首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background/Methodology

A significant implication of increasing urbanization is anthropogenic noise pollution. Although noise is strongly associated with disruption of animal communication systems and negative health effects for humans, the study of these consequences at ecologically relevant spatial and temporal scales (termed soundscape ecology) is in early stages of application. In this study, we examined the above- and below-water soundscape of recreational and residential lakes in the region surrounding a large metropolitan area. Using univariate and multivariate approaches we test the importance of large- and local-scale landscape factors in driving acoustic characteristics across an urbanization gradient, and visualize changes in the soundscape over space and time.

Principal Findings

Anthropogenic noise (anthrophony) was strongly predicted by a landcover-based metric of urbanization (within a 10 km radius), with presence of a public park as a secondary influence; this urbanization signal was apparent even in below-water recordings. The percent of hourly measurements exceeding noise thresholds associated with outdoor disturbance was 67%, 17%, and 0%, respectively, for lakes characterized as High, Medium, and Low urbanization. Decreased biophony (proportion of natural sounds) was associated with presence of a public park followed by increased urbanization; time of day was also a significant predictor of biophony. Local-scale (shoreline) residential development was not related to changes in anthrophony or biophony. The patterns we identify are illustrated with a multivariate approach which allows use of entire sound samples and facilitates interpretation of changes in a soundscape.

Conclusions/Significance

As highly valued residential and recreation areas, lakes represent everyday soundscapes important to both humans and wildlife. Our findings that many of these areas, particularly those with public parks, routinely experience sound types and levels associated with disturbance, suggests that urban planners need to account for the effect of increasing development on soundscapes to avoid compromising goals for ecological and human health.  相似文献   

2.
声景生态学以景观中的声音为研究对象, 探讨其在不同时空维度上的分布和变化模式, 从而揭示自然环境、野生动物和人类活动的相互作用关系。本文通过系统检索声景生态学研究的相关文献, 回顾了该学科的研究框架和研究方法, 总结了目前常用的声学指标, 重点归纳了声景生态学的研究内容, 包括声景组成和各组分间的相互作用, 声景的时空格局, 以及声景生态学在生物多样性监测中的应用。目前, 声景监测中存在的问题主要包括监测的生态系统类型和物种类群有限、声学指标效力有待提高等。建议未来着重推进建立系统性的声景监测网络和数据管理平台, 开发和完善音频数据采集、分析方法和评估指标, 并重视声景数据的采集, 将声景视作一种资源进行研究和保护。  相似文献   

3.
声学手段是监测和研究生态系统生物活动规律、评价生态系统健康状况的一种新方法,声景观生态学也是景观生态学的一个新兴研究领域。声景指数是描述复杂的音频数据生态学特征的有效方法,但是,单一的声景指数并不能有效的指示物种的真实丰度。在充分挖掘音频文件时频结构特征的基础上,将遥感领域常用的面向对象图像分割技术引入语谱图分割,并提出了适合于自然界鸟类生物多样性提取的知识规则和斑块统计分析方法。研究实验在杭州植物园的不同区域布点采集音频数据,研究结果表明:鸟类的多样性与地物景观类型和人类活动影响程度密切相关,鸟类叫声的中心频率集中分布在2.5—4.5k Hz之间,最低频率分布在0.67—2.1k Hz之间,最高频率分布在7.6—8.9k Hz之间,人类活动较多的区域,鸟类活动较少且叫声更短促。此外,该方法提取的斑块面积周长比参数,可以定量的反映鸟类叫声的婉转程度。  相似文献   

4.
Scientists are using acoustic monitoring to assess the impact of altered soundscapes on wildlife communities and human systems. In the soundscape ecology field, monitoring and analyses approaches rely on the interdisciplinary intersection of ecology, acoustics, and computer science. Combining theory and practice of each field in the context of Knowledge Discovery in Databases (KDD), soundscape ecologists provide innovative monitoring solutions for ecologically-driven research questions. We propose a soundscape content analysis framework for improved knowledge outcome with assistance of the new multi-label (ML) concept.Here, we investigated the effectiveness of a ML k-nearest neighbor algorithm (ML-kNN) for labeling concurrent soundscape components within a single recording. We manually labeled 1200 field recordings for the presence of soundscape components and extracted ecological acoustic features, audio profile features, and Gaussian-mixture model features for each recording. Then, we tested the ML-kNN algorithm accuracy with well-established metrics adapted to ML learning.We found that seventeen unique acoustic features could predict a set of biophonic, geophonic, and anthrophonic labels for a single field recording with average precision of 0.767. However, certain labels were predicted incorrectly depending on the time of day and co-occurrence of that label with another label, suggesting further refinement is needed to improve the accuracy of predicted labels.Overall, this ML classification approach could enable researchers to label field recordings more quickly and generate an “alert” system for monitoring changes in a specific sound class. Ultimately, the adaptation of the ML algorithm may provide soundscape ecologists with new metadata labels that are searchable in large databases of soundscape field recordings.  相似文献   

5.
  1. Freshwater systems are globally threatened and in need of enhanced monitoring and assessment. We applied soundscape recording and analysis—which presents an opportunity for long-term, high-resolution animal community monitoring and assessment—to a freshwater context to better understand the acoustic diversity and dynamics of these systems.
  2. We recorded the aquatic soundscape of a Neotropical freshwater swamp in Costa Rica for 23 days in January and February 2015 during the dry season. We classified biological sound types in these recordings and developed measurements of richness and occupancy based on this classification. We also calculated six complementary acoustic indices to assess soundscape diversity and daily and longer-term soundscape dynamics, and we examined correlations between these acoustic indices and sound type metrics.
  3. We found rich soundscapes in which biological sounds were almost always present, and we classified 18 sound types that we attribute to aquatic insects. These sound types showed distinct daily patterns and exhibited temporal and spectral acoustic niche partitioning. Sound type richness was most correlated with the number of peaks index (correlation = .36; p < .001), while sound type occupancy was most correlated with the Bioacoustic Index (correlation = .92; p < .001). In contrast to generally high levels of acoustic activity, there were brief (approximately 1 hr), unexpected quiet periods around dawn and dusk.
  4. This study represents an early attempt to comprehensively describe tropical freshwater soundscapes in a systematic and quantitative manner. We demonstrate that sound type classification and the quantification of acoustic occupancy capture aspects of soundscape diversity and dynamics that are complementary to those assessed by acoustic indices. Our analyses reveal that the soundscapes of this tropical wetland were diverse and exhibited daily dynamics that differed from those found in other ecosystems.
  相似文献   

6.
Human disconnection from nature is thought to have contributed to the environmental crises we currently face, and increasing connection with nature has been proposed as one way of promoting pro-environmental behavior, nature conservation, and social-ecological sustainability. Some efforts to increase connection with nature (“nature relatedness”) have centered on exploring the social-ecological importance of soundscapes, but there is a paucity of empirical evidence supporting the theoretical linkage between soundscape perception and nature relatedness. Using prerecorded and in situ soundscape prompts, we conducted a street intercept survey in Ushuaia, Tierra del Fuego, Argentina to assess: 1) the relative importance of senses in experiences of nature, 2) the relationship between nature relatedness and soundscape perception, 3) differences in soundscape perception between various soundscapes, and 4) possible sociodemographic influences on sense importance, nature relatedness, and soundscape perception. Participants reported that hearing was of secondary importance to vision in experiences of nature. We also found that nature relatedness was positively correlated with the valuation of soundscapes—particularly more natural ones—but not with the discernment of soundscapes or identification of where soundscapes were recorded. Valuation of more natural soundscapes was higher than valuation of more technophonically dominated soundscapes, while soundscape discernment and location identification were higher for soundscapes that were likely more familiar to listeners. Sociodemographic influences on these variables were minor, but women reported higher sense importance, and having a nature-based occupation was associated with higher nature relatedness and valuation of a soundscape from a penguin colony. Our study highlighted a number of potential research areas concerning soundscape perception, including differences between prerecorded and in situ soundscape prompts, defining various aspects of soundscape perception, and the relative influences of sound sources and quantitative acoustic parameters on soundscape perception. Further research is certainly needed to account for global diversity in cultures and soundscapes, but we found some promising empirical support for the use of natural-soundscape-focused educational programs in efforts to promote nature relatedness.  相似文献   

7.
Soundscape ecology and ecoacoustics study the spatiotemporal dynamics of a soundscape and how the dynamics reflect and influence ecological processes in the environment. Soundscape analysis methods employ acoustic recording units (ARUs) that collect acoustic data in study areas over time. Analyzing these data includes computation of several acoustic diversity indices developed to quantify species abundance, richness, or habitat condition through digital audio processing and algorithm adaptations for within-group populations. However, the success of specific indices is often dependent on habitat type and biota richness present and analyzing these data can be challenging due to temporal pseudo-replication. Time-series analytical methods address the inherent problems of temporal autocorrelation for soundscape analyses challenges. Animal population dynamics fluctuate in a variety of ways due to changes in habitat or natural patterns of a landscape and chronic noise exposure, with soundscape phenology patterns evident in terrestrial and aquatic environments. Historical phenological soundscape patterns have been used to predict expected soundscape patterns in long-term studies but limited work has explored how forecasting can quantify changes in short-term studies. We evaluate how forecasting from an acoustic index can be used to quantify change in an acoustic community response to a loud, acute noise. We found that the acoustic community of a Midwestern restored prairie had decreased acoustic community activity after a loud sound event (LSE), a Civil War Reenactment, mainly driven by observed changes in the bird community and quantified using two methods: an automated acoustic index and species richness. Time-series forecasting maybe considered an underutilized tool in analyzing acoustic data whose experimental design can be flawed with temporal autocorrelation. Forecasting using auto ARIMA with acoustic indices could benefit decision makers who consider ecological questions at different time scales.  相似文献   

8.
Soundscapes are multidimensional spaces that carry meaningful information for many species about the location and quality of nearby and distant resources. Because soundscapes are the sum of the acoustic signals produced by individual organisms and their interactions, they can be used as a proxy for the condition of whole ecosystems and their occupants. Ocean acidification resulting from anthropogenic CO2 emissions is known to have profound effects on marine life. However, despite the increasingly recognized ecological importance of soundscapes, there is no empirical test of whether ocean acidification can affect biological sound production. Using field recordings obtained from three geographically separated natural CO2 vents, we show that forecasted end-of-century ocean acidification conditions can profoundly reduce the biological sound level and frequency of snapping shrimp snaps. Snapping shrimp were among the noisiest marine organisms and the suppression of their sound production at vents was responsible for the vast majority of the soundscape alteration observed. To assess mechanisms that could account for these observations, we tested whether long-term exposure (two to three months) to elevated CO2 induced a similar reduction in the snapping behaviour (loudness and frequency) of snapping shrimp. The results indicated that the soniferous behaviour of these animals was substantially reduced in both frequency (snaps per minute) and sound level of snaps produced. As coastal marine soundscapes are dominated by biological sounds produced by snapping shrimp, the observed suppression of this component of soundscapes could have important and possibly pervasive ecological consequences for organisms that use soundscapes as a source of information. This trend towards silence could be of particular importance for those species whose larval stages use sound for orientation towards settlement habitats.  相似文献   

9.
Measuring restoration outcomes is essential, but challenging and expensive, particularly on remote islands. Acoustic recording increases the scale of monitoring inexpensively; however, extracting biological information from large volumes of recordings remains challenging. Soundscape approaches, characterizing communities using acoustic indices, rapidly analyze large acoustic datasets and can be used to compare restoration sites against reference conditions. We tested this approach to measure nocturnal seabird recovery following invasive predator removal in the Aleutian Islands. We used recordings of nocturnal seabird soundscapes from six islands with varied histories of predators, from never invaded (one island) to 9–34 years post‐predator removal (four islands) and currently invaded (one island). We calculated 10 indices of acoustic intensity and complexity, and two pairwise indices of acoustic differences. Three indices reflected patterns of seabird recovery. Acoustic richness (measuring temporal entropy and amplitude) increased with time since predator removal and presence of historical predator refugia (r2 = 0.44). These factors and moonlight accounted for 30% of variation in cumulative spectral difference from the reference island. Over 10% of acoustic richness and temporal entropy was explained by Leach's Storm‐petrel (Oceanodroma leucorhoa) calls. However, indices characterized the soundscape of rat‐invaded Kiska Island like a never invaded island, likely due to high abiotic noise and few seabird calls. Soundscape indices have potential to monitor outcomes of seabird restoration quickly and cheaply, if confounding factors are considered and controlled in experimental design. We suggest soundscape indices become part of the expanding acoustic monitoring toolbox to cost‐effectively measure restoration outcomes at scale and in remote areas.  相似文献   

10.
王鹏  杨文娟  李乐  高志强  何友均 《生态学报》2023,43(13):5383-5394
声景观在现行国家公园景观评价体系中,是一个十分重要但又薄弱的环节,关系着国家公园的精细化管理水平。以钱江源国家公园体制试点区为例,采用调查问卷法对国家公园日间的53种声景观进行主观愉悦度评价,考察并选取描述声景观质量的客观心理物理学指标,通过多元线性回归方法建立二者主客观关系,并得到国家公园声景观质量评价模型。结果表明:(1)不同类型声景观表现为不同的声学特征,并在响度、尖锐度、粗糙度指标上具有显著性差异。虫鸣声响度最大(5.829)、尖锐度最大(2.667)、粗糙度最大(0.018),鸟鸣声的尖锐度与其余六种声景观均显著差异。(2)采用响度、尖锐度、粗糙度、波动度作为描述声景观质量的客观心理物理学指标具有适宜性。其中,响度是影响公众对国家公园声景观主观愉悦度认知的主要因素,二者呈负相关关系。(3)采用K-均值聚类等级划分发现,国家公园声景观质量处于较高水平。其中,虫鸣声质量最高(3.86)、鸟鸣声其次(3.58)、交谈声最低(2.43)。自然声景观质量整体高于人工声景观。(4)国家公园声景观质量在空间上具有南部高、北部其次、中部低的格局特征,且与区域生态保护等级水平存在较强空间重叠性。研究结果为国家公园体制试点结束后,未来声景观科学管理与规划设计提供重要参考,同时为其它类型自然保护地的声景观评价提供方法借鉴。  相似文献   

11.
Remote acquisition of information on ecosystem dynamics is essential for conservation management, especially for the deep ocean. Soundscape offers unique opportunities to study the behavior of soniferous marine animals and their interactions with various noise-generating activities at a fine temporal resolution. However, the retrieval of soundscape information remains challenging owing to limitations in audio analysis techniques that are effective in the face of highly variable interfering sources. This study investigated the application of a seafloor acoustic observatory as a long-term platform for observing marine ecosystem dynamics through audio source separation. A source separation model based on the assumption of source-specific periodicity was used to factorize time-frequency representations of long-duration underwater recordings. With minimal supervision, the model learned to discriminate source-specific spectral features and prove to be effective in the separation of sounds made by cetaceans, soniferous fish, and abiotic sources from the deep-water soundscapes off northeastern Taiwan. Results revealed phenological differences among the sound sources and identified diurnal and seasonal interactions between cetaceans and soniferous fish. The application of clustering to source separation results generated a database featuring the diversity of soundscapes and revealed a compositional shift in clusters of cetacean vocalizations and fish choruses during diurnal and seasonal cycles. The source separation model enables the transformation of single-channel audio into multiple channels encoding the dynamics of biophony, geophony, and anthropophony, which are essential for characterizing the community of soniferous animals, quality of acoustic habitat, and their interactions. Our results demonstrated the application of source separation could facilitate acoustic diversity assessment, which is a crucial task in soundscape-based ecosystem monitoring. Future implementation of soundscape information retrieval in long-term marine observation networks will lead to the use of soundscapes as a new tool for conservation management in an increasingly noisy ocean.  相似文献   

12.
Soundscapes pose both evolutionarily recent and long-standing sources of selection on acoustic communication. We currently know more about the impact of evolutionarily recent human-generated noise on communication than we do about how natural sounds such as pounding surf have shaped communication signals over evolutionary time. Based on signal detection theory, we hypothesized that acoustic phenotypes will vary with both anthropogenic and natural background noise levels and that similar mechanisms of cultural evolution and/or behavioral flexibility may underlie this variation. We studied song characteristics of white-crowned sparrows (Zonotrichia leucophrys nuttalli) across a noise gradient that includes both anthropogenic and natural sources of noise in San Francisco and Marin counties, California, USA. Both anthropogenic and natural soundscapes contain high amplitude low frequency noise (traffic or surf, respectively), so we predicted that birds would produce songs with higher minimum frequencies in areas with higher amplitude background noise to avoid auditory masking. We also anticipated that song minimum frequencies would be higher than the projected lower frequency limit of hearing based on site-specific masking profiles. Background noise was a strong predictor of song minimum frequency, both within a local noise gradient of three urban sites with the same song dialect and cultural evolutionary history, and across the regional noise gradient, which encompasses 11 urban and rural sites, several dialects, and several anthropogenic and natural sources of noise. Among rural sites alone, background noise tended to predict song minimum frequency, indicating that urban sites were not solely responsible for driving the regional pattern. These findings support the hypothesis that songs vary with local and regional soundscapes regardless of the source of noise. Song minimum frequency from five core study sites was also higher than the lower frequency limit of hearing at each site, further supporting the hypothesis that songs vary to transmit through noise in local soundscapes. Minimum frequencies leveled off at noisier sites, suggesting that minimum frequencies are constrained to an upper limit, possibly to retain the information content of wider bandwidths. We found evidence that site noise was a better predictor of song minimum frequency than territory noise in both anthropogenic and natural soundscapes, suggesting that cultural evolution rather than immediate behavioral flexibility is responsible for local song variation. Taken together, these results indicate that soundscapes shape song phenotype across both evolutionarily recent and long-standing soundscapes.  相似文献   

13.
城市公园是城市生态系统的重要组成部分和城市生物多样性热点地区,具有丰富的声景观资源。由于声景观及声学方法具有信息量大,成本低,低侵入的特点,因此其研究和应用对生态系统健康及监测具有较高价值。声景观研究通过总结生物声的活动或多样性来衡量生物多样性。记录了北京20个城市公园的春季声景观,使用定量方法描述了声景观特征与变化;测试三种了已被证明与生物多样性相关并被广泛使用的声学指数(BIO、ADI、NDSI)与植被群落关系,完成了城市环境中声景观与环境关系的初步探究。研究结果表明:(1)声学指数能够有效表征城市公园声景观信息,具有显著的时间动态特性,能准确反映鸟类黎明合唱等重要生物生态活动;(2)声学强度指数也具有显著的时间动态变化和沿频率梯度的变化,不同的频率区间反映了不同声学群落的活动信息;(3)植被结构尤其是垂直结构对声景观起着重要作用,垂直异质性越大,声学多样性越高。发现支持声景观作为公园植被状况的度量,强调了其作为生物多样性和生态系统健康状况监测方法,用于城市管理和可持续发展的巨大潜力。  相似文献   

14.
Soundscape ecology aims to use biological, geophysical and anthropogenic sound to understand natural-human landscape dynamics. The analysis of natural soundscapes with no human noise is a prerequisite to understand and quantify the effects of human activity on animal ecology linked to sound. Preserved tropical forests are the location of unique, highly diverse, and animal sound. However, although the acoustic behavior of several tropical species has been examined, very few analyses have attempted tropical sounds at a spatial scale able to incorporate landscape characters. Here we analyze the acoustic structure of a neotropical forest landscape in French Guiana. We used a four dimensional synchronous acoustic sampling (three spatial dimensions and the temporal dimension) by deploying an array of 24 microphones in the understory and canopy of the Nouragues Nature Reserve during a 43 day period and we undertook a detailed signal analysis to detect spatial and temporal animal acoustic heterogeneity. We identified a clear pattern of acoustic activity with four distinct periods of activity that differed by their spectral characteristics indicating acoustic heterogeneity along the 24-hour cycle but periodicity at a longer time scale. We revealed acoustic divergences between the understory and the canopy layers in terms of amplitude level and frequency content. We highlighted vertical (understory/canopy) and horizontal acoustic heterogeneities with a more diverse (frequency) patch in the north of the study area sampled and a more active (intensity) patch in the southeast of the study area. Our results show that the soundscape of a tropical forest, in the absence of human disturbance, is subtly structured in time and is heterogeneous in space. This structure is probably linked to endogenous factors that rule out the acoustic time activity of animal species, to the vertical stratification of singing communities or guilds, to horizontal variations in the distributions of species and to vegetation spatial heterogeneity. Our study emphasizes that tropical soundscapes need to be recorded and analyzed in considerable spatial and temporal detail to understand their dynamics without the presence of human produced noise. Our analysis also suggests that tropical forests are unique places for acoustic diversity, supporting the need for preservation from all perturbations including anthropic noise.  相似文献   

15.
Underwater sound is directional and can convey important information about the surrounding environment or the animal emitting the sound. Therefore, sound is a major sensory channel for fishes and plays a key role in many life-history strategies. The effect of anthropogenic noise on aquatic life, which may be causing homogenisation or fragmentation of biologically important signals underwater is of growing concern. In this review we discuss the role sound plays in the ecology of fishes, basic anatomical and physiological adaptations for sound reception and production, the effects of anthropogenic noise and how fishes may be coping to changes in their environment, to put the ecology of fish hearing into the context of the modern underwater soundscape.  相似文献   

16.
While the negative impacts of road infrastructure on faunal diversity and abundance have been extensively studied, many traffic noise studies have been conducted in the presence of confounding factors. Therefore, the extent to which traffic noise alone is responsible for impacts is not well known and a better understanding is required to inform urban planning and management decisions. We examined the impact of traffic noise on soundscape patterns at road edges in urban forests. Acoustic sensors were deployed at road and powerline edges, as well as within interior habitat, at three sites in south‐east Queensland, Australia. Powerline edges were included to separate edge effects from traffic noise impacts. We used soundscape power (normalized watts per kHz) of technophony (traffic noise in the 1–2 kHz range) and biophony (animal sounds in the 3–11 kHz range) to investigate soundscape patterns. The results showed that biophony was consistently lower at road edges and was negatively correlated with traffic noise and positively correlated with distance to road edge. Technophony was higher at road edges and was found to correlate negatively with distance to road edge and positively with traffic noise. Technophony and biophony at powerline edges generally exhibited values comparable to interior habitat. These results indicate that traffic noise affects urban forest soundscape patterns at road edges in south‐eastern Australia.  相似文献   

17.
The soundscape acts as a selective agent on organisms that use acoustic signals to communicate. A number of studies document variation in structure, amplitude, or timing of signal production in correspondence with environmental noise levels thus supporting the hypothesis that organisms are changing their signaling behaviors to avoid masking. The time scale at which organisms respond is of particular interest. Signal structure may evolve across generations through processes such as cultural or genetic transmission. Individuals may also change their behavior during development (ontogenetic change) or in real time (i.e., immediate flexibility). These are not mutually exclusive mechanisms, and all must be investigated to understand how organisms respond to selection pressures from the soundscape. Previous work on white‐crowned sparrows (Zonotrichia leucophrys) found that males holding territories in louder areas tend to sing higher frequency songs and that both noise levels and song frequency have increased over time (30 years) in urban areas. These previous findings suggest that songs are changing across generations; however, it is not known if this species also exhibits immediate flexibility. Here, we conducted an exploratory, observational study to ask whether males change the minimum frequency of their song in response to immediate changes in noise levels. We also ask whether males sing louder, as increased minimum frequency may be physiologically linked to producing sound at higher amplitudes, in response to immediate changes in environmental noise. We found that territorial males adjust song amplitude but not minimum frequency in response to changes in environmental noise levels. Our results suggest that males do not show immediate flexibility in song minimum frequency, although experimental manipulations are needed to test this hypothesis further. Our work highlights the need to investigate multiple mechanisms of adaptive response to soundscapes.  相似文献   

18.
The efficiency of acoustic communication depends on the power generated by the sound source, the attributes of the environment across which signals propagate, the environmental noise and the sensitivity of the intended receivers. Eupsophus emiliopugini, an anuran from the temperate austral forest communicates by means of an advertisement call of moderate intensity within the range for anurans. To estimate the range over which these frogs communicate effectively, we conducted measurements of call sound levels and of auditory thresholds to pure tones and to synthetic conspecific calls. The results show that E. emiliopugini produces advertisement calls of about 84 dB SPL at 0.25 m from the caller. The signals are affected by attenuation as they propagate, reaching average values of about 47 dB SPL at 8 m from the sound source. Midbrain multi-unit recordings show quite sensitive audiograms within the anuran range, with thresholds of about 44 dB SPL for synthetic imitations of conspecific calls, which would allow communication at distances beyond 8 m. This is an extended range as compared to E. calcaratus, a related syntopic species for which a previous study has shown to be restricted to active acoustic spaces shorter than 2 m. The comparison reveals divergent strategies for related taxa communicating amid the same environment.  相似文献   

19.
The aims of this study were to (i) assess the efficacy of passive acoustic monitoring (PAM) for detecting Arctic Charr at their spawning grounds and (ii) characterize the overall acoustic soundscape of these sites. PAM was carried out over three Arctic Charr spawning grounds in the UK, one lotic and two lentic. 24-h cycles of recordings were collected prior to and during the Arctic Charr spawning season, which was determined from data returns by simultaneous net monitoring. Acoustic analysis consisted of manual quantification of sound sources, Acoustic Complexity Index (ACI) calculation and spectral analysis in 1/3 octave band (SPL; dB re 1 μPa). In the lotic spawning ground, prior to the beginning of Arctic Charr spawning, SPL and ACI showed a restricted range of variation throughout the 24-h, while during spawning the night values of SPL and ACI were found to significantly increase, concurrently with the rate of gravel noise induced by fish spawning activities and fish air passage sounds. Both prior to and during the Arctic Charr run, the lentic soundscape was characterized by diel variation due to the daytime presence of anthropogenic noise and the night-time presence of insect calls, while only a few occurrences of fish air passage sounds and gravel noise were recorded. These findings suggest that PAM over Arctic Charr spawning grounds could provide meaningful information to be used in developing management plans for this threatened species, such as determining the location and time of arrival, diel pattern and length of spawning activities.  相似文献   

20.
Environmental noise can be an important selective force modulating signal evolution in species with acoustic communication. Many anuran species breed alongside streams; hence, the sound produced by the flowing water is an important source of noise for acoustic communication. Since calling is physiologically very expensive in anurans, and communication is essential for reproduction, we expected adaptations that reduce environmental masking effects and allow acoustic communication in streamside breeders. This basic assumption of the acoustic adaptation hypothesis has not been yet evaluated at a large phylogenetic scale. We combined ahistorical and phylogenetic methods to test whether anuran species that breed alongside streams call at higher frequencies than species that breed away from streams. We compiled primary and secondary data on body size, breeding habitat, and the dominant frequency of the advertisement call for 110 species; 40 of them breed alongside streams and 70 away from streams. Call frequency was slightly higher and body size was significantly smaller in streamside breeding species. After controlling for the effects of body size and phylogenetic signal, only differences in body size persisted between species breeding at both kinds of habitats. Our data suggest that habitat filtering rather than acoustic adaptation explains the high call frequency of stream breeders. Species with large body size, pleiotropically constrained to utter low-frequency calls, would have succeeded less often in establishing viable populations alongside streams, due to the masking effect of low-frequency noise. Thus, small species calling at relatively high frequencies would be more common there. Although our data do not preclude adaptations to noisy habitats in some anuran species, they do not provide support for the acoustic adaptation hypothesis at a wider phylogenetic scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号