首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The nucleotide Zpp5'A2'p has been isolated from rat liver. Z stands for an unknown compound, probably a nucleoside. The preliminary structure of Zpp5'A2'p has been elucidated by treatment with phosphodiesterase and/or alkaline phosphatase and analysis of the products of the reaction by high pressure liquid chromatography. The following ultraviolet absorption spectral characteristics were determined at pH 7.0: Zpp5'A2'p (lambda max = 265 nm; A250/A260 = 0.76; A280/A260 = 0.83); Zp (lambda max = 280 nm; A250/A260 = 0.88; A280/A260 = 1.46). The molar extinction coefficient found for Zp, at 280 nm, was (7.5 + 0.9) X 10(3) M-1 cm-1. The base of Zp could correspond to an indole derivative.  相似文献   

2.
n-Decyl-NHpppA2'p5'A2'p5'A, a gamma-substituted, phosphatase-resistant pppA2'p5'A2'p5'A analog, gives similar rRNA degradation pattern in interferon-treated HeLa cell extracts--even at a concentration of 10(-9)M--as the natural compound does.  相似文献   

3.
Adenosine 2',5'-bisphosphate (pAp) is present in liver from 2-day-fasted rats, at a concentration of around 1 microM. pAp was obtained through perchloric acid extraction of the liver followed by two successive DEAE-cellulose chromatographies and an ion-pair high-pressure liquid chromatography. Both pAp extracted from liver and that obtained from a commercial source showed the same pattern of hydrolysis by alkaline phosphatase, i.e., more 5'-AMP than 2'-AMP was obtained as an intermediate of the reaction.  相似文献   

4.
Activation of a nuclease by pppA2'p5'A2'p5'A in intact cells.   总被引:1,自引:0,他引:1  
  相似文献   

5.
An efficient strategy for the synthesis of branched nucleotides 14 and 15 has been developed using key intermediates 6 and 10.  相似文献   

6.
A series of tubercidin (7-deazaadenosine) analogues of 2-5A of the general formula p5'(c7A)2'p[5'(c7A)-2'p]n5'(c7A) (n = 0-5) were prepared by lead ion catalyzed polymerization of the 5'-phosphoroimidazolidate of tubercidin. Through the corresponding imidazolidates, these oligonucleotide 5'-monophosphates were converted to the 5'-triphosphates. All reported structures were corroborated by enzyme digestion and 1H or 31P nuclear magnetic resonance. When evaluated for its ability to bind to the 2-5 A-dependent endonuclease of mouse L cells, the tubercidin analogue of trimeric 2-5A, namely, ppp5'(c7A)2'p5'(c7A)2'p5'(c7A), and the corresponding tetramer were bound as effectively as 2-5A itself; nonetheless, it and the corresponding tetramer, ppp5'-(c7A)2'p5'(c7A)2'p5'(c7A)2'p5'(c7A), failed to stimulate the 2-5A-dependent endonuclease as judged by its inability to inhibit translation in extracts of mouse L cells programmed with encephalomyocarditis virus RNA and to give rise to ribosomal RNA cleavage in the same cell system under conditions where 2-5A showed activity at 10(-9) M. The trimer, ppp5'(c7A)2'p5'(c7A)2'p5'(c7A), was an antagonist of 2-5A action in the L cell extract. In the lysed rabbit reticulocyte system, both the trimeric and tetrameric tubercidin 2-5A analogues were bound to the 2-5A-dependent endonuclease as well as 2-5A, but in this case, the tetramer triphosphate, ppp5'(c7A)2'p5'(c7A)2'p5'(c7A)2'p5'(c7A), was just as potent an inhibitor of translation as 2-5A tetramer triphosphate. Moreover, this inhibition was prevented by the established 2-5A antagonist p5'A2'p5'A2'p5'A.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
M J Clemens  B R Williams 《Cell》1978,13(3):565-572
The oligonucleotide pppA2′ p5′ A2′ p5′ A is synthesized by extracts from interferon-treated mouse L cells in the presence of double-stranded RNA. This compound is a potent inhibitor of protein synthesis in cell-free systems prepared from L cells or rabbit reticulocytes.After an initial lag, rates of protein synthesis in vitro are severely depressed in the presence of the oligonucleotide, and polysomes become disaggregated. In the presence of high concentrations of emetine, an inhibitor of chain elongation, reticulocyte polysomes containing an average of 4–6 ribosomes per mRNA are partially degraded to structures containing 1–4 ribosomes after incubation with the oligonucleotide. The level of association of exogenous 35S-Met-tRNAf with initiation complexes is not decreased, and under some conditions is even increased, by the oligonucleotide.When RNA is extracted from control and inhibited reticulocyte lysates and assayed for active mRNA content by retranslation in a fresh mRNA-dependent system, the results show extensive loss of template activity in the material obtained from the incubations containing pppA2′ p5′ A2′ p5′ A. The data are consistent with a mechanism in which this inhibitor activates a nuclease which prevents mRNA from being utilized for protein synthesis. This mechanism is contrasted with that of the heme-controlled repressor, another potent inhibitor of translation, which causes extensive inhibition of Met-tRNAf binding to initiation complexes, has no effect on polysome size in the presence of emetine and does not inactivate mRNA.  相似文献   

8.
9.
Analogs of the triphosphate 2'-5'-linked adenylate trimer (ppp5'A2'p5'A2'p5'A, called 2-5A) which contain 3'-deoxyadenosine (cordycepin) instead of adenosine either in positions one and two, or in all three positions, are 10-100-fold less potent than is parent 2-5A in inhibition of protein synthesis in intact cells, when utilizing calcium co-precipitation techniques to introduce the 5'-triphosphate oligonucleotides into the cells. That the inhibition of protein synthesis was a consequence of activation of the 2-5A-dependent endonuclease by the 3'-deoxyadenosine analogs of 2-5A was demonstrated in obtaining the ribosomal RNA cleavage pattern that is characteristic of endonuclease activation by parent 2-5A. Additional results (i.e. lack of activity by the dimer species ppp5'(3'dA)2'p5'-(3'dA) or the monomer 3'dA) as well as kinetic analysis both in intact cells and in cell-free extracts provided further evidence that the inhibition of protein synthesis observed with these 3'-deoxyadenosine 2-5A analogs was not due to their degradation to the antimetabolite monomer unit 3'-deoxyadenosine.  相似文献   

10.
1. Nicotinamide nucleotide transhydrogenase from Pseudomonas aeruginosa was purified to apparent homogeneity with an improved method employing affinity chromatography on N6-(6aminohexyl)-adenosine 2', 5'-bisphosphate-Sepharose 4B. 2. Polyacrylamide gel electrophoresis of the purified transhydrogenase carried out in the presence of sodium dodecyl sulphate, indicated a minimal molecular weight of 55000 +/- 2000. 3. The kinetic and regulatory properties of the purified transhydrogenase resembled those of the crude enzyme, i.e., NADPH, adenosine 2'-monophosphate and Ca2+ were activators whereas NADP+ was inhibitory. 4. Nicotinamide nucleotide-specific release of binding of the transhydrogenase to N6-(6-aminohexyl)-adenosine-2',5'-bisphosphate-Sepharose and N6-(-aminohexyl)-adenosine-5'-monophosphate-Sepharose suggests the presence of at least two separate binding sites for nicotinamide nucleotides, one that is specific for NADP(H) and one that binds both NAD(H) and NADP(H). 5. Binding of transhydrogenase to N6-)6-aminohexyl)-adenosine-2',5'-bisphosphate-Sepharose and activation of the enzyme by adenosine-2',5'-bisphophate showed a marked pH dependence. In contrast, inhibition of the Ca2+-activated enzyme by adenosine 2',5'-bisphosphate was virtually constant at various pH values. This descrepancy was interpreted to indicate the existence of separate nucleotide-binding effector and active sites.  相似文献   

11.
Sequence-specific 3-deazaadenosine (c(3)A)-substituted analogues of trimeric 2',5'-oligoadenylate, p5'A2'p5'A2'p5'A, were synthesized and evaluated for their ability to activate human RNase L (EC 3.1.2.6) aiming at the elucidation of the nitrogen-3 role in this biochemical process. Substitution of either 5'-terminal or 2'-terminal adenosine with c(3)A afforded the respective analogues p5'(c(3)A)2'p5'A2'p5'A and p5'A2'p5'A2'p5'(c(3)A) that were as effective as the natural tetramer itself as activators of RNase L (EC(50)=1nM). In contrast, p5'A2'p5'(c(3)A)2'p5'A showed diminished RNase L activation ability (EC(50)=10nM). The extensive conformational analysis of the c(3)A-substituted core trimers versus the parent natural core trimer by the (1)H and (13)C NMR, and CD spectroscopy displayed close stereochemical similarity between the natural core trimer and (c(3)A)2'p5'A2'p5'A and A2'p5'A2'p5'(c(3)A) analogues, thereby strong evidences for the syn base orientation about the glycosyl bond of the c(3)A residue of the latter were found. On the contrary, an analogue A2'p5'(c(3)A)2'p5'A displayed rather essential deviations from the spatial arrangement of the parent natural core trimer.  相似文献   

12.
To investigate the relative importance of each of the ribose 3'-hydroxyl groups of 2-5A (ppp5' A2'p5'A2'-p5' A) in determining binding to and activation of the 2-5A-dependent endonuclease (RNase L), the 3'-hydroxyl functionality of each adenosine moiety of 2-5A trimer triphosphate was sequentially replaced by hydrogen. The analog in which the 5'-terminal adenosine was replaced by 3'-deoxyadenosine (viz. ppp5'(3'dA)-2'p5' A2'p5' A) was bound to RNase L as well as 2-5A itself and was only 3 times less potent than 2-5A as an activator of RNase L. On the other hand, when the second adenosine unit was replaced by 3'-deoxyadenosine (viz. ppp5' A2'p5'(3'dA)2'p5' A), binding to RNase L was decreased by a factor of eight relative to 2-5A trimer and, even more dramatically, there was a 500-1000-fold drop in ability to activate the 2-5A-dependent endonuclease. Finally, when the 3'-hydroxyl substituent was converted to hydrogen in the 2'-terminal residue of 2-5A, a significant increase in both binding and activation ability occurred. We conclude that only the 3'-hydroxyl group of the second (from the terminus) nucleotide residue of 2-5A is needed for effective activation of RNase L.  相似文献   

13.
Experimental results on 2′5′-linked subunit systems of nucleic acids are interpreted to substantiate the view that the 2′5′-linked polynucleotides cannot form double-stranded helical structures. In order to look into this aspect of the 2′5′-linked units, as well as to make a detailed comparison between the conformational characteristics of 3′5′- and 2′5′-linked systems, we carried out an exhaustive theoretical study on A2′p5′A. The method was to compute the various terms of energy contributions to a conformational state and then to minimize the total energy, permitting all the relevant dihedral angles to adjust themselves. Four hundred thirty two probable starting conformations were considered for this treatment, but we found only 10 of them to come under low-energy states, i.e., within 5 kcal/mol energy difference with reference to the global minimum energy state. The characteristic properties of these 10 conformations were compared in detail with those previously obtained on the corresponding 3′5′-linked subunit, as well as such units with other base sequences. As a further step, a model-building study was undertaken. Using the backbone-course, base-stacking, and hydrogen-bonding possibilities of the 10 low-energy conformations of the dimer A2′p5′A, double-stranded helical structures were scrutinized for the 2′5′-linked polynucleotide. Of a few reasonable forms, a right-handed duplex structure satisfied our requirements. We describe this new duplex, making comparisons with the standard A- and B-form states of DNA. The available experimental and theoretical results on 2′5′-linked systems are also analyzed.  相似文献   

14.
Yu Z  Lemongello D  Segel IH  Fisher AJ 《Biochemistry》2008,47(48):12777-12786
Most assimilatory bacteria, fungi, and plants species reduce sulfate (in the activated form of APS or PAPS) to produce reduced sulfur. In yeast, PAPS reductase reduces PAPS to sulfite and PAP. Despite the difference in substrate specificity and catalytic cofactor, PAPS reductase is homologous to APS reductase in both sequence and structure, and they are suggested to share the same catalytic mechanism. Metazoans do not possess the sulfate reduction pathway, which makes APS/PAPS reductases potential drug targets for human pathogens. Here, we present the 2.05 A resolution crystal structure of the yeast PAPS reductase binary complex with product PAP bound. The N-terminal region mediates dimeric interactions resulting in a unique homodimer assembly not seen in previous APS/PAPS reductase structures. The "pyrophosphate-binding" sequence (47)TTAFGLTG(54) defines the substrate 3'-phosphate binding pocket. In yeast, Gly54 replaces a conserved aspartate found in APS reductases vacating space and charge to accommodate the 3'-phosphate of PAPS, thus regulating substrate specificity. Also, for the first time, the complete C-terminal catalytic motif (244)ECGIH(248) is revealed in the active site. The catalytic residue Cys245 is ideally positioned for an in-line attack on the beta-sulfate of PAPS. In addition, the side chain of His248 is only 4.2 A from the Sgamma of Cys245 and may serve as a catalytic base to deprotonate the active site cysteine. A hydrophobic sequence (252)RFAQFL(257) at the end of the C-terminus may provide anchoring interactions preventing the tail from swinging away from the active site as seen in other APS/PAPS reductases.  相似文献   

15.
Binding sites for [3H]cAMP on purified regulatory dimers of type II A-kinase (II-R2) are independent as assessed by equilibrium binding (KD = 6 +/- 1.3 nM at pH 7.2, 25 degrees; nH = 1.0) and by the lack of effect of unlabeled cAMP on dissociation rate (kd = 1.0 X 10(-3) sec -1 at pH 7.2, 25 degrees). In contrast, binding sites for [3H]cGMP on purified G-kinase displayed positively cooperative interactions in both equilibrium and dissociation assays with convex upward Scatchard plots, an nH of 1.6 and a dissociation rate (kd = 6.2 X 10(-3) sec-1 at pH 6.8, 0 degree) which was slowed by excess unlabeled cGMP (kd = 1.13 X 10(-3) sec-1 at pH 6.8, degree). Calculated transition state free energies of dissociation revealed that dissociation of nucleotide from G-kinase in the presence of cGMP was restrained by an energy barrier (20.8 kcal.mol-1) similar to that of II-R2 (20.9 kcal.mol-1), whereas dissociation from G-kinase without excess nucleotide occurred more easily (18.9 kcal.mol-1).  相似文献   

16.
3′(2′),5′-Bisphosphate nucleotidase, (EC 3.1.3.7) (BPntase) is a ubiquitous enzyme. Recently, these enzymes have drawn considerable attention as in vivo targets of salt toxicity as well as therapeutic targets of lithium that is used for the treatment of manic-depressive disorders. They belong to the Mg2+-dependent Li+-sensitive phosphomonoesterase super-family and are highly sensitive to lithium and sodium ions. However, the molecular mechanism of inhibition of this group of enzymes by monovalent cations has not been completely understood. Previously we have identified a BPntase (Dhal2p) from a highly halotolerant yeast Debaryomyces hansenii. Molecular characterization revealed a number of unique features in Dhal2p, indicating this is an extraordinary member of the family. In this study, we have carried out the structure-function analysis of Dhal2p through the combination of molecular modeling and in vitro mutagenesis approach. We have not only provided the explanation for the role played by the functionally important elements that are conserved among the members of this family but also identified important, novel structural elements in this enzyme. Our study for the first time unraveled the role of a flap as well as a loop region in the functioning of this enzyme. Most importantly, mutations in the loop region resulted in the creation of a BPntase that was insensitive to salt.  相似文献   

17.
18.
The non-exchangeable 1H-NMR signals of the branch core trinucleotide of the lariat branch site (A2'p5'G3'p5'C, 1) and its derivatives 2 and 3 are completely assigned using one- and two-dimensional NMR techniques including NOE, COSY, NOESY, 1H-1H INADEQUATE and 2D-J-resolved spectroscopy. From the vicinal coupling constants in the individual ribose rings, NOE data and T1 measurements, the following properties of the trimers are deduced. (i) The unique stacking behavior of the trimers is S2'N3'N, and the sugar rings exist predominantly in the N-conformation (3'-endo-2'-exo). (ii) The sugar-base orientations appear to be anti. (iii) The branched trimers exist in solution as single-stranded right-handed conformations resembling A-RNA with stacking between the adenine and guanine residues in aqueous solution at 21 degrees C and pH 7.2. (iv) The calculated values for the torsion angles epsilon t and gamma+ for the trimers are 201-203 degrees and 71-86%, respectively, while the percent beta t values are higher for the guanine (87-92%) than the cytosine residues (73-77%). The computer generated depiction of the triribonucleotide 1 is also shown. These subtle structural features may act as recognition signals for this critical lariat branch site which is essential for the second step in yeast mRNA splicing.  相似文献   

19.
N Zenker  M A Chacon  J T Tildon 《Life sciences》1984,35(22):2213-2217
Liver thyronine 5'-deiodinase activity assayed in crude homogenates in the absence of dithiothreitol (DTT) is increased in rats killed by asphyxia when compared to that of animals killed by phenobarbital injection or decapitation. The addition of cyclic adenosine monophosphate leads to a consistent decrease in observed deiodinase activity, suggesting the possible involvement of this nucleotide in the regulation of this enzyme. The addition of DTT eliminates this effect and suggest a dual regulation of the enzyme by cAMP and physiological sulfhydryl compounds.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号