首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Avian infectious bronchitis virus(IBV) is a Gammacoronavirus in the family Coronaviridae and causes highly contagious respiratory disease in chickens. Innate immunity plays significant roles in host defense against IBV. Here, we explored the interaction between IBV and the host innate immune system. Severe histopathological lesions were observed in the tracheal mucosa at 3–5days post inoculation(dpi) and in the kidney at 8 dpi, with heavy viral loads at 1–11 and 1–28 dpi,respectively. The expression of m RNAs encoding Toll-like receptor(TLR) 3 and TLR7 were upregulated at 3–8 dpi, and that of TIR-domain-containing adapter-inducing interferon(IFN) β(TRIF) was upregulated at 21 dpi in the trachea and kidney. Myeloid differentiation primary response protein 88(My D88) was upregulated in the trachea during early infection. Tumor necrosis factor receptor-associated factor(TRAF) 3 and TRAF6 were upregulated expression in both tissues.Moreover, melanoma differentiation-associated protein 5(MDA5), laboratory of genetics and physiology 2(LGP2), stimulator of IFN genes(STING), and mitochondrial antiviral signaling protein(MAVS), as well as TANK binding kinase 1(TBK1), inhibitor of kappa B kinase(IKK) ?, IKKα, IKKβ,IFN regulatory factor(IRF) 7, nuclear factor of kappa B(NF-κB), IFN-α, IFN-β, various interleukins(ILs), and macrophage inflammatory protein-1β(MIP-1β) were significantly upregulated in the trachea and downregulated in the kidney. These results suggested that the TLR and MDA5 signaling pathways and innate immune cytokine were induced after IBV infection. Additionally,consistent responses to IBV infection were observed during early infection, with differential and complicated responses in the kidney.  相似文献   

2.
The cyclic GMP-AMP(cGAMP)synthase(cGAS)has been identified as a cytosolic double stranded DNA sensor that plays a pivotal role in the type I interferon and inflammation responses via the STING-dependent signaling pathway.In the past several years,a growing body of evidence has revealed that cGAS is also localized in the nucleus where it is associated with distinct nuclear substructures such as nucleosomes,DNA replication forks,the double-stranded breaks,and centromeres,suggesting that cGAS may have other functions in addition to its role in DNA sensing.However,while the innate immune function of cGAS is well established,the non-canonical nuclear function of cGAS remains poorly understood.Here,we review our current understanding of the complex nature of nuclear cGAS and point to open questions on the novel roles and the mechanisms of action of this protein as a key regulator of cell nuclear function,beyond its well-established role in dsDNA sensing and innate immune response.  相似文献   

3.
Cytokines are involved in directing the activation of natural killer (NK) cells. NK cells are involved in the recognition of cells that have been altered; thus they do not recognize specific insults to the host, but when activated, are capable of destroying infected cells directly, as well as promoting the recruitment and response of the other components of the immune system by the release of cytokines and chemokines. It is these properties that have made NK cells a critical part of innate immunity and adaptive immunity, and they play a principal role linking innate and adaptive immunity by the recruitment of an adaptive immune response to an innate immune reaction.  相似文献   

4.
For antiviral signaling mediated by retinoic acid-inducible gene I (RiG-I)-like receptors (RLRs), the recruitment of cytosoUc RLRs and downstream molecules (such as TBK1 and IKKε) to mitochondriaL platform is a central event that facilitates the establishment of host antiviral state. Here, we present an example of viral targeting for immune evasion through spatial isolation of TBK1/IKKε from mitochond riai antiviral platform, which was employed by severe fever with thrombocytopenia syndrome virus (SFTSV), a deadly bunyavirus emerging recently. We showed that SFTSV nonstructural protein NSs functions as the interferon (IFN) antagonist, mainly via suppressing TBK1/IKKε-IRF3 signaling. NSs mediates the formation of cytoplasmic inclusion bodies (IBs), and the blockage of IB formation impairs IFN-inhibiting activity of NSs. We next demonstrate that I Bs are utilized to compartmentalize TBK1/I KKε. The compartmentalization results in spatial isolation of the kinases from mitochondria, and deprived TBK1/IKKε may participate in antiviral complex assembly, leadingto the blockage of lFN ind uction. This study proposes a new role of viral I Bs as virus-built'jail' for imprisoning cellular factors and presents a novel and likely common mechanism of viral immune evasion through spatial isolation of critical signaling molecules from the mitochondrial antiviral platform.  相似文献   

5.
Although IL-12 plays a critical role in priming Th1 and cytotoxic T lymphocyte(CTL) responses, Toll-like receptor(TLR) signaling only induces low amounts of IL-12 in dendritic cells and macrophages, implying the existence of stringent regulatory mechanisms. In this study, we sought to uncover the mechanisms underlying TLR-induced IL-12 expression and the Th1 response. By systemic screening, we identified a number of protein kinases involved in the regulation of TLRinduced IL-12 expression. In particular, PI3 K, ERK, and m TOR play critical roles in the TLR-induced Th1 response by regulating IL-12 and IL-10 production in innate immune cells. Moreover, we identified c-fos as a key molecule that mediates m TOR-regulated IL-12 and IL-10 expression in TLR signaling. Mechanistically, m TOR plays a crucial role in c-fos expression, thereby modulating NFκB binding to promoters of IL-12 and IL-10. By controlling the expression of a special innate gene program, m TOR can specifically regulate the TLR-induced T cell response in vivo. Furthermore, blockade of m TOR by rapamycin efficiently boosted TLR-induced antigen-specific T and B cell responses to HBV and HCV vaccines. Taken together, these results reveal a novel mechanism through which m TOR regulates TLR-induced IL-12 and IL-10 production, contributing new insights for strategies to improve vaccine efficacy.  相似文献   

6.
The innate immune system is the first line of defense against invading pathogens. Innate immune cells recognize molecular patterns from the pathogen and mount a response to resolve the infection. The production of proinflammatory cytokines and reactive oxygen species, phagocytosis, and induced programmed cell death are processes initiated by innate immune cells in order to combat invading pathogens. However, pathogens have evolved various virulence mechanisms to subvert these responses. One strategy utilized by Gram-negative bacterial pathogens is the deployment of a complex machine termed the type Ⅲ secretion system(T3SS). The T3SS is composed of a syringe-like needle structure and the effector proteins that are injected directly into a target host cell to disrupt a cellular response. The three human pathogenic Yersinia spp.(Y. pestis, Y. enterocolitica, and Y. pseudotuberculosis) are Gramnegative bacteria that share in common a 70 kb virulence plasmid which encodes the T3 SS. Translocation of the Yersinia effector proteins(YopE, YopH, YopT, YopM, YpkA/YopO, and YopP/J) into the target host cell results in disruption of the actin cytoskeleton to inhibit phagocytosis, downregulation of proinflammatory cytokine/chemokine production, and induction of cellular apoptosis of the target cell. Over the past 25 years, studies on the Yersinia effector proteins have unveiled tremendous knowledge of how the effectors enhance Yersinia virulence. Recently, the long awaited crystal structure of YpkA has been solved providing further insights into the activation of the YpkA kinase domain. Multisite autophosphorylation by YpkA to activate its kinase domain was also shown and postulated to serve as a mechanism to bypass regulation by host phosphatases. In addition, novel Yersinia effector protein targets, such as caspase-1, and signaling pathways including activation of the inflammasome were identified. In this review, we summarize the recent discoveries made on Yersinia effector proteins and their contribution to Yersinia pathogenesis.  相似文献   

7.
8.
During plant development, the frequency and context of cell division must be controlled, and cells must differentiate properly to perform their mature functions. In addition, stem cell niches need to be maintained as a reservoir for new cells. All of these processes require intercellular signaling, whether it is a cell relaying its position to other cells, or more mature cells signaling to the stem cell niche to regulate the rate of growth. Receptor-like kinases have emerged as a major component in these diverse roles, especially within the Arabidopsis root. In this review, the functions of receptor-like kinase signaling in regulating Arabidopsis root development will be examined in theareas of root apical meristem maintenance, regulation of epidermal cell fate, lateral root development and vascular differentiation.  相似文献   

9.
Protein ubiquitination is an important means of posttranslational modification which plays an essential role in the regulation of various aspects of leukocyte development and function. The specificity of ubiquitin tagging to a protein substrate is determined by E3 ubiquitin ligases via defined E3-substrate interactions. In this review, we will focus on two E3 ligases, VHL and Itch, to discuss the latest progress in understanding their roles in the differentiation and function of CD4+ T helper cell subsets, the stability of regulatory T cells, effector function of CD8+ T cells, as well as the development and maturation of innate lymphoid cells. The biological implications of these E3 ubiquitin ligases will be highlighted in the context of normal and dysregulated immune responses including the control of homeostasis, inflammation, auto-immune responses and anti-tumor immunity. Further elucidation of the ubiquitin system in immune cells will help in the design of new therapeutic interventions for human immunological diseases and cancer.  相似文献   

10.
Porcine reproductive and respiratory syndrome(PRRS) continues to be one of the most important swine diseases worldwide. Interferon-γ(IFNγ)-mediated type Ⅰ cell-mediated immune response plays an important role in protection from,and clearance of, PRRS virus(PRRSV). Several lymphocyte subsets including T-helper, CTLs, Th/memory cells, and cd T lymphocytes were previously reported to produce IFNc during PRRSV infection. However, the proportion and phenotypic characterization of these IFNγ-secreting lymphocytes have not been explored. In this study, IFNc producted by different lymphocyte subsets was assessed by multi-color flow cytometry after vaccination with PRRSV modified live vaccine(PRRSV-MLV) and challenge with homogeneous or heterogeneous PRRSV. The results showed that T-helper cells were the major IFNγ-secreting cell population after PRRSV-MLV vaccination and PRRSV challenge. Additionally, the proportion of IFNγ producing Th/memory cells and γδ T cells increased after PRRSV challenge. This difference was accounted for an enhanced ability to produce IFNγ in Th/memory cells and an enlarged quantity of γδ T cells. The results presented here could contribute to our understanding of the roles of IFNγ in protective immunity against PRRSV infection and may be useful for assessment of cell-mediated immunity in vaccine tests.  相似文献   

11.
Inflammation is a self-protection mechanism that can be triggered when innate immune cells detect infection. Eradication of pathogen infection requires appropriate immune and inflammatory responses, but excessive inflammatory responses can cause uncontrolled inflammation, autoimmune diseases, or pathogen dissemination. Mounting evidence has shown that microRNAs(miRNAs) in mammals act as important and versatile regulators of innate immunity and inflammation. However, miRNAmediated regulation networks are largely unknown in inflammatory responses in lower vertebrates. Here, miR-144 and miR-217 are identified as negative regulators in teleost inflammatory responses. We find that Vibrio harveyi and lipopolysaccharide(LPS)treatment significantly upregulate the expression of fish miR-144 and miR-217. Upregulated miR-144 and miR-217 suppress LPS-induced inflammatory cytokine expression by targeting nucleotide-binding oligomerization domain-containing protein 1(NOD1), thereby avoiding excessive inflammatory responses. In addition, miR-144 and miR-217 regulate inflammatory responses through NOD1-induced nuclear factor kappa(NF-κB) signaling pathways. These findings demonstrate that miR-144 and miR-217 play regulatory roles in inflammatory responses by modulating the NOD1-induced NF-κB signaling pathway.  相似文献   

12.
Shi D  Das J  Das G 《Cell research》2006,16(1):70-74
Inflammatory bowl disease (IBD) is a type 1 T helper cell (Th1)-mediated autoimmune disease. Various studies have revealed that environmental pathogens also play a significant role in the initiation and progression of this disease. Interestingly, the pathogenesis of IBD has been shown to be related to nitric oxide (NO) released from innate immune cells. Although NO is known to be highly toxic to the gut epithelia, there is very little information about the regulation of NO production, One major question in the etiology of IBD is how Thl cells and pathogens interact in the induction of IBD. In present study, we focused on the regulation of NO. We show that macrophages require both interferon-γ, (IFN-γ)-mediated and TLR4-mediated signals for the production of NO, which causes inflammation in the intestine and subsequently IBD. Thus, IBD is the result of concerted actions of innate immune signals, such as the binding of LPS to TLR-4, and adaptive immune signals, such as IFN-γ produced by Thl cells.  相似文献   

13.
Immunosenescence is described as a decline in the normal functioning of the immune system associated with physiologic ageing.Immunosenescence contributes to reduced efficacy to vaccination and increased susceptibility to infectious diseases in the elderly.Extensive studies of laboratory animal models of ageing or donor lymphocyte analysis have identified changes in immunity caused by the ageing process.Most of these studies have identified phenotypic and functional changes in innate and adaptive immunity.However,it is unclear which of these defects are critical for impaired immune defense against infection.This review describes the changes that occur in innate and adaptive immunity with ageing and some age-related viral diseases where defects in a key component of immunity contribute to the high mortality rate in mouse models of ageing.  相似文献   

14.
Cao Q  Wang L  Du F  Sheng H  Zhang Y  Wu J  Shen B  Shen T  Zhang J  Li D  Li N 《Cell research》2007,17(7):627-637
Regulatory T cells (Treg) play important roles in immune system homeostasis, and may also be involved in tumor immunotolerance by suppressing Th1 immune response which is involved in anti-tumor immunity. We have previously reported that immunization with attenuated activated autologous T cells leads to enhanced anti-tumor immunity and upregulated Thl responses in vivo. However, the underlying molecular mechanisms are not well understood. Here we show that Treg function was significantly downregulated in mice that received immunization of attenuated activated autologous T cells. We found that Foxp3 expression decreased in CD4+CD25+ T cells from the immunized mice. Moreover, CD4+CD25+Foxp3+ Treg obtained from immunized mice exhibited diminished immunosuppression ability compared to those from naive mice. Further analysis showed that the serum of immunized mice contains a high level ofanti-CD25 antibody (about 30 ng/ml, p〈0.01 vs controls). Consistent with a role ofanti-CD25 response in the downregulation of Treg, adoptive transfer of serum from immunized mice to naive mice led to a significant decrease in Treg population and function in recipient mice. The triggering of anti-CD25 response in immunized mice can be explained by the fact that CD25 was induced to a high level in the ConA activated autologous T cells used for immunization. Our results demonstrate for the first time that immunization with attenuated activated autologous T cells evokes anti-CD25 antibody production, which leads to impeded CD4+CD25+Foxp3+ Treg expansion and function in vivo. We suggest that dampened Treg function likely contributes to enhanced Thl response in immunized mice and is at least part of the mechanism underlying the boosted anti-tumor immunity.  相似文献   

15.
Selective degradation of the IκB kinase (IKK) by autophagy   总被引:1,自引:0,他引:1  
Li D 《Cell research》2006,16(11):855-856
Proteasome-mediated degradation and autophagy are the two major pathways mediating the turnover of cellular proteins. The proteasomal pathway is known to be a highly specific and regulated process mediating the degradation of short-lived proteins such as many important factors involved in cellular signaling. In contrast, it is generally thought that autophagy is rather nonselective as it is responsible for the bulk degradation of long-lived proteins and organelles. Challenging this general view, in this issue of Cell Research, Qing et al. report that selective degradation of the IκB kinase (IKK) triggered by the loss of Hsp90 function is mediated by autophagy [1].  相似文献   

16.
Ubiquitination in Abscisic Acid-Related Pathway   总被引:1,自引:0,他引:1  
Ubiquitination is emerging as a tight regulatory mechanism that is necessary for all aspects of development and survival of all eukaryotes. Recent genomic and genetic analysis in Arabidopsis suggests that ubiquitination may also play important roles in plant response to the phytohormone abscisic acid (ABA). Many components of the ubiquitination pathway, such as ubiquitin-conjugating enzyme E2, ubiquitin ligase E3 and components of the proteasome, have been identified or predicted to be essential in ABA biosynthesis, catabolism and signaling. In addition, the ubiquitination-related pathway, sumoylation, is also involved in ABA signaling. We summarize in this report recent developments to elucidate their roles in the ABA-related pathway.  相似文献   

17.
18.
The proinflammatory cytokine tumor necrosis factor-α (TNF-α) regulates immune responses, inflammation and programmed cell death. The ultimate fate of a cell exposed to TNF-αis determined by signal integration between its downstream effectors, including caspases, IKB kianse (IKK) and c-Jun N-terminal protein kinase (JNK). However, the molecular mechanisms are incompletely understood. We investigated this issue using genetic and biochemical approaches. We identified IKK β, a catalytic subunit of the IKK complex that is required for NF-KB activation and cell survival in response to TNF-α, was proteolyzed by casp-3-related caspases. This proteolysis eliminated IKK activity and promoted TNF-α, killing. Point  相似文献   

19.
Recent studies have demonstrated that chloroplasts and mitochondria evoke specific Ca2+ signals in response to biotic and abiotic stresses in a stress-dependent manner. The identification of Ca2+ transporters and Ca2+signaling mol- ecules in chloroplasts and mitochondria implies that they play roles in controlling not only intra-organellar functions, but also extra-organellar processes such as plant immunity and stress responses. It appears that organellar Ca2+ signaling might be more important to plant cell functions than previously thought. This review briefly summarizes what is known about the molecular basis of Ca2+ signaling in plant mitochondria and chloroplasts.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号