首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MHC (major histocompatibility complex) class I molecules bind intracellular virus-derived peptides in the endoplasmic reticulum (ER) and present them at the cell surface to cytotoxic T lymphocytes. Peptide-free class I molecules at the cell surface, however, could lead to aberrant T cell killing. Therefore, cells ensure that class I molecules bind high-affinity ligand peptides in the ER, and restrict the export of empty class I molecules to the Golgi apparatus. For both of these safeguard mechanisms, the MHC class I loading complex (which consists of the peptide transporter TAP, the chaperones tapasin and calreticulin, and the protein disulfide isomerase ERp57) plays a central role. This article reviews the actions of accessory proteins in the biogenesis of class I molecules, specifically the functions of the loading complex in high-affinity peptide binding and localization of class I molecules, and the known connections between these two regulatory mechanisms. It introduces new models for the mode of action of tapasin, the role of the class I loading complex in peptide editing, and the intracellular localization of class I molecules.  相似文献   

2.
 A peptide-based vaccine must be bound and presented by major histocompatibility complex class I molecules to elicit a CD8+ T-cell response. Because class I HLA molecules are highly polymorphic, it has yet to be established how well a vaccine peptide that stimulates one individual’s CD8+ cytotoxic T lymphocytes will be presented by a second individual’s different class I molecules. Therefore, to facilitate precise comparisons of class I peptide binding overlaps, we uniquely combined hollow-fiber bioreactors and mass spectrometry to assign precise peptide binding signatures to individual class I HLA molecules. In applying this strategy to HLA-B*1501, we isolated milligram quantities of B*1501-bound peptides and mapped them using mass spectrometry. Repeated analyses consistently assign the same peptide binding signature to B*1501; the degree of peptide binding overlap between any two class I molecules can thus be determined through comparison of their peptide signatures. Received: 3 October 1996 / Revised: 20 November 1996  相似文献   

3.
The peptide repertoire presented on human leukocyte antigen (HLA) class I molecules is largely determined by the structure of the peptide binding groove. It is expected that the molecules having similar grooves (i.e., belonging to the same supertype) might present similar/overlapping peptides. However, the extent of promiscuity among HLA class I ligands remains controversial: while in many studies T cell responses are detected against epitopes presented by alternative molecules across HLA class I supertypes and loci, peptide elution studies report minute overlaps between the peptide repertoires of even related HLA molecules. To get more insight into the promiscuous peptide binding by HLA molecules, we analyzed the HLA peptide binding data from the large epitope repository, Immune Epitope Database (IEDB), and further performed in silico analysis to estimate the promiscuity at the population level. Both analyses suggest that an unexpectedly large fraction of HLA ligands (>50%) bind two or more HLA molecules, often across supertype or even loci. These results suggest that different HLA class I molecules can nevertheless present largely overlapping peptide sets, and that “functional” HLA polymorphism on individual and population level is probably much lower than previously anticipated.  相似文献   

4.
MHC class I molecules devoid of peptide are expressed on the cell surface of the mouse mutant lymphoma cell line RMA-S upon culture at reduced temperature. Empty class I molecules are thermolabile at the cell surface and in detergent lysates, but can be stabilized by the addition of presentable peptide; peptide binding appears to be a rapid process. Furthermore, class I molecules on the surface of RMA-S (H-2b haplotype) cells cultured at 26 degrees C can efficiently and specifically bind iodinated peptide presented by H-2Kb. Binding of iodinated peptide is also observed at a lower level for nonmutant cells (RMA) cultured at 26 degrees C. These experiments underscore the role for peptide in maintenance of the structure of class I molecules and, more importantly, provide two assay systems to study the interactions of peptides with MHC class I molecules independent of the availability of T cells that recognize a particular peptide-MHC class I complex.  相似文献   

5.
Kim Y  Park B  Cho S  Shin J  Cho K  Jun Y  Ahn K 《PLoS pathogens》2008,4(8):e1000123
Human cytomegalovirus (HCMV) US6 glycoprotein inhibits TAP function, resulting in down-regulation of MHC class I molecules at the cell surface. Cells lacking MHC class I molecules are susceptible to NK cell lysis. HCMV expresses UL18, a MHC class I homolog that functions as a surrogate to prevent host cell lysis. Despite a high level of sequence and structural homology between UL18 and MHC class I molecules, surface expression of MHC class I, but not UL18, is down regulated by US6. Here, we describe a mechanism of action by which HCMV UL18 avoids attack by the self-derived TAP inhibitor US6. UL18 abrogates US6 inhibition of ATP binding by TAP and, thereby, restores TAP-mediated peptide translocation. In addition, UL18 together with US6 interferes with the physical association between MHC class I molecules and TAP that is required for optimal peptide loading. Thus, regardless of the recovery of TAP function, surface expression of MHC class I molecules remains decreased. UL18 represents a unique immune evasion protein that has evolved to evade both the NK and the T cell immune responses.  相似文献   

6.
CTL recognize short peptide fragments presented by class I MHC molecules. In this study, we examined the effect of phosphorylation on TAP transport, binding to class I MHC molecules, and recognition by CTL of peptide fragments from known phosphorylated oncogene proteins or virus phosphoproteins. We show that phosphopeptides can be efficiently transported from the cytosol to the endoplasmic reticulum by the TAP. Furthermore, we show that phosphorylation can have a neutral, negative, or even a positive effect on peptide binding to class I MHC. Finally, we have generated phosphopeptide-specific CTL that discriminate between the phosphorylated and the nonphosphorylated versions of the peptide. We conclude that phosphopeptide-specific CTL responses are likely to constitute a subset of the class I MHC-restricted CTL repertoire in vivo.  相似文献   

7.
Peptide assembly with class I molecules is orchestrated by multiple chaperones including tapasin, which bridges class I molecules with the TAP and is critical for efficient Ag presentation. In this paper, we show that, although constitutive levels of endogenous murine tapasin apparently are sufficient to form stable and long-lived complexes between the human HLA-B*4402 (B*4402) and mouse TAP proteins, this does not result in normal peptide loading and surface expression of B*4402 molecules on mouse APC. However, increased expression of murine tapasin, but not of the human TAP proteins, does restore normal cell surface expression of B*4402 and efficient presentation of viral Ags to CTL. High levels of soluble murine tapasin, which do not bridge TAP and class I molecules, still restore normal surface expression of B*4402 in the tapasin-deficient human cell line 721.220. These findings indicate distinct roles for tapasin in class I peptide loading. First, tapasin-mediated bridging of TAP-class I complexes, which despite being conserved across the human-mouse species barrier, is not necessarily sufficient for peptide loading. Second, tapasin mediates a function which probably involves stabilization of empty class I molecules and which is sensitive to structural compatibility of components within the loading complex. These discrete functions of tapasin predict limitations to the study of HLA molecules across some polymorphic and species barriers.  相似文献   

8.
We have previously shown that the capacity of class I molecules to confer resistance to NK in transfected target cells maps to the Ag-binding site (ABS) of the HLA class I structure. Here we examine the effect of peptide (reagents specific for the ABS) pretreatment on the NK sensitivity of class I+ target cells. Synthetic peptides (10-17 amino acids in length) were used to pretreat C1R target cells expressing either no serologically detectable HLA-A, B class I molecules, or C1R transfectants expressing individual HLA-A or -B locus class I molecules. In each case in which the class I allele had previously been shown to directly bind a given peptide, peptide-pulsing of target cells resulted in increased sensitivity to NK-mediated conjugation and cytolysis. The NK susceptibility of C1R target cells expressing no HLA-A, B class I molecules or the nonprotective HLA-A2.1 or HLA-A2M70 mutant class I molecules was unaffected by pretreatment with HLA-A2-binding peptides. These results support the intimate involvement of the HLA class I ABS and potentially ABS-bound peptides in determining target cell sensitivity to NK. Furthermore, these findings form the basis of an effective screening procedure for discerning peptide class I allele-specific interactions.  相似文献   

9.
Powis SJ 《FEBS letters》2006,580(13):3112-3116
An association between the MHC class II chaperone molecule Invariant chain (Ii) and MHC class I molecules is known to occur, but the basis of the interaction is undetermined. Evidence is presented here that the CLIP region of Ii is involved in this interaction. A peptide encoding residues 91-99 of CLIP (MRMATPLLM) stabilised multiple MHC class I alleles, with the methionine residue at position 99 having a crucial role in binding to H2-K(b), whereas methionine at position 91 also appeared important in binding to RT1-A(a). Ii can also be detected in the class I MHC peptide loading complex. These data provide an explanation for the association of Ii and MHC class I molecules.  相似文献   

10.
RMA-S cells do not express functional TAP, yet they express MHC class I molecules at the cell surface, especially at reduced temperatures (26 degrees C). It is generally assumed that such class I molecules are "empty," devoid of any associated peptide. A radiochemical approach was used to label class I-associated peptides and to determine the extent to which Kb molecules in RMA-S cells are associated with peptides. These studies revealed that at 26 degrees C Kb molecules in RMA-S cells are occupied with self-peptides. Such peptides stably associate with Kb at 26 degrees C but easily dissociate from them at 37 degrees C, suggesting low-affinity interactions between Kb and the associated peptides. At 26 degrees C, at least some of these Kb molecules are stably expressed in a peptide-receptive state on the cell surface, whereas at 37 degrees C they are short lived and are only transiently capable of binding and presenting exogenously supplied OVA 257-264 peptide for presentation to CD8+ Kb-restricted T lymphocytes. Thus contrary to current models of class I assembly in TAP-deficient RMA-S cells, the presumably "empty" molecules are in fact associated with peptides at 26 degrees C. Together, our data support the existence of an alternative mechanism of peptide binding and display by MHC class I molecules in TAP-deficient cells that could explain their ability to present Ag.  相似文献   

11.
ERp57 is a thiol oxidoreductase of the endoplasmic reticulum that appears to be recruited to substrates indirectly through its association with the molecular chaperones calnexin and calreticulin. However, its functions in living cells have been difficult to demonstrate. During the biogenesis of class I histocompatibility molecules, ERp57 has been detected in association with free class I heavy chains and, at a later stage, with a large complex termed the peptide loading complex. This implicates ERp57 in heavy chain disulfide formation, isomerization, or reduction as well as in the loading of peptides onto class I molecules. In this study, we show that ERp57 does indeed participate in oxidative folding of the heavy chain. Depletion of ERp57 by RNA interference delayed heavy chain disulfide bond formation, slowed folding of the heavy chain alpha(3) domain, and caused slight delays in the transport of class I molecules from the endoplasmic reticulum to the Golgi apparatus. In contrast, heavy chain-beta(2)-microglobulin association kinetics were normal, suggesting that the interaction between heavy chain and beta(2) -microglobulin does not depend on an oxidized alpha(3) domain. Likewise, the peptide loading complex assembled properly, and peptide loading appeared normal upon depletion of ERp57. These studies demonstrate that ERp57 is involved in disulfide formation in vivo but do not support a role for ERp57 in peptide loading of class I molecules. Interestingly, depletion of another thiol oxidoreductase, ERp72, had no detectable effect on class I biogenesis, consistent with a specialized role for ERp57 in this process.  相似文献   

12.
The basis for the immune response against intracellular pathogens is the recognition by cytotoxic T lymphocytes of antigenic peptides derived from cytosolic proteins, which are presented on the cell surface by major histocompatibility complex (MHC) class I molecules. The understanding of MHC class I-restricted peptide presentation has recently improved dramatically with the elucidation of the structural basis for the specificity of peptide binding to MHC class I molecules and the identification of proteins encoded in the class II region of the MHC that are putatively involved in the production of peptides and their transport into the endoplasmic reticulum, where they assemble with class I molecules.  相似文献   

13.
Prior to binding to a high affinity peptide and transporting it to the cell surface, major histocompatibility complex class I molecules are retained inside the cell by retention in the endoplasmic reticulum (ER), recycling through the ER-Golgi intermediate compartment and possibly the cis-Golgi, or both. Using fluorescence microscopy and a novel in vitro COPII (ER-to-ER-Golgi intermediate compartment) vesicle formation assay, we find that in both lymphocytes and fibroblasts that lack the functional transporter associated with antigen presentation, class I molecules exit the ER and reach the cis-Golgi. Intriguingly, in wild-type T1 lymphoma cells, peptide-occupied and peptide-receptive class I molecules are simultaneously exported from ER membranes with similar efficiencies. Our results suggest that binding of high affinity peptide and exit from the ER are not coupled, that the major histocompatibility complex class I quality control compartment extends into the Golgi apparatus under standard conditions, and that peptide loading onto class I molecules may occur in post-ER compartments.  相似文献   

14.
Calreticulin is a lectin chaperone of the endoplasmic reticulum (ER). In calreticulin‐deficient cells, major histocompatibility complex (MHC) class I molecules travel to the cell surface in association with a sub‐optimal peptide load. Here, we show that calreticulin exits the ER to accumulate in the ER–Golgi intermediate compartment (ERGIC) and the cis‐Golgi, together with sub‐optimally loaded class I molecules. Calreticulin that lacks its C‐terminal KDEL retrieval sequence assembles with the peptide‐loading complex but neither retrieves sub‐optimally loaded class I molecules from the cis‐Golgi to the ER, nor supports optimal peptide loading. Our study, to the best of our knowledge, demonstrates for the first time a functional role of intracellular transport in the optimal loading of MHC class I molecules with antigenic peptide.  相似文献   

15.
The endoplasmic reticulum protein tapasin is considered to be a class I-dedicated chaperone because it facilitates peptide loading by proposed mechanisms such as peptide editing, endoplasmic reticulum retention of nonpeptide-bound molecules, and/or localizing class I near the peptide source. Nonetheless, the primary functions of tapasin remain controversial as do the relative dependencies of different class I molecules on tapasin for optimal peptide loading and surface expression. Tapasin dependencies have been addressed in previous studies by transfecting different class I alleles into tapasin-deficient LCL721.220 cells and then monitoring surface expression and Ag presentation to T cells. Indeed, by these criteria, class I alleles have disparate tapasin-dependencies. In this study, we report a novel and more direct method of comparing tapasin dependency by monitoring the ratio of folded vs open forms of the different mouse class I heavy chains, L(d), K(d), and K(b). Furthermore, we determine the amount of de novo heavy chain synthesis required to attain comparable expression in the presence vs absence of tapasin. Our findings show that tapasin dramatically improves peptide loading of all three of these mouse molecules.  相似文献   

16.
D R Madden  J C Gorga  J L Strominger  D C Wiley 《Cell》1992,70(6):1035-1048
Cell surface complexes of class I MHC molecules and bound peptide antigens serve as specific recognition elements controlling the cytotoxic immune response. The 2.1 A structure of the human class I MHC molecule HLA-B27 provides a detailed composite image of a co-crystallized collection of HLA-B27-bound peptides, indicating that they share a common main-chain structure and length. It also permits direct visualization of the conservation of arginine as an "anchor" side chain at the second peptide position, which is bound in a potentially HLA-B27-specific pocket and may therefore have a role in the association of HLA-B27 with several diseases. Tight peptide binding to class I MHC molecules appears to result from the extensive contacts found at the ends of the cleft between peptide main-chain atoms and conserved MHC side chains, which also involve the peptide in stabilizing the three-dimensional fold of HLA-B27. The concentration of binding interactions at the peptide termini permits extensive sequence (and probably some length) variability in the center of the peptide, where it is exposed for T cell recognition.  相似文献   

17.
The human cytomegalovirus-encoded US2 glycoprotein targets endoplasmic reticulum-resident major histocompatibility complex (MHC) class I heavy chains for rapid degradation by the proteasome. We demonstrate that the endoplasmic reticulum-lumenal domain of US2 allows tight interaction with class I molecules encoded by the HLA-A locus. Recombinant soluble US2 binds properly folded, peptide-containing recombinant HLA-A2 molecules in a peptide sequence-independent manner, consistent with US2's ability to broadly downregulate class I molecules. The physicochemical properties of the US2/MHC class I complex suggest a 1:1 stoichiometry. These results demonstrate that US2 does not require additional cellular proteins to specifically interact with soluble class I molecules. Binding of US2 does not significantly alter the conformation of class I molecules, as a soluble T-cell receptor can simultaneously recognize class I molecules associated with US2. The lumenal domain of US2 can differentiate between the products of distinct class I loci, as US2 binds several HLA-A locus products while being unable to bind recombinant HLA-B7, HLA-B27, HLA-Cw4, or HLA-E. We did not observe interaction between soluble US2 and either recombinant HLA-DR1 or recombinant HLA-DM. The substrate specificity of US2 may help explain the presence in human cytomegalovirus of multiple strategies for downregulation of MHC class I molecules.  相似文献   

18.
A few cases have been described of antigenic determinants that are broadly presented by multiple class II MHC molecules, especially murine I-E or human DR, in which polymorphism is limited to the beta chain, and the alpha chain is conserved. However, no similar cases have been studied for presentation by class I MHC molecules. Because both domains of the MHC peptide binding site are polymorphic in class I molecules, exploring permissiveness in class I presentation would be of interest, and also such broadly presented antigenic determinants would clearly be useful for vaccine development. We had defined an immunodominant determinant, P18, of the HIV-1 gp160 envelope protein recognized by human and murine CTL. To determine the range of class I MHC molecules that could present this peptide and to determine whether two HIV-1 gp160 Th cell determinants, T1 and HP53, could also be presented by class I MHC molecules, we attempted to generate CTL specific for these three peptides in 10 strains of B10 congenic mice, representing 10 MHC types, and BALB/c mice. P18 was presented by at least four different class I MHC molecules from independent haplotypes (H-2d, p, u, and q to CD8+ CTL. In H-2d and H-2q the presentation was mapped to the D-end class I molecule, and for Dd, a requirement for both the alpha 1 and alpha 2 domains of Dd, not Ld, was found. HP53 was also presented by the same four different class I MHC molecules to CD8+ CTL although at higher concentrations. T1 was presented by class I molecules in three different strains of distinct MHC types (B10.M, H-2f; B10.A, H-2a; and B10, H-2b) to CTL. The CTL specific for P18 and HP53 were shown to be CD8+ and CD4- and to kill targets expressing endogenously synthesized whole gp160 as well as targets pulsed with the corresponding peptide. To compare the site within each peptide presented by the different class I molecules, we used overlapping and substituted peptides and found that the critical regions of each peptide are the similar for all four MHC molecules. Thus, antigenic sites are broadly or permissively presented by class I MHC molecules even without a nonpolymorphic domain as found in DR and I-E, and these sequences may be of broad usefulness in a synthetic vaccine.  相似文献   

19.
Assembly of MHC class I molecules analyzed in vitro   总被引:35,自引:0,他引:35  
A Townsend  T Elliott  V Cerundolo  L Foster  B Barber  A Tse 《Cell》1990,62(2):285-295
Recent evidence suggests that peptide ligands take part in the assembly of class I molecules in living cells. We now describe a simple system for studying class I assembly in vitro. Detergent extracts of the mutant cells RMA-S and .174, in which class I assembly does not occur spontaneously, will support assembly in vitro when specific peptides are added. Peptides stabilize a conformational change in the class I heavy chain and association with beta 2-microglobulin, at concentrations approximately 100-fold lower than required in "peptide feeding" experiments with whole cells. We show that peptides bind class I molecules during assembly and demonstrate that the conformational change induced in the heavy chain is influenced by the concentrations of both peptide and beta 2-microglobulin.  相似文献   

20.
MHC class I molecules usually bind short peptides of 8-10 amino acids, and binding is dependent on allele-specific anchor residues. However, in a number of cellular systems, class I molecules have been found containing peptides longer than the canonical size. To understand the structural requirements for MHC binding of longer peptides, we used an in vitro class I MHC folding assay to examine peptide variants of the antigenic VSV 8 mer core peptide containing length extensions at either their N or C terminus. This approach allowed us to determine the ability of each peptide to productively form Kb/beta2-microglobulin/peptide complexes. We found that H-2Kb molecules can accommodate extended peptides, but only if the extension occurs at the C-terminal peptide end, and that hydrophobic flanking regions are preferred. Peptides extended at their N terminus did not promote productive formation of the trimolecular complex. A structural basis for such findings comes from molecular modeling of a H-2Kb/12 mer complex and comparative analysis of MHC class I structures. These analyses revealed that structural constraints in the A pocket of the class I peptide binding groove hinder the binding of N-terminal-extended peptides, whereas structural features at the C-terminal peptide residue pocket allow C-terminal peptide extensions to reach out of the cleft. These findings broaden our understanding of the inherent peptide binding and epitope selection criteria of the MHC class I molecule. Core peptides extended at their N terminus cannot bind, but peptide extensions at the C terminus are tolerated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号