首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of 60 hr ethanol ingestion on lipid composition of liver and brain membranes from 2-day-old chicks was investigated. Analysis of hepatic membrane cholesterol shows that ethanol induced a slight increase in microsomes exclusively due to free cholesterol while mitochondria was not affected. In brain, both fractions showed a clear increase in their cholesterol content, while a high decrease was observed in myelin. Free cholesterol was also the main responsible for the changes found in brain. The ethanol-treated animals showed an alteration in their phospholipid composition exclusively in brain microsomes and myelin. Despite all these changes, the values of cholesterol/phospholipid molar ratio in both liver and brain membranes remained unaltered after short ethanol treatment. Our results indicate that neonatal chick brain membranes appears to be especially sensitive to the presence of ethanol.  相似文献   

2.
Exposure of chick embryos to ethanol resulted in significant alterations to the lipid composition of various different hepatic subcellular membranes. A marked decrease in cholesterol levels and an increase in the phospholipid content of microsomes and mitochondria was observed. Ethanol also affected the fatty acid profiles, mainly by decreasing the percentage of oleic acid in phosphatidylcholine and phosphatidylethanolamine in the mitochondria and phosphatidylethanolamine in the microsomes. In spite of these changes ethanol only induced alterations in the fluidity of the mitochondrial membranes, which showed a more rigid core, in contrast to the phospholipid-head region, which was not affected. In accordance with the changes observed in the physical state of the membrane, the enzymes involved in the microsomal electron-transport systems were not modified by ethanol, while cytochrome oxidase activity decreased by 50% compared to the activity in the mitochondria from control chick embryos. These findings establish that during the chick-embryo developmental period the mitochondria are more sensitive to ethanol than are the microsomes.  相似文献   

3.
Four groups of rats were used in a nutritionally-controlled study of effects of chronic ethanol consumption on brain membrane lipid composition. Rats chronically consuming ethanol were fed high-nutrient or low-thiamin, low-protein diets. After 4 months, lipid analyses were performed on brains, brain microsomes and myelin from each group and from pair-fed, non-ethanol controls. Among the effects of ethanol was an increase of the relative proportion of cholesterol in microsomal lipids while there was decrease of it in myelin. Ethanol also increased plasmenylethanolamine while decreasing phosphatidylethanolamine proportions in myelin and in whole brain lipids, decreased the total lipid phosphorus of whole brain, and elevated the proportion of phosphatidylserine in microsomal and whole brain lipids. Effects of poor diet generally did not interfere with ethanol effects except in the case of microsomal lipids, where it apparently prevented an ethanol-induced increase in proportion of cholesterol. These changes may be adaptive responses to the fluidizing effect of ethanol on membranes.  相似文献   

4.
Phospholipid and cholesterol amounts, intrinsic protein/lipid ratios in liver, brain and skeletal muscle microsomal membranes of 14 species of vertebrate animals have been studied. No significant differences between phospholipid amounts in tissues as well as vertebrate classes have been discovered. The highest cholesterol amount has been found in brain microsomes, the smallest one in sarcoplasmic reticulum membranes. In reptile brain and muscle microsomes a higher amount of cholesterol compared to that in species of other vertebrate classes has been found. In brain membranes intrinsic protein and lipid amounts are approximately equal, while in liver and muscle microsomes a protein component predominates. Phospholipid/protein ratio is larger in brain membranes than in liver and muscle ones. Cholesterol/protein ratio reaches the highest values in microsomal membranes of reptile tissues. Brain membranes of vertebrate animals are characterized by a greater stability of protein-lipid composition than liver and muscle ones.  相似文献   

5.
Golgi apparatus isolated from both rat liver and rat kidney have been characterized with respect to their neutral and phospholipid content and their phosphopipid composition and compared with mitochondria, rough endoplasmic reticulum and plasma membranes. In addition, the distribution of sulfatide in the subcellular fractions of rat kidney was determinich are rich in cholesterol esters and ubiquinone. Removal of about 75% of the cisternal contents of rat liver Golgi reduced its content of cholesterol esters but not of ubiquinone. The Golgi complex of liver most closely resembles endoplasmic reticulum in its phospholipid composition except for a higher content of sphingomyelin. Removal of most of the contents of the Golgi cisternae did not appreciably alter the phospholipid composition of the Golgi apparatus of liver. Goligi apparatus from kidney has a phospholipid composition which resembles liver Golgi much more closely than it does any other cell fraction from kidney. The sulfatide content of kidney Golgi, the cell fraction richest in this glycolipid, is about 14% of the total lipid present in this fraction. Sulfatide was present in plasma membranes, mitochondria and rough microsomes, but at about one-third the level found in Golgi. Sulfatide is the main glycosphingolipid present in all the cell fractions from kidney which were studied.  相似文献   

6.
The ability of chronic ethanol treatment to alter CNS membrane lipids was tested. Adult male C57/BL6 mice were given a liquid diet containing ethanol for eight days. This regimen produced strong physical dependence as judged by withdrawal seizures, tremors and concomitant hypothermia. Analyses were performed on cholesterol, total phospholipid content and total phospholipid acyl composition of myelin, crude (P2), light and heavy synaptosomes as well as synaptosomal plasma membranes. Chronic ethanol treatment had no effect on total phospholipid levels nor phospholipid acyl composition in any of the above subcellular fractions. In ethanol dependent mice, significant increases in cholesterol content and cholesterol/ phospholipid ratios were observed only in synaptosomal plasma membranes.  相似文献   

7.
The microviscosity of artificial lipid membranes and natural membranes was measured by the fluorescence polarization technique employing perylene as the probe. Lipid dispersions composed of brain gangliosides exhibited greater microviscosity than phosphatidylserine (268 cP vs 173 cP, at 25 degrees C). Incorporation of cholesterol (30-50%) increased the microviscosity of lipid phases by 200-500 cP. Cholesterol's effect on membrane fluidity was completely reversed by digitonin but not by amphotericin B. Incorporation of membrane proteins into lipid vesicles gave varying results. Cytochrome b5 did not alter membrane fluidity. However, myelin proteolipid produced an apparent increase in microviscosity, but this effect might be due to partitioning of perylene between lipid and protein binding sites since tha latter have a higher fluorescence anisotropy than the lipid. The local anesthetics tetracain and butacaine increased the fluidity of lipid dispersions, natural membranes and intact ascites tumor cell membranes. The effect of anesthetics appears to be due to an increased disordering of lipid structure. The fluidity of natural membranes at 25 degrees C varied as follows: polymorphonuclear leukocytes, 335 cP; bovine brain myelin, 270 cP; human erythrocyte, 180 cP; rat liver microsomes, 95 cP; rat liver mitochondria, 90 cP. In most cases the microviscosity of natural membranes reflects their cholesterol: phospholipid ratio. The natural variations in fluidity of cellular membranes probably reflect important functional requirements. Similarly, the effects of some drugs which alter membrane permeability may be the result of their effects on membrane fluidity.  相似文献   

8.
Exchange of phospholipids between brain membranes in vitro   总被引:11,自引:6,他引:5       下载免费PDF全文
1. When unlabelled mitochondria from guinea-pig brain were incubated with a (32)P-labelled microsomal fraction from brain there was a transfer of phospholipid to the mitochondria, which could not be accounted for by an aggregation of microsomes and mitochondria or an exchange with microsomes contaminating the mitochondria. Under similar circumstances there was a transfer of phospholipid from (32)P-labelled mitochondria to microsomes, indicating that the process was one of exchange. 2. The transfer from microsomes was greatly stimulated by a non-dialysable heat-labile macromolecular component in the brain supernatant fraction but not by the concentration of the particulate fractions. 3. Phospholipid-exchange processes occurred most readily between pH7 and 7.5 and were inhibited by the presence of myelin and on the addition of lysophosphatidylcholine. 4. The rates of transfer of individual phospholipids from brain microsomes to mitochondria were similar. 5. (32)P-labelled microsomes could slowly donate phospholipid to the isolated synaptosomal (nerve-ending) fraction but the phospholipids of the myelin fraction did not exchange. 6. Subfractionation of the synaptosomal fraction after [(32)P]phospholipid transfer showed that the mitochondria were most actively labelled during the incubation. All of the isolated individual synaptosomal membranes were capable of acquiring phospholipid on incubation with a (32)P-labelled brain supernatant fraction although a greater percentage was again exchanged by the mitochondrial fraction.  相似文献   

9.
The lipid composition and fatty acid spectrum of individual phospholipid fractions of internal and external membranes of mitochondria was studied in alloxan diabetes. It was found that the phosphatidylserine content is reduced under these conditions, while those of lysophosphatidylcholines, diphosphatidylglycerols and cholesterol are increased, and the fatty acids are saturated with phospholipids. The observed changes in the lipid composition of membranes cause a decrease in the rate of oxygen consumption in various metabolic states as well as in the activity of NAD X H+-, succinate and cytochrome oxidases in rat liver mitochondria.  相似文献   

10.
The microviscosity of artificial lipid membranes and natural membranes was measured by the fluorescence polarization technique employing perylene as the probe. Lipid dispersions composed of brain gangliosides exhibited greater microviscosity than phosphatidylserine (268 cP vs 173 cP, at 25 °C). Incorporation of cholesterol (30–50%) increased the microviscosity of lipid phases by 200–500 cP. Cholesterol's effect on membrane fluidity was completely reversed by digitonin but not by amphotericin B. Incorporation of membrane proteins into lipid vesicles gave varying results. Cytochrome b5 did not alter membrane fluidity. However, myelin proteolipid produced an apparent increase in microviscosity, but this effect might be due to partitioning of perylene between lipid and protein binding sites since the latter have a higher fluorescence anisotropy than the lipid. The local anesthetics tetracaine and butacaine increased the fluidity of lipid dispersions, natural membranes and intact ascites tumor cell membranes. The effect of the anesthetics appears to be due to an increased disordering of lipid structure. The fluidity of natural membranes at the 25 °C varied as follows:polymorphonuclear leukocytes, 335 cP; bovine brain myelin, 270 cP; human erytherocyte, 180 cP; rat liver microsomes, 95 cP; rat liver mitochondria, 90 cP. In most cases the microviscosity of natural membranes reflects their cholesterol : phospholipid ratio. The natural variations in fluidity of cellular membranes probably reflect important fuctional requirements. Similarly, the effects of some drugs which alter membrane permeability may be the result of their effects on membrane fluidity.  相似文献   

11.
A highly monitorized animal model has been developed for the study of the influence of low oxygen tension on lipid composition, microviscosity and regulation of enzyme activities involved in the phospholipid synthesis of hepatic and pulmonary microsomes. Microviscosity decreased in liver microsomes whereas no difference was shown in that of microsomal membrane core of hypoxemic lung. Nevertheless, phospholipid and cholesterol content of both liver and lung membranes changed significantly. Microsomal membranes of hypoxemic liver increased the unsaturation degree of fatty acids, whereas hypoxemic lung membranes become more saturated, mainly due to the increase of palmitic acid. The adaptive response of lung was confirmed by the high increase of the deacylation-reacylation mechanism.  相似文献   

12.
The influence of hyperphenylalaninemia on the lipid composition of brain myelin has been investigated in 19-day-old chick embryos. CNP-ase activity was used as myelin marker enzyme for myelin isolation. CNP-ase activity was significantly lower in hyperphenylalaninemic myelin when compared with control. No significant differences were observed after experimental treatment in the total lipid content of myelin as well as in the proportion of cholesterol:phospholipid:galactolipid. Nevertheless, a clear increase in the percentage of esterified cholesterol was found. No appreciable alterations were observed in the phospholipid composition of brain myelin from both control and hyperphenylalaninemic chick embryos. However, the ratio of unsaturated to saturated fatty acids in serine plasmalogen and sphingomyelin was considerably increased by this treatment. This ratio in choline and ethanolamine phosphatides from treated embryos did not differ from that of controls.  相似文献   

13.
The fatty acid composition of phospholipids of mitochondria and microsomes from rat liver and hepatoma 27 was investigated. Basing on the fatty acid and phospholipid composition the unsaturation of the lipid bilayer of the intracellular membranes was calculated. The unsaturation of the phospholipids of the hepatoma mitochondria and microsomes was found to be much lower than that of the corresponding rat liver membranes. The lipid bilayer of the rat liver and hepatoma plasma membranes was shown to be more saturated than that of the intracellular membranes.  相似文献   

14.
Investigations have been carried out on phospholipid-transfer activity of the cytosol and the phospholipid composition of subcellular membranes from human liver and primary liver carcinoma. In both human liver and primary liver carcinoma cytosolic fractions, the transfer activity for phosphatidylcholine (PC), phosphatidylethanolamine (PE) and sphingomyelin has been observed for the first time. The transfer rate of PC and PE in normal human liver was almost equal, whereas sphingomyelin-transfer activity was much slower. In carcinoma cells, the transfer activity for PE and PC was significantly enhanced, while sphingomyelin transfer remained unchanged. Comparative investigations with HepG2 cultured cells have revealed a high PE-transfer activity in this cell line. Parallel with the phospholipid-transfer activity modifications in neoplasic cells, changes in the phospholipid composition of microsomes and mitochondria have been observed. The content of PC and PE in hepatocarcinoma cells was decreased in microsomes, while in the mitochondria it was increased. The possible role of the phospholipid-transfer proteins in the maintenance of membrane composition and structure is discussed.  相似文献   

15.
The effects of normobaric hyperoxia on both microsomal membrane fluidity and mechanism of phospholipid synthesis in rabbit liver and kidney have been studied. Hyperoxia induces in both organs an impairment of de novo synthesis of glycerolipids which could be due to an inactivation of acyltransferase activities involved in the initial formation of phosphatidic acid. The ability to replace phospholipid fatty acids by reacylation mechanism decreases slightly in the hyperoxic kidney, while it does not change in the hyperoxic liver. Concerning the effect of high arterial pO2 on microsomal membrane fluidity, the hyperoxic liver shows a more fluid environment within the membrane core of microsomes; however, no difference was shown in that of microsomal membrane core of hyperoxic kidney. An insight into the lipid composition of microsomes indicates that liver microsomal membranes have lower cholesterol content and higher unsaturation degree of phospholipid fatty acids, whereas hyperoxic kidney microsomes become more saturated and did not show any difference in their cholesterol content. In both hyperoxic liver and kidney microsomes, phospholipid content decreases in agreement with the depression of phosphatidic acid biosynthesis. These results are discussed in relation to the values of microsomal membrane microviscosity obtained.  相似文献   

16.
Rough-surfaced and light and heavy smooth-surfaced microsomes were isolated from rat brain by means of discontinuous sucrose gradient centrifugation. Electron microscopically, the rough-surfaced microsomes were characterized by vesicles with ribosomes and the light and heavy smooth-surfaced microsomes by fairly homogeneous membrane features without ribosomes. The rough-surfaced microsomal membranes were distinguished by the absence of glycolipids, such as ganglioside, cerebroside, and sulfatide. Cerebroside was exclusively recovered in the light smooth-surfaced microsomal membranes. Ganglioside and Na,K-ATPase were contained in larger amounts in the heavy smooth-surfaced microsomal membranes than in the light smooth-surfaced microsomal membranes in terms of protein content. Among the three submicrosomal membranes, cholesterol and phospholipid were found in the largest amounts in the light smooth-surfaced microsomal membranes, where the molar ratio of cerebroside-cholesterol-phospholipid was about 1:10:10. The membranes of rough- and smooth-surfaced microsomes were very similar in regards to the composition of phospholipid classes, although the fatty acid composition of the former contained a greater proportion of unsaturated fatty acids than that of the latter. When the membrane proteins were analyzed by sodium dodecyl sulfate gel electrophoresis, some differences were observed between the light and heavy smooth-surfaced microsomal membranes.  相似文献   

17.
Subfractions of rat liver microsomes (rough, smooth I, and smooth II), isolated in a cation-containing sucrose gradient system, were analyzed. After removal of adsorbed and luminal protein, these subfractions had the same phospholipid/protein ratio, about 0.40. Both the classes and the relative amounts of phospholipids were similar in the three subfractions, but the relative amounts of neutral lipids (predominantly free cholesterol and triglycerides) were higher in smooth I and especially in smooth II than in rough microsomes. Various pieces of evidence indicate that the neutral lipids are tightly bound to the membranes. Glycerol-(3)H was incorporated into the phospholipids of the rough and smooth I microsomes significantly faster than into those of the smooth II membranes; (32)P incorporation followed a similar but less pronounced pattern. Acetate-(3)H was incorporated into the free cholesterol of smooth I microsomes only half as fast as into the other two subfractions. Injection of phenobarbital increased the cellular phospholipid and neutral lipid content in the rough and smooth I, but not in the smooth II microsomes. Consequently, the neutral lipid/phospholipid ratio of all three subfractions remained unchanged after phenobarbital treatment. It is concluded that the membranes of the rough and the two smooth microsomal subfractions from rat liver have a similar phospholipid composition, but are dissimilar in their neutral lipid content and in the incorporation rate of precursors into membrane lipids.  相似文献   

18.
The phospholipid composition and the in vitro incorporation of radioactive CDP-choline into phosphatidylcholine was studied in mitochondria and microsomal fraction obtained from liver and brain of 20 day old hyperthyroid or hypothyroid rats. The chemical composition of the subcellular membranes isolated from brain differed markedly in both conditions. In hyperthyroidism the microsomal fraction was slightly affected while the mitochondria were also affected, but not as severely as in hypothyroidism, in which the microsomal fraction showed no alterations.The incorporation of the radioactive precursor into brain mitochondria isolated from hyperthyroid rats was markedly decreased, while no changes were observed in microsomes. However, incorporation into brain microsomal fraction obtained from hypothyroid rats was increased, while no changes were observed in mitochondria. Similar results were obtained in the studies performed with liver subcellular membranes from hyperthyroid animals while no changes were found in those from hypothyroid rats.Our results indicate that both experimental conditions affect in a different way the structure and function of brain mitochondria and microsomal fractions. They also give further support to our hypothesis that mitochondria have a certain degree of autonomy for the synthesis of phosphatidylcholine.Abbreviations used PS+PI phosphatidylserine+phosphatidylinositol - Sph sphingomyelin - PC phosphatidylcholine - PE phosphatidylethanolamine  相似文献   

19.
Myofibrillar, mitochondrial, and microsomal fractions were prepared from normal and dystrophic mouse limb muscle by differential centrifugation and analyzed for phospholipids and cholesterol. Fatty acids and aldehydes of neutral lipids and of phospholipids from whole muscle and particulate fractions were also determined. Normal microsomes contained more lecithin and less total ethanolamine phospholipids and cardiolipin than mitochondria. The myofibrils had an intermediate phospholipid composition, but their cholesterol-phospholipid ratio was smaller than that of the other two fractions. Except for an increased percentage of phosphatidalethanolamine in the dystrophic mitochondria, only the composition of the dystrophic microsomes differed from normal by containing less lecithin but more total ethanolamine phospholipid, phosphatidalethanolamine, sphingomyelin, and cholesterol. No significant differences were found in the fatty acid composition of neutral lipid extracts from normal and dystrophic preparations, but there was a significant decrease in the percentage of 22:6 in phospholipids from both dystrophic whole muscle and microsomes (-25% and -37%, respectively), whereas the 20:4 content was unaltered. By contrast, the percentages of 18:0 and total fatty aldehyde increased significantly. Phospholipid extracts from all dystrophic samples showed a significant decrease in 16:0 and an increase in 18:1 as compared with the normal.  相似文献   

20.
Changes in lipid composition and function of subcellular organelles have been described in transplanted and primary tumours. We examine here the fatty acid composition of individual phospholipids (PL) in hyperplastic nodules and primary hepatoma induced by diethylnitrosamine (DEN), compared to that of normal liver and of transplantable Yoshida AH-130 hepatoma. Phosphatidylcholine and phosphatidylethanolamine fatty acid composition in mitochondria and microsomes from primary hepatoma were markedly different from normal liver; C18:0/C18:1 ratio was lower and the ratio between monosaturated and polyunsaturated fatty acids was higher. Linoleic acid content of mitochondrial cardiolipin, usually very high in normal rat liver, was notably lower in primary hepatoma. Cholesterol/phospholipid ratio in both microsomes and mitochondria from DEN-induced hepatoma was higher than in normal liver. Hyperplastic nodules showed no changes in cholesterol content whereas modifications in fatty acid composition were already observable. These modifications of membrane structure may be related to the functional changes found in nodular cells. Changes in fatty acid composition of membrane phospholipids, occurring in both primary hepatoma and preneoplastic nodules, might be one of the causes for decreased rate of lipid peroxidation peculiar to these tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号