首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Benomyl treatment (at 100 micrograms ml-1) of Candida albicans 1001, and other strains derived from it, determined the appearance of morphological mutants similar to those derived from UV irradiation treatment. A permanent alteration in the morphogenesis of these mutant strains determined their inability to grow by budding, to form oval yeast cells or blastospores (Y-phenotype) and their growth as long filamentous forms, mostly with the appearance of pseudomycelium, giving rise to rough colonies (R phenotype). In order to carry out a genetic complementation analysis, we isolated morphological mutants that carried other genetic markers (nutritional, conditional lethal) adequate for crosses by means of protoplast fusion. Wild-type hybrids of regular mononuclear oval yeast cells and smooth colonies were obtained by crossing pairs of complementing mutants, whereas hybrids from crosses of non-complementing mutants still retained their morphological alterations. Our results define two complementation groups, which represent two genes relevant for dimorphism, whose alteration interferes with the correct transition from blastospores to mycelium.  相似文献   

2.
Utilization of L-sorbose, D-arabinose or primary fluconazole resistance in Candida albicans are controlled by copy number of specific chromosomes. On the other hand, spontaneous morphological mutants have a wide range of chromosomal alterations. We have investigated the UV and X-ray sensitivity of these mutants, as well as C. albicans laboratory strains. While L-sorbose utilizing mutants had normal sensitivities, a large subclass of D-arabinose utilizing mutants was abnormally sensitive to UV. Spontaneous morphological mutants responded differently, an expected result because of the heterogeneous nature of their electrophoretic karyotypes. We suggest that the differences in UV and X-ray sensitivity are due to gene imbalance caused by some chromosomal alterations. In this respect, the radiation sensitivity is similar to other features impaired by changes in chromosomes, but is unlike the acquisition of the ability to utilize alternative nutrients or the acquisition of resistance to fluconazole. Our studies also revealed that strains of C. albicans heterozygous for the mating type loci exhibited the same X-ray sensitivity as homozygous or hemizygous strains, a finding which is in contrast to the properties of Saccharomyces cerevisiae, where heterozygous strains are more resistant. This feature of C. albicans strains may be indicative of an inefficient repair system that may be related to inefficiency of mating.  相似文献   

3.
C Gil  R Poms    C Nombela 《Journal of bacteriology》1990,172(5):2384-2391
Several Candida albicans morphological mutants were obtained by a procedure based on a combined treatment with nitrous acid plus UV irradiation and a double-enrichment step to increase the proportion of mutants growing as long filamentous structures. Altered cell morphogenesis in these mutants correlated with an altered colonial phenotype. Two of these mutants, C. albicans NEL102 and NEL103, were selected and characterized. Mutant blastoconidia initiated budding but eventually gave rise to filamentous hypha-type formations. These filaments were long and septate, and they branched very regularly at positions near septa. Calcofluor white (which is known to bind chitin-rich areas) stained septa, branching zones, and filament tips very intensely, as observed under the fluorescence microscope. Wild-type hybrids were obtained by fusing protoplasts of strain NEL102 with B14, another morphological mutant previously described as being permanently pseudomycelial, indicating that genetic determinants responsible for the two altered phenotypes are different. The mutants characterized in this work seemed to sequentially express the morphogenic characteristics of C. albicans, from blastoconidia to hyphae, in the absence of any inducer. Further characterization of these strains could be relevant to gain understanding of the genetic control of dimorphism in this species.  相似文献   

4.
Abstract Colonies of Candida albicans wild-type strain 1001 were white and glossy, and this character was rather stably maintained. In contrast, 2 benomyl (methyl benzimidazole-2-yl-carbamate)-induced mutant strains, B17 and B14, that grew as long filamentous forms and displayed a rough-wrinkled colonial phenotype, switched to other colonial morphologies at significant frequencies. Clonal populations of B17 segregated smooth or sectored (rough/smooth) colonies at a frequency of 1.85%, when plated in nutrient-agar. Strains derived from these rough or smooth segregants switched back to one or the other phenotype at similar frequencies. Colonial variability in C. albicans B14 was not restricted to spontaneous switching from rough to smooth or vice versa, but eventually other types of variants, characterized as 'wavy' and 'fuzzy' were obtained, and shown to have their own capacity to switch. Smooth variants, derived from B14, were essentiallt unicellular, whereas fuzzy strains consisted only of long thin filaments, wavy and rough clones apparently being intermediate in their degree of filamentation. It is concluded that the capacity for colonial variation shown to exist in natural isolates could be activated by benomyl in others, such as 1001, which are quite stable and do not switch colonial morphology spontaneously.  相似文献   

5.
6.
7.
Candida albicans strains that are homozygous at the mating type locus (MTLa or MTLalpha) can spontaneously switch from the normal round-to-oval yeast cell morphology to an elongated, so-called opaque cell form that can mate with opaque cells of the opposite mating type. In response to environmental signals, C. albicans also undergoes a transition from yeast to filamentous growth, which is negatively regulated by the general repressor Tup1p. Therefore, C. albicans mutants in which the TUP1 gene is inactivated grow constitutively in the filamentous form. We found that tup1Delta mutants of the MTLalpha strain WO-1 are still able to undergo phenotypic switching. Although the mutants had lost the capacity to grow in the normal yeast (white) or opaque forms, they could still reversibly switch between four different cell and colony phenotypes (designated as fuzzy, frizzy, wrinkled and smooth) at a frequency of about 10(-3) to 10(-4). Deletion of TUP1 resulted in deregulated expression of phase-specific genes. While the white-specific WH11 gene was constitutively expressed in all four cell types, the opaque-specific SAP1 gene remained repressed and the opaque-specific OP4 gene was weakly induced in all phase variants. In spite of the loss of white- and opaque-specific cell morphology and gene expression, the tup1Delta mutants retained an important characteristic of their wild-type parent, the ability to switch to a mating-competent form. The three filamentous phase variants (fuzzy, frizzy and wrinkled) all were able to mate and produce recombinant progeny with opaque cells of an MTLa strain at frequencies that were somewhat lower than those of normal opaque cells, whereas the smooth phase variant was unable to do so. Therefore, although deletion of TUP1 in C. albicans MTLalpha cells affects cellular morphology and gene expression patterns, the mutants can still reversibly switch between mating-competent and -incompetent cell types and mate with a partner of the opposite mating type.  相似文献   

8.
Septin function in Candida albicans morphogenesis   总被引:6,自引:0,他引:6       下载免费PDF全文
The septin proteins function in the formation of septa, mating projections, and spores in Saccharomyces cerevisiae, as well as in cell division and other processes in animal cells. Candida albicans septins were examined in this study for their roles in morphogenesis of this multimorphic, opportunistically pathogenic fungus, which can range from round budding yeast to elongated hyphae. C. albicans green fluorescent protein labeled septin proteins localized to a tight ring at the bud and pseudohyphae necks and as a more diffuse array in emerging germ tubes of hyphae. Deletion analysis demonstrated that the C. albicans homologs of the S. cerevisiae CDC3 and CDC12 septins are essential for viability. In contrast, the C. albicans cdc10Delta and cdc11Delta mutants were viable but displayed conditional defects in cytokinesis, localization of cell wall chitin, and bud morphology. The mutant phenotypes were not identical, however, indicating that these septins carry out distinct functions. The viable septin mutants could be stimulated to undergo hyphal morphogenesis but formed hyphae with abnormal curvature, and they differed from wild type in the selection of sites for subsequent rounds of hyphal formation. The cdc11Delta mutants were also defective for invasive growth when embedded in agar. These results further extend the known roles of the septins by demonstrating that they are essential for the proper morphogenesis of C. albicans during both budding and filamentous growth.  相似文献   

9.
The Candida albicans vacuole has previously been observed to undergo rapid expansion during the emergence of a germ tube from a yeast cell, to occupy the majority of the parent yeast cell. Furthermore, the yeast-to-hypha switch has been implicated in the virulence of this organism. The class C vps (vacuolar protein sorting) mutants of Saccharomyces cerevisiae are defective in multiple protein delivery pathways to the vacuole and prevacuole compartment. In this study C. albicans homologues of the S. cerevisiae class C VPS genes have been identified. Deletion of a C. albicans VPS11 homologue resulted in a number of phenotypes that closely resemble those of the class C vps mutants of S. cerevisiae, including the absence of a vacuolar compartment. The C. albicans vps11Delta mutant also had much-reduced secreted lipase and aspartyl protease activities. Furthermore, vps11Delta strains were defective in yeast-hypha morphogenesis. Upon serum induction of filamentous growth, mutants showed delayed emergence of germ tubes, had a reduced apical extension rate compared to those of control strains, and were unable to form mature hyphae. These results suggest that Vps11p-mediated trafficking steps are necessary to support the rapid emergence and extension of the germ tube from the parent yeast cell.  相似文献   

10.
Candida albicans undergoes a dramatic morphological transition in response to various growth conditions. This ability to switch from a yeast form to a hyphal form is required for its pathogenicity. The intractability of Candida to traditional genetic approaches has hampered the study of the molecular mechanism governing this developmental switch. Our approach is to use the more genetically tractable yeast Saccharomyces cerevisiae to yield clues about the molecular control of filamentation for further studies in Candida. G1 cyclins Cln1 and Cln2 have been implicated in the control of morphogenesis in S. cerevisiae. We show that C. albicans CLN1 (CaCLN1) has the same cell cycle-specific expression pattern as CLN1 and CLN2 of S. cerevisiae. To investigate whether G1 cyclins are similarly involved in the regulation of cell morphogenesis during the yeast-to-hypha transition of C. albicans, we mutated CaCLN1. Cacln1/Cacln1 cells were found to be slower than wild-type cells in cell cycle progression. The Cacln1/Cacln1 mutants were also defective in hyphal colony formation on several solid media. Furthermore, while mutant strains developed germ tubes under several hypha-inducing conditions, they were unable to maintain the hyphal growth mode in a synthetic hypha-inducing liquid medium and were deficient in the expression of hypha-specific genes in this medium. Our results suggest that CaCln1 may coordinately regulate hyphal development with signal transduction pathways in response to various environmental cues.  相似文献   

11.
Candida albicans is a diploid fungus that undergoes a morphological transition between budding yeast, hyphal, and pseudohyphal forms. The morphological transition is strongly correlated with virulence and is regulated in part by quorum sensing. Candida albicans produces and secretes farnesol that regulates the yeast to mycelia morphological transition. Mutants that fail to synthesize or respond to farnesol could be locked in the filamentous mode. To test this hypothesis, a collection of C. albicans mutants were isolated that have altered colony morphologies indicative of the presence of hyphal cells under environmental conditions where C. albicans normally grows only as yeasts. All mutants were characterized for their ability to respond to farnesol. Of these, 95.9% fully or partially reverted to wild-type morphology on yeast malt (YM) agar plates supplemented with farnesol. All mutants that respond to farnesol regained their hyphal morphology when restreaked on YM plates without farnesol. The observation that farnesol remedial mutants are so common (95.9%) relative to mutants that fail to respond to farnesol (4.1%) suggests that farnesol activates and (or) induces a pathway that can override many of the morphogenesis defects in these mutants. Additionally, 9 mutants chosen at random were screened for farnesol production. Two mutants failed to produce detectable levels of farnesol.  相似文献   

12.
13.
Mannoproteins are fungal cell wall components which play a main role in host-parasite relationship. Camp65p is a putative beta-glucanase mannoprotein of 65 kDa which has been characterized as a main target of human immune response against Candida albicans. However, nothing is known about its specific contribution to the biology and virulence of this fungus. We constructed CAMP65 knock-out mutants including null camp65/camp65 and CAMP65/camp65 heterozygous strains. The null strains had the same growth rate and morphology under yeast form as the wild-type strain but they were severely affected in hyphal morphogenesis both in vitro and in vivo. Hyphae formation was restored in revertant strains. The null mutants lost adherence to the plastic, and this was in keeping with the strong inhibition of fungal cell adherence to plastic exerted by anti-Camp65p antibodies. The null mutants were also significantly less virulent than the parental strains, and this loss of virulence was observed both in systemic and in mucosal C. albicans infection models. Nonetheless, the virulence in both infectious models was regained by the CAMP65 revertants. Thus, CAMP65 of C. albicans encodes a putative beta-glucanase, mannoprotein adhesin, which has a dual role (hyphal cell wall construction and virulence), accounting for the particular relevance of host immune response against this mannoprotein.  相似文献   

14.
The yeast Candida albicans is the most important fungal pathogen of humans and a model organism for studying fungal virulence. Sequencing of the C. albicans genome will soon be completed, allowing systematic approaches to analyse gene function. However, techniques to define and characterize essential genes in this permanently diploid yeast are limited. We have developed an efficient method to create conditional lethal C. albicans null mutants by inducible, FLP-mediated gene deletion. Both wild-type alleles of the CDC42 or the BEM1 gene were deleted in strains that carried an additional copy of the respective gene that could be excised from the genome by the site-specific recombinase FLP. Expression of a C. albicans-adapted FLP gene under the control of an inducible promoter generated cell populations consisting of > or = 99.9% null mutants. Upon plating, these cells were unable to form colonies, demonstrating that CDC42 and BEM1 are essential genes in C. albicans. The cdc42 null mutants failed to produce buds and hyphae and grew as large, round cells instead, suggesting that they lacked the ability to produce polarized cell growth. However, the cells still responded to hyphal inducing signals by aggregating and expressing hypha-specific genes, behaviours typical of the mycelial growth form of C. albicans. Budding cells and germ tubes of bem1 null mutants exhibited morphological abnormalities, demonstrating that BEM1 is essential for normal growth of both yeast and hyphae. Inducible, FLP-mediated gene deletion provides a powerful approach to generate conditional lethal C. albicans mutants and allows the functional analysis of essential genes.  相似文献   

15.
The relationship between the morphology and virulence of Candida albicans has aroused interest in the study of the proteins involved in its morphogenesis. We present virulence data for one important element in fungal morphogenesis-septins. We disrupted CaCDC10 and studied the virulence in a mouse infection model and the different steps followed by the fungus during the infection: adherence to epithelial cells, organ colonisation, macrophage phagocytosis, and host survival. We found the altered subcellular localisation of Int1--a C. albicans adhesin- in the septin null mutants. The Int1 mislocalisation and the defects in the cell wall of defective CaCdc10 strains permit us to propose a model for explaining the biological meaning of the absence of virulence presented by these septin mutants.  相似文献   

16.
17.
The conserved anaphase-promoting complex/cyclosome (APC/C) system mediates protein degradation during mitotic progression. Conserved coactivators Cdc20p and Cdh1p regulate the APC/C during early to late mitosis and G(1) phase. Candida albicans is an important fungal pathogen of humans, and it forms highly polarized cells when mitosis is blocked through depletion of the polo-like kinase Cdc5p or other treatments. However, the mechanisms governing mitotic progression and associated polarized growth in the pathogen are poorly understood. In order to gain insights into these processes, we characterized C. albicans orthologues of Cdc20p and Cdh1p. Cdc20p-depleted cells were blocked in early or late mitosis with elevated levels of Cdc5p and the mitotic cyclin Clb2p, suggesting that Cdc20p is essential and has some conserved functions during mitosis. However, the yeast cells formed highly polarized buds in contrast to the large doublets of S. cerevisiae cdc20 mutants, implying a distinct role in morphogenesis. In comparison, cdh1Δ/cdh1Δ cells were viable but showed enrichment of Clb2p and Cdc5p, suggesting that Cdh1p may influence mitotic exit. The cdh1Δ/cdh1Δ phenotype was pleiotropic, consisting of normal or enlarged yeast, pseudohyphae, and some elongated buds, whereas S. cerevisiae cdh1Δ yeast cells were reduced in size. Thus, C. albicans Cdh1p may have some distinct functions. Finally, absence of Cdh1p or Cdc20p had a minor or no effect on hyphal development, respectively. Overall, the results suggest that Cdc20p and Cdh1p may be APC/C activators that are important for mitosis but also morphogenesis in C. albicans. Their novel features imply additional variations in function and underscore rewiring in the emerging mitotic regulatory networks of the pathogen.  相似文献   

18.
19.
白色念珠菌在不同的生长条件下能发生显著的形态变化 ,这种变化由多种调控因子与信号转导途径所调控。酿酒酵母的G1期细胞周期蛋白Cln1和Cln2参与其形态发生 ,cln1/cln1、cln2 /cln2双缺失株不能形成菌丝。把白色念珠菌基因组文库导入cln1/cln1、cln2 /cln2缺失株 ,筛选能校正菌丝形成缺陷的基因 ,分离得到白色念珠菌中的CaBEM 1基因。从核苷酸序列推导 ,CaBEM1编码一种 6 32个氨基酸的蛋白质 ,氨基酸序列分析表明在其N端有 2个SH3结构域 ,中部有 1个PX结构域 ,C端有 1个PB1结构域 ;CaBem1的氨基酸序列与酿酒酵母的Bem1同源性达 38% ,与裂殖酵母的Scd2同源性达 32 %。在酿酒酵母的缺失株中异源表达CaBEM1,能够部分校正它们在氮源缺乏条件下的菌丝形成缺陷。这种菌丝形成的校正作用绕过MAPK途径和cAMP/PKA途径 ,表明CaBem1在菌丝形成中的作用可能位于这两条信号转导途径的下游  相似文献   

20.
Proline-induced germ-tube formation and cell-cell aggregation in four strains of Candida albicans were completely inhibited when the pH of the medium was 5.0 or lower, whereas morphogenesis induced by N-acetylglucosamine (GlcNAc) was unaffected even at pH 4.5. The pH sensitivity of proline-induced germ-tube formation was not caused by a modulation of proline uptake, which was unchanged over the pH range 4.5-6.5. The proline uptake system was specific, constitutive and subject to ammonium repression, and only one permease was detected, with a Km of 179 microM. Cultures deprived of nitrogen in the presence of glucose were derepressed for proline uptake but the yeast-mycelial transition could not be mediated by either proline or GlcNAc. The inhibition of morphogenesis was reversed when the nitrogen starvation was relieved by the addition of ammonium ions, proline, or certain amino acids. These results indicate that the nitrogen status of the cells is critical for the morphogenesis of C. albicans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号