorescence enhancement of actin labeled with 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-actin) to study the interactions between rabbit skeletal muscle G-actin and either purified platelet gelsolin or a 130-kDa binary complex of platelet actin and gelsolin that is stable in EGTA and can be purified from human platelets. We have delineated four binding reactions. The exchange of Mg2+ for Ca2+ on the divalent cation-binding site of NBD-actin gives a small fluorescence increase. Binding of monomeric NBD-actin to the binary complex results in a 2.5-fold increase in the emission at 530 nm in the presence of Ca2+ and a 2-fold increase in the presence of EGTA. Titration experiments show that, under nonpolymerizing conditions, one additional actin is bound to the 130-kDa species to form a ternary complex. This binding is Ca2+-sensitive. Purified gelsolin does not appear to bind to NBD-actin in the presence of EGTA, as determined by fluorescence enhancement, gel filtration, or sedimentation measurements, but the addition of Ca2+ promotes rapid binding with a 1.6-1.7-fold enhancement of the emission intensity. A comparison of the relative fluorescence yields/NBD-actin molecule for a binary complex of gelsolin and one NBD-actin, a ternary complex of gelsolin and two NBD-actin molecules, and a ternary complex with an unlabeled actin in the EGTA-stable site and an NBD-actin in the second site indicates that the first NBD-actin, in the EGTA-stable site, does not give a fluorescence increase on binding but the second one does. Finally, we have demonstrated that one molecule of 45Ca2+ is "trapped" when the binary complex is formed and cannot be removed by EGTA. A summary model for these reactions is presented that indicates the interaction between actin and gelsolin is not a freely reversible Ca2+-controlled reaction.  相似文献   

2.
We have studied the interactions between plasma gelsolin and actin: firstly the complex formation between both proteins, secondly the effects of gelsolin and its complexes on G-actin polymerization and F-actin fragmentation. Complex formation has been studied by high-performance gel permeation chromatography; plasma gelsolin alone elutes at an Mr of about 77000 and a Stokes radius of 3.7 nm; complex formation occurs in the presence of Ca2+: by chromatography in the presence of EGTA, a binary complex is obtained with an Mr of 134000 and a Stokes radius of 4.7 nm; and by chromatography in the presence of Ca2+, a ternary complex is obtained with an Mr of 173000 and a Stokes radius of 5.2 nm. The binary complex is EGTA-stable. In relation to this stability of the binary complex, the depolymerizing function of gelsolin is not reversed upon chelation of Ca2+. The effects of plasma gelsolin and its complexes on both G-actin polymerization and F-actin fragmentation, and their Ca2+ dependence have been examined by viscometry and electron microscopy. The main conclusions of these studies are the following: the fast processes are the formation of ternary complex, which acts as a heteronucleus for G-actin polymerization, and the severing function of gelsolin, these fast processes are Ca2+-dependent; the slow processes are related to the capping ability of gelsolin or its complexes and are Ca2+-independent.  相似文献   

3.
Gelsolin is a 90,000-mol-wt protein with two actin and two high affinity calcium-binding sites that can form complexes with Ca2+ ions and monomeric actin. These complexes will nucleate filament growth and cap the barbed end of filaments, but will not fragment F-actin. Uncomplexed gelsolin severs F-actin. (Bryan, J., and L. M. Coluccio, 1985, J. Cell Biol., 101:1236-1244). These associations with actin are modulated by Ca2+. We have purified and characterized monoclonal antibodies that recognize Ca2+-induced conformational changes in human platelet gelsolin (G) and human plasma brevin (B), a closely related protein. Two hybridomas, 8G5 and 4F8, were adapted to growth in serum-free medium. 8G5 was found to secrete an IgG; 4F8 secretes an IgA. On immunoblots, both antibodies gave a strong reaction if Ca2+ was present, but gave barely detectable reactions if EGTA was used. 8G5 IgG-Sepharose columns retained gelsolin (as GCa2) or brevin (as BCa2) in 0.1 mM CaCl2 containing buffers, but released these molecules when eluted with 4 mM EGTA. 8G5 IgG-Sepharose columns also retained gelsolin-actin-Ca2+ complexes, as GA1Ca2 or higher oligomers from platelet extracts containing 0.1 mM CaCl2. Elution with 4 mM EGTA released material that gel filtration showed to be the EGTA-stable 130,000-mol-wt gelsolin-actin complex, GA1Ca1. The results demonstrate that the 8G5 IgG recognizes a conformation of gelsolin or brevin induced by binding of an easily exchangeable Ca2+ ion. Actin is not required for this conformational change, and the antibody discriminates, for example, GCa2 from G and GCa1. A 4F8 IgA-Sepharose column retained brevin or gelsolin in 0.1 mM CaCl2-containing buffers, but, like the 8G5 IgG, released these molecules when eluted with 4 mM EGTA. The 4F8 IgA column also retained gelsolin or brevin-actin-Ca2+ complexes, for example, as BA1Ca2, or higher oligomers, in 0.1 mM CaCl2. No protein was recovered, however, upon elution with 4 mM EGTA, but elution with 0.1 M glycine-HCl, pH 2.8, released bound brevin or gelsolin and actin. Similarly, preformed brevin-actin-Ca2+ complex, equilibrated with EGTA, was retained by 4F8 IgA-Sepharose. The results demonstrate that the 4F8 IgA recognizes a conformation of gelsolin or brevin that is maintained and presumably induced by binding of a nonexchangeable Ca2+ ion that is trapped in the complex.  相似文献   

4.
Extracts of human platelets contain a 90,000-Da protein that is retained by DNase I-agarose in the presence of Ca2+. The 90-kDa protein, tightly complexed with platelet actin, can be eluted from DNase I-agarose by ethylene glycol bis(beta-aminoethyl ether)-N, N,N',N'-tetraacetic acid (EGTA). The platelet 90-kDa protein is immunologically related to rabbit macrophage gelsolin. The 90-kDa protein-actin complex was purified from platelet extracts using DEAE-Sephacel, Sephadex G-200, and hydroxyapatite and is stable in EGTA and 0.8 M KCl. The purified complex will modulate the assembly of fluorescently labeled 7-chloro-4-nitrobenzo-2-oxa-1, 3-diazole-actin in the presence of both Ca2+ and EGTA. In addition, the complex affects the low shear viscosity of F-actin solutions in the presence of both Ca2+ and EGTA. Finally, the complex increases the critical concentration for actin assembly about 4-fold. The results are consistent with a strong preferential binding to or capping of the barbed end of actin filaments by the complex in either Ca2+ or EGTA.  相似文献   

5.
《The Journal of cell biology》1985,101(4):1236-1244
Platelet gelsolin (G), a 90,000-mol-wt protein, binds tightly to actin (A) and calcium at low ionic strength to form a 1:2:2 complex, GA2Ca2 (Bryan, J., and M. Kurth, 1984, J. Biol. Chem. 259:7480-7487). Chromatography of actin and gelsolin mixtures in EGTA-containing solutions isolates a stable binary complex, GA1Ca1 (Kurth, M., and J. Bryan, 1984, J. Biol. Chem. 259:7473-7479). The effects of platelet gelsolin and the binary gelsolin-actin complex on the depolymerization kinetics of rabbit skeletal muscle actin were studied by diluting pyrenyl F-actin into gelsolin or complex-containing buffers; a decrease in fluorescence represents disassembly of filaments. Dilution of F- actin to below the critical concentration required for filament assembly gave a biphasic depolymerization curve with both fast and slow components. Dilution into buffers containing gelsolin, as GCa2, increased the rate of depolymerization and gave a first order decay. The rate of decrease in fluorescence was found to be gelsolin concentration dependent. Electron microscopy of samples taken shortly after dilution into GCa2 showed a marked reduction in filament length consistent with filament severing and an increase in the number of ends. Conversely, occupancy of the EGTA-stable actin-binding site by an actin monomer eliminated the severing activity. Dilution of F-actin into the gelsolin-actin complex, either as GA1Ca1 or GA1Ca2, resulted in a decrease in the rate of depolymerization that was consistent with filament end capping. This result indicates that the EGTA-stable binding site is required and must be unoccupied for filament severing to occur. The effectiveness of gelsolin, GCa2, in causing filament depolymerization was dependent upon the ionic conditions: in KCI, actin filaments appeared to be more stable and less susceptible to gelsolin, whereas in Mg2+, actin filaments were more easily fragmented. Finally, a comparison of the number of kinetically active ends generated when filaments were diluted into gelsolin versus the number formed when gelsolin can function as a nucleation site suggests that gelsolin may sever more than once. The data are consistent with a mechanism where gelsolin, with both actin-binding sites unoccupied, can sever but not cap F-actin. Occupancy of the EGTA-stable binding site yields a gelsolin-actin complex that can no longer sever filaments, but can cap filament ends.  相似文献   

6.
This paper documents the reversible appearance of high-affinity complexes of profilin and gelsolin with actin in extracts of platelets undergoing activation and actin assembly. Sepharose beads coupled to either monoclonal anti-gelsolin antibodies or to polyproline were used to extract gelsolin and profilin, respectively, from EGTA-containing platelet extracts and determine the proportion of these molecules bound to actin with sufficient affinity to withstand dilution (high-affinity complexes). Resting platelets (incubated for 30 min at 37 degrees C after gel filtration) contained nearly no high-affinity actin/gelsolin or actin/profilin complexes. Thrombin, within seconds, caused quantitative conversion of platelet profilin and gelsolin to high-affinity complexes with actin, but these complexes were not present 5 min after stimulation. The calcium-dependent actin filament-severing activity of platelet extracts, a function of free gelsolin, fell in concert with the formation of EGTA-stable actin/gelsolin complexes, and rose when the adsorption experiments indicated that free gelsolin was restored. The dissociation of high-affinity complexes was temporally correlated with the accumulation of actin in the Triton-insoluble cytoskeleton.  相似文献   

7.
Y K Doi  M Banba  A Vertut-Do? 《Biochemistry》1991,30(23):5769-5777
The interaction of pig plasma gelsolin (G) and actin (A) was examined by using photoreactive 4-maleimidobenzophenone-actin (BPM-actin) in which BPM was previously conjugated to Cys-374 of actin through the maleimide moiety. In the presence of micromolar [Ca2+], the major cross-linked product observed after irradiation of the mixture of gelsolin (82 kDa) and actin (42 kDa) had an apparent molecular mass of 130 kDa although gelsolin predominantly existed in the form of an A2G complex (170 kDa). No cross-linked product was detected in the absence of Ca2+. BPM-actin itself did not give any cross-linked product. By use of fluorescent-labeled gelsolin, the cross-linked 130 kDa was shown to be an AG complex. The cross-linked complex was also formed from the A2G complex after removal of Ca2+ by [ethylenebis-(oxyethylenenitrilo)]tetraacetic acid (EGTA) followed by irradiation, indicating that it was the EGTA-resistant AG complex that was cross-linked. The results show that Cys-374 at the C-terminal segment of actin in the EGTA-resistant AG complex is 9-10 A apart from gelsolin. Furthermore, it was shown that the EGTA-resistant actin molecule once incorporated in the A2G complex did not exchange with free actin in the presence of Ca2+. This was also supported by the effect of phosphatidylinositol 4,5-bisphosphate, which did not dissociate the EGTA-resistant actin molecule from the A2G complex in the presence of Ca2+, but did after removal of Ca2+.  相似文献   

8.
In vitro Ca++ activates gelsolin to sever F-actin and form a gelsolin-actin (GA) complex at the+end of F-actin that is not dissociated by ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) but is separated by EGTA+PIP/PIP2. The gelsolin blocks the+end on the actin filament, but the-end of the filament can still initiate actin polymerization. In thrombin activated platelets, evidence suggests that severing of F-actin by gelsolin increases GA complex, creates one-end actin nucleus and one cryptic+end actin nucleus per cut, and then dissociates to yield free+ends to nucleate rapid actin assembly. We examined the role of F-actin severing in creation and regulation of nuclei and polymerization in polymorphonuclear neutrophils (PMNs). At 2-s intervals after formyl peptide (FMLP) activation of endotoxin free (ETF) PMNs, change in GA complex was correlated with change in+end actin nuclei,-end actin nuclei, and F-actin content. GA complex was quantitated by electrophoretograms of proteins absorbed by antigelsolin from cells lysed in 10 mM EGTA,+end actin nuclei as cytochalasin (CD) sensitive and-end actin nuclei as CD insensitive increases in G-pyrenyl actin polymerization rates induced by the same PMNs, and F-actin content by NBDphallacidin binding to fixed cells. Thirty three percent of gelsolin was in GA complex in basal ETF PMNs; from 2-6 s, GA complexes dissociate (low = 15% at 10 s) and sequentially+end nuclei and F-actin content and then-end nuclei increase to a maximum at 10 s. At > s GA complex increase toward basal and + end nuclei and F-actin content returned toward basal. These kinetic data show gelsolin regulates availability of + end nuclei and actin polymerization in FMLP. However, absence of an initial increase in GA complex or - end nucleating activity shows FMLP activation does not cause gelsolin to sever F- or to bind G-actin to create cryptic + end nuclei in PMNs; the results suggest the + nucleus formation is gelsolin independent.  相似文献   

9.
Calcium-dependent proteolysis occurs during platelet aggregation   总被引:18,自引:0,他引:18  
Control and stimulated platelets were analyzed by two-dimensional polyacrylamide gel electrophoresis to determine whether proteins are altered during platelet activation. Platelets were stimulated with thrombin, collagen, or the calcium ionophore A23187, and aggregation was brought about by stirring in the presence of Ca2+. These activated platelets contained at least three polypeptides not found in control platelets: 1) Mr = 200,000, pI between 6.2 and 6.4; 2) Mr = 100,000, pI = 6.3; and 3) Mr = 91,000, pI = 6.1. An additional polypeptide, polypeptide 4, with Mr = 97,000 and pI = 5.9, was present only in platelets activated by thrombin. When aggregation was prevented, either by adding 5 mM ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) to the platelet suspension or by incubating the platelet suspension without stirring, polypeptides 1-3 were not formed. Partial hydrolysis of polypeptides 2 and 4 with Staphylococcus aureus V8 protease yielded distinct sets of peptide hydrolytic fragments. These differed from those produced by the hydrolysis of alpha-actinin, a major platelet protein, which has a molecular weight similar to polypeptides 2 and 4. Polypeptides 1-3 were also produced during incubation of platelet lysates in the presence of Ca2+. Generation of these polypeptides in lysates was prevented either by chelation of Ca2+ with EGTA or by the addition of N-ethylmaleimide, leupeptin, or mersalyl, inhibitors of the calcium-dependent protease. These data show that the calcium-dependent protease is activated during aggregation of platelets by physiological agents and suggest that this protease could have a role in platelet response to stimulation.  相似文献   

10.
Plasma gelsolin formed a very tight 1:2 complex with G-actin in the presence of Ca2+, but no interaction between gelsolin and G-actin was detected in the presence of excess EGTA. However, the 1:2 complex dissociated into a 1:1 gelsolin:actin complex and monomeric actin when excess EGTA was added. Plasma gelsolin bound tightly to the barbed ends of actin filaments and also severed filaments in the presence of Ca2+ and bound weakly to the filament barbed end in the presence of EGTA. The 1:2 gelsolin-actin complex bound to the barbed ends of filaments but did not sever them. By blocking the barbed end of filaments with plasma gelsolin, we determined the critical concentration at the pointed end in 1 mM MgCl2 and 0.2 mM ATP to be 4 microM. The dissociation rate constant for ADP-G-actin from the pointed end was estimated to be about 0.4 s-1 and the association rate constant to be about 5 X 10(4) M-1 s-1. Finally, we obtained evidence that plasma gelsolin accelerates but does not bypass the nucleation step and, therefore, that the concentration of gelsolin does not directly determine the concentration of filaments polymerized in its presence. Thus, gelsolin-capped filaments may not provide an absolutely reliable method for determining the rate constant for the association of ATP-G-actin at the pointed ends of filaments, but a reasonable estimate would be 1 X 10(5) M-1 s-1 in 1 mM MgCl2 and 0.2 mM ATP.  相似文献   

11.
Ca(2+) of 0.3-1.0 microM induces both the exposure of tryptic cleavage sites within the gelsolin molecule inaccessible in the Ca-free conformation, and binding of one actin monomer to the N-terminal half of gelsolin. On the other hand, gelsolin-induced enhancement of pyrene actin fluorescence was observed only above 50 microM Ca(2+), and a ternary actin/gelsolin complex preformed in 200 microM Ca(2+) was stable only above 30 microM Ca(2+). These results provide direct evidence for Ca-induced transitions from closed to open conformation of the gelsolin molecule in the range of 3 x 10(-7) to 10(-6) M Ca(2+). They also suggest that Ca(2+)>10(-5) M is required to stabilize actin-actin contacts in the 2:1 actin/gelsolin complex.  相似文献   

12.
Gelsolin is a calcium binding protein that shortens actin filaments. This effect occurs in the presence but not in the absence of micromolar calcium ion concentrations and is partially reversed following removal of calcium ions. Once two actin molecules have bound to gelsolin in solutions containing Ca2+, one of the actins remains bound following chelation of calcium, so that the reversal of gelsolin's effect cannot be accounted for simply by its dissociation from the ends of the shortened filaments to allow for elongation. In this paper, the interactions with actin of the ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) stable 1:1 gelsolin-actin complexes are compared with those of free gelsolin. The abilities of free or complexed gelsolin to sever actin filaments, nucleate filament assembly, bind to the fast growing (+) filament ends, and lower the filament size distribution in the presence of either Ca2+ or EGTA were examined. The results show that both free gelsolin and gelsolin-actin complexes are highly dependent on Ca2+ concentration when present in a molar ratio to actin less than 1:50. The gelsolin-actin complexes, however, differ from free gelsolin in that they have a higher affinity for (+) filament ends in EGTA and they cannot sever filaments in calcium. The limited reversal of actin-gelsolin binding following removal of calcium and the calcium sensitivity of nucleation by complexes suggest an alternative to reannealing of shortened filaments that involves redistribution of actin monomers and may account for the calcium-sensitive functional reversibility of the solation of actin by gelsolin.  相似文献   

13.
Gelsolin has three actin-binding sites   总被引:21,自引:13,他引:8       下载免费PDF全文
Gelsolin, a Ca2+-modulated actin filament-capping and -severing protein, complexes with two actin monomers. Studies designed to localize binding sites on proteolytic fragments identify three distinct actin-binding peptides. 14NT, a 14-kD fragment that contains the NH2 terminal, will depolymerize F-actin. This peptide forms a 1:1 complex with G-actin which blocks the exchange of etheno-ATP from bound actin. The estimated association and dissociation rates for this complex are 0.3 microM-1 s-1 and 1.35 x 10(-6) s-1 which gives a maximum calculated Kd = 4.5 x 10(-12) M. 26NT, the adjacent peptide on the NH2-terminal half of gelsolin, binds to both G- and F-actin. This fragment has little or no intrinsic severing activity and will bind to F-actin to nearly stoichiometric ratios. The interactions of 14NT and 26NT with actin are largely Ca2+ independent and one of these sites, probably 14NT, is the EGTA-stable site identified in the intact protein. 41CT, the COOH-terminal half of gelsolin, forms a rapidly reversible 1:1 complex with actin, Kd = 25 nM, that slows but does not block etheno-ATP exchange. This interaction is Ca2+ dependent and is the exchangeable site in the intact protein. One of these sites is hidden in the intact protein, but cleavage into half fragments exposes all three and removes the Ca2+ dependence of severing.  相似文献   

14.
The effect of plasma gelsolin on plant microfilaments and its localization in plant cells were investigated. The results by using ultracentrifugation and electron microscopy showed that plant microfilaments could be severed into shorter fragments by gelsolin in a Ca2+-dependent manner. By measuring the binding ability of plasma gelsolin to pollen actin using the method of immunoprecipitation, it was shown that pollen actin could bind gelsolin at a ratio of 2.0±0.21 in the presence of Ca2+. Addition of EGTA could disassociate the actin-gelsolin complexes, reducing the ratio to 1.2±0.23, and the addition of PIP2 could further reduce the ratio to 0.8±0.1. The results indicate that plant actin has similar binding properties with plasma gelsolin as that of animal actin. By Western blotting we identified the existence of gelsolin in lily pollen. The results of immunolo-calization of gelsolin in pollen and pollen tube showed that gelsolin was mainly localized at the germinal furrow in pollen grains and at the cytoplasm in pollen tube, especially in the tip region.  相似文献   

15.
A re-evaluation of cytoplasmic gelsolin localization   总被引:10,自引:6,他引:4       下载免费PDF全文
Gelsolin is a 90,000-mol-wt Ca2+-binding, actin-associated protein that can nucleate actin filament growth, sever filaments, and cap barbed filament ends. Brevin is a closely related 92,000-mol-wt plasma protein with similar properties. Gelsolin has been reported to be localized on actin filaments in stress fibers, in cardiac and skeletal muscle I-bands, and in cellular regions where actin filaments are known to be concentrated. Previous localization studies have used sera or antibody preparations that contain brevin. Using purified brevin-free IgG and IgA monoclonal antibodies or affinity-purified polyclonal antibodies for gelsolin and brevin, we find no preferential stress fiber staining in cultured human fibroblasts or I-band staining in isolated rabbit skeletal muscle sarcomeres. Cardiac muscle frozen sections show no pronounced I-band staining, except in local areas where brevin may have penetrated from adjacent blood vessels. Spreading platelets show endogenous gelsolin localized at the cell periphery, in the central cytoplasmic mass and on thin fibers that radiate from the central cytoplasm. Addition of 3-30 micrograms/ml of brevin to the antibodies restores intense stress fiber and I-band staining. We see no evidence for large-scale severing and removal of filaments in stress fibers in formaldehyde-fixed, acetone-permeabilized cells even at brevin concentrations of 30 micrograms/ml. The added brevin or brevin antibody complex binds to actin filaments and is detected by the fluorescently tagged secondary antibody. Brevin binding occurs in either Ca2+ or EGTA, but is slightly more intense in EGTA suggesting some severing and filament removal may occur in Ca2+. The I-band staining is limited to the region where actin and myosin do not overlap. In addition, brevin does not appear to bind at the Z-line. A comparison of cells double-labeled with fluorescein-phallotoxin, exogenous brevin, and a monoclonal antibody, detected with a rhodamine-labeled secondary antibody, shows almost complete co-localization of F-actin with the brevin-gelsolin-binding sites. A major exception is in the area of the adhesion plaque. A quantitative comparison of the fluorescein-rhodamine fluorescence intensities along a stress fiber and into the adhesion plaque shows that the fluorescein signal, associated with F-actin, increases while the rhodamine signal decreases. We infer that exogenous brevin or endogenous gelsolin can bind to and potentially sever most actin filaments, but that actin-associated proteins in the adhesion plaque can prevent binding and severing.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
The fraction of polymerized actin in human blood neutrophils increases after exposure to formyl-methionyl-leucyl-phenylalanine (fmlp), is maximal 10 s after peptide addition, and decreases after 300 s. Most of the gelsolin (85 +/- 11%) in resting ficoll-hypaque (FH)-purified neutrophils is in an EGTA resistant, 1:1 gelsolin-actin complex, and, within 5 s after 10(-7) M fmlp activation, the amount of gelsolin complexed with actin decreases to 42 +/- 12%. Reversal of gelsolin binding to actin occurs concurrently with an increase in F-actin content, and the appearance of barbed-end nucleating activity. The rate of dissociation of EGTA resistant, 1:1 gelsolin-actin complexes is more rapid in cells exposed to 10(-7) M fmlp than in cells exposed to 10(-9) M fmlp, and the extent of dissociation 10 s after activation depends upon the fmlp concentration. Furthermore, 300 s after fmlp activation when F-actin content is decreasing, gelsolin reassociates with actin as evidenced by an increase in the amount of EGTA resistant, 1:1 gelsolin-actin complex. Since fmlp induces barbed end actin polymerization in neutrophils and since in vitro the gelsolin-actin complex caps the barbed ends of actin filaments and blocks their growth, the data suggests that in FH neutrophils fmlp-induced actin polymerization could be initiated by the reversal of gelsolin binding to actin and the uncapping of actin filaments or nuclei. The data shows that formation and dissociation of gelsolin-actin complexes, together with the effects of other actin regulatory proteins, are important steps in the regulation of actin polymerization in neutrophils. Finally, finding increased amounts of gelsolin-actin complex in basal FH cells and dissociation of the complex in fmlp-activated cells suggests a mechanism by which fmlp can cause actin polymerization without an acute increase in cytosolic Ca++.  相似文献   

17.
The dynamics of the actin cytoskeleton depends upon the unique constellation of ac- tin-binding proteins (ABPs), as well as their spatial distribution and local activation. However, the identification and characterization of actin-binding proteins in plant cells are still limited. At pre- sent, only a few plant ABPs have been identified in plant tissues, including profilin, ADF/cofilin, fimbrin, villin and several myosins. Compared with that in animals, there is still a long way for us …  相似文献   

18.
The rate of association of actin with gelsolin was measured at various Ca2+ and ATP concentrations. The fraction of Ca2+-activated gelsolin was determined by quantitative evaluation of the association rates thereby assuming that Ca2+-binding gelsolin associates with actin and Ca2+-free gelsolin does not. A plot of the fraction of Ca2+-activated gelsolin vs. the free Ca2+ concentration revealed a sigmoidal shape suggesting that co-operative binding of Ca2+ ions is required for activation of gelsolin. A good fit of the experimental data by calculated binding curves was obtained if two Ca2+ ions were assumed to bind to actin in a highly co-operative manner. ATP decreased the rate of association of gelsolin with actin and bound to gelsolin at a low affinity (Kd = 32 microm for Ca2+-free and Kd = 400 microm for Ca2+-activated gelsolin). In contrast, a 1 : 1 gelsolin-actin complex was found to be activated for association with actin by a single Ca2+ ion in a non-co-operative manner.  相似文献   

19.
Exposure of cryptic actin filament fast growing ends (barbed ends) initiates actin polymerization in stimulated human and mouse platelets. Gelsolin amplifies platelet actin assembly by severing F-actin and increasing the number of barbed ends. Actin filaments in stimulated platelets from transgenic gelsolin-null mice elongate their actin without severing. F-actin barbed end capping activity persists in human platelet extracts, depleted of gelsolin, and the heterodimeric capping protein (CP) accounts for this residual activity. 35% of the approximately 5 microM CP is associated with the insoluble actin cytoskeleton of the resting platelet. Since resting platelets have an F- actin barbed end concentration of approximately 0.5 microM, sufficient CP is bound to cap these ends. CP is released from OG-permeabilized platelets by treatment with phosphatidylinositol 4,5-bisphosphate or through activation of the thrombin receptor. However, the fraction of CP bound to the actin cytoskeleton of thrombin-stimulated mouse and human platelets increases rapidly to approximately 60% within 30 s. In resting platelets from transgenic mice lacking gelsolin, which have 33% more F-actin than gelsolin-positive cells, there is a corresponding increase in the amount of CP associated with the resting cytoskeleton but no change with stimulation. These findings demonstrate an interaction between the two major F-actin barbed end capping proteins of the platelet: gelsolin-dependent severing produces barbed ends that are capped by CP. Phosphatidylinositol 4,5-bisphosphate release of gelsolin and CP from platelet cytoskeleton provides a mechanism for mediating barbed end exposure. After actin assembly, CP reassociates with the new actin cytoskeleton.  相似文献   

20.
Gelsolin can be purified from horse blood plasma by treating the plasma sequentially with an anion-exchange medium in the presence and then the absence of free Ca2+. The purified gelsolin migrates as a 90-kilodalton protein on electrophoresis in polyacrylamide gels in the presence of sodium dodecyl sulfate. It has an absorption coefficient of 1.4 mL/(mg.cm) and is similar in amino acid composition to other plasma gelsolins. Horse plasma gelsolin has an intrinsic sedimentation coefficient of 4.8S and a Stokes' radius of 3.8 nm. Hydrodynamic calculations suggest it to be a rather globular protein of 75,000 relative mass, a value similar to those calculated for human and pig plasma gelsolins from their amino acid sequences. Horse plasma gelsolin is able to nucleate actin polymerization, i.e., to abolish the lag observed between the initiation of polymerization of monomeric actin by the addition of salts and the rapid elongation phase of actin filament growth. This nucleation activity also results in lower final viscosities of F-actin solutions, as the existence of a larger number of filaments in samples that contain gelsolin requires that their average length be shorter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号