首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The crystal structure of Escherichia coli isoaspartyl aminopeptidase/asparaginase (EcAIII), an enzyme belonging to the N-terminal nucleophile (Ntn)-hydrolases family, has been determined at 1.9-A resolution for a complex obtained by cocrystallization with l-aspartate, which is a product of both enzymatic reactions catalyzed by EcAIII. The enzyme is a dimer of heterodimers, (alphabeta)(2). The (alphabeta) heterodimer, which arises by autoproteolytic cleavage of the immature protein, exhibits an alphabetabetaalpha-sandwich fold, typical for Ntn-hydrolases. The asymmetric unit contains one copy of the EcAIII.Asp complex, with clearly visible l-aspartate ligands, one bound in each of the two active sites of the enzyme. The l-aspartate ligand is located near Thr(179), the N-terminal residue of subunit beta liberated in the autoproteolytic event. Structural comparisons with the free form of EcAIII reveal that there are no major rearrangements of the active site upon aspartate binding. Although the ligand binding mode is similar to that observed in an l-aspartate complex of the related enzyme human aspartylglucosaminidase, the architecture of the EcAIII active site sheds light on the question of substrate specificity and explains why EcAIII is not able to hydrolyze glycosylated asparagine substrates.  相似文献   

2.
In plants, specialized enzymes are required to catalyze the release of ammonia from asparagine, which is the main nitrogen-relocation molecule in these organisms. In addition, K+-independent plant asparaginases are also active in splitting the aberrant isoaspartyl peptide bonds, which makes these proteins important for seed viability and germination. Here, we present the crystal structure of potassium-independent L-asparaginase from yellow lupine (LlA) and confirm the classification of this group of enzymes in the family of Ntn-hydrolases. The alpha- and beta-subunits that form the mature (alphabeta)2 enzyme arise from autoproteolytic cleavage of two copies of a precursor protein. In common with other Ntn-hydrolases, the (alphabeta) heterodimer has a sandwich-like fold with two beta-sheets flanked by two layers of alpha-helices (alphabetabetaalpha). The nucleophilic Thr193 residue, which is liberated in the autocatalytic event at the N terminus of subunit beta, is part of an active site that is similar to that observed in a homologous bacterial enzyme. An unusual sodium-binding loop of the bacterial protein, necessary for proper positioning of all components of the active site, shows strictly conserved conformation and metal coordination in the plant enzyme. A chloride anion complexed in the LlA structure marks the position of the alpha-carboxylate group of the L-aspartyl substrate/product moiety. Detailed analysis of the active site suggests why the plant enzyme hydrolyzes asparagine and its beta-peptides but is inactive towards substrates accepted by similar Ntn-hydrolases, such as taspase1, an enzyme implicated in some human leukemias. Structural comparisons of LlA and taspase1 provide interesting insights into the role of small inorganic ions in the latter enzyme.  相似文献   

3.
Adenylosuccinate synthetases from different sources contain an N-terminal glycine-rich sequence GDEGKGK, which is homologous to the conserved sequence GXXXXGK found in many other guanine nucleotide-binding proteins or enzymes. To determine the role of this sequence in the structure and function of Escherichia coli adenylosuccinate synthetase, site-directed mutagenesis was performed to generate five mutant enzymes: G12V (Gly12----Val), G15V (Gly15----Val), G17V (Gly17----Val), K18R (Lys18----Arg), and I19T (Ile19----Thr). Comparison of the kinetic properties of the wild-type enzyme and those of the mutant enzymes revealed that the sequence is critical for enzyme activity. Replacement of Gly12, Gly15, or Gly17 with Val, or replacement of Lys18 with Arg, resulted in significant decreases in the kcat/Km values of the enzyme. Because the consensus sequence GXXXXGK(T/S) has been found in many GTP-binding proteins, isoleucine at position 19 in the E. coli adenylosuccinate synthetase was changed to threonine to produce the sequence GDEGKGKT. This mutation, which more closely resembles the consensus sequence, resulted in a 160-fold increase in the Km value for substrate GTP; however, there were no great changes for the other two substrates, IMP and aspartate. Based on these data, we suggest that the N-terminal glycinerich sequence in E. coli adenylosuccinate synthetase plays a more important role in enzyme catalysis than in substrate binding. In addition, a hydrophobic amino acid residue such as isoleucine, leucine, or valine, rather than threonine, may play a critical role in GTP binding in adenosuccinate synthetase. These findings suggest that the glycine-rich sequence in adenylosuccinate synthetase functions differently relative to those in other GTP binding proteins or enzymes.  相似文献   

4.
Y Akiyama  K Ito 《Biochemistry》2001,40(25):7687-7693
Escherichia coli FtsH is a membrane-bound and ATP-dependent protease which degrades some soluble and integral membrane proteins. The N-terminal region of FtsH mediates membrane association as well as homooligomeric interaction of this enzyme. Previously, we studied in vivo functionality of FtsH derivatives, in which the N-terminal membrane region was either deleted (FtsH(DeltaTM)), replaced by a leucine zipper (Zip-FtsH(DeltaTM)), or replaced by a lactose permease transmembrane segment (LacY-FtsH). It was indicated that homooligomerization is required for the minimum proteolytic activity, whereas a transmembrane sequence is required for membrane protein degradation. Here we characterized these proteins in vitro. Although these mutant enzymes were very low in their activities, they were significantly stimulated by dimethyl sulfoxide, which enabled us to characterize their activities. LacY-FtsH degraded both soluble and membrane proteins, but Zip-FtsH(DeltaTM) only degraded soluble proteins. These proteins also exhibited significant ATPase activities. However, FtsH(DeltaTM) remained inactive both in ATPase and in protease activities even in the presence of dimethyl sulfoxide. The monomeric FtsH(DeltaTM) was able to bind ATP and a denatured protein. These results indicate that subunit association is important for the enzymatic catalysis by FtsH and that the additional presence of the transmembrane sequence is required for this enzyme to degrade a membrane protein even under detergent-solubilized conditions.  相似文献   

5.
The spontaneous degradation of asparaginyl and aspartyl residues to isoaspartyl residues is a common type of protein damage in aging organisms. Although the protein-l-isoaspartyl (d-aspartyl) O-methyltransferase (EC 2.1.1.77) can initiate the repair of l-isoaspartyl residues to l-aspartyl residues in most organisms, no gene homolog or enzymatic activity is present in the budding yeast Saccharomyces cerevisiae. Therefore, we used biochemical approaches to elucidate how proteins containing isoaspartyl residues are metabolized in this organism. Surprisingly, the level of isoaspartyl residues in yeast proteins (50–300 pmol of isoaspartyl residues/mg of protein extract) is comparable with organisms with protein-l-isoaspartyl (d-aspartyl) O-methyltransferase, suggesting a novel regulatory pathway. Interfering with common protein quality control mechanisms by mutating and inhibiting the proteasomal and autophagic pathways in vivo did not increase isoaspartyl residue levels compared with wild type or uninhibited cells. However, the inhibition of metalloproteases in in vitro aging experiments by EDTA resulted in an ∼3-fold increase in the level of isoaspartyl-containing peptides. Characterization by mass spectrometry of these peptides identified several proteins involved in metabolism as targets of isoaspartyl damage. Further analysis of these peptides revealed that many have an N-terminal isoaspartyl site and originate from proteins with short half-lives. These results suggest that one or more metalloproteases participate in limiting isoaspartyl formation by robust proteolysis.  相似文献   

6.
An anchor-chain molecular system was constructed for controlled orientation and high activity in enzyme immobilization. A streptavidin recognition peptide (streptag) coding sequence was fused to the 3' end of the phoA gene, which codes for E. coli alkaline phosphatase (EAP). Both the wild-type (WT) and the Asp-101 --> Ser (D1O1S) mutant were modified with the streptag sequence with or without the insertion of a flexible linker peptide [-(Gly-Ser)(5)-] coding sequence. The fused genes were cloned into the vector pASK75 and expressed in the periplasm of the host cell Escherichia coli SM547. The proteins were released by osmotic shock and purified by ion-exchange chromatography. Enzyme activities of all proteins were measured spectrophotometrically with rho-nitrophenyl phosphate as the substrate. Specific activities of D101S-streptag and D101S-linker-streptag enzymes were increased 25- or 34-fold over the WT, respectively. These fusion proteins were then immobilized on microtiter plates through streptag-streptavidin binding reaction. After immobilization, the D101S-linker-streptag enzyme displayed the highest residual activity and the ratio of enzyme activities of the linker to nonlinker enzymes was 8.4. These results show that the addition of a linker peptide provides a spacer so as to minimize steric hindrance between the enzyme and streptavidin. The method provides a solution for controlled enzyme immobilization with high recover activity, which is especially important in construction of biosensors, biochips, or other biodevices.  相似文献   

7.
Mammalian tissues contain protein carboxyl methyltransferases that catalyze the transfer of methyl groups from S-adenosylmethionine to the free carboxyl groups of D-aspartyl or L-isoaspartyl residues (EC 2.1.1.77). These enzymes have been postulated to play a role in the repair and/or degradation of spontaneously damaged proteins. We have now characterized a similar activity from Escherichia coli that recognizes L-isoaspartyl-containing peptides as well as protein substrates such as ovalbumin. The enzyme was purified by DEAE-cellulose, hydroxylapatite, Sephadex G-100, polyaspartate, and reversed-phase chromatography and was shown to consist of a single 24-kDa polypeptide chain. The sequence determined for the N-terminal 39 residues was used to design an oligonucleotide probe that allowed the precise localization of its structural gene (pcm) on the physical map of the E. coli chromosome at 59 min. Transformation of E. coli cells with a plasmid containing DNA from this region results in a 3-4-fold overproduction of enzyme activity. The nucleotide sequence determined for the pcm gene and its flanking regions was used to deduce a mature amino acid sequence of 207 residues with a calculated molecular weight of 23,128. This sequence shows 30.8% sequence identity with the human L-isoaspartyl/D-aspartyl methyltransferase and suggests that this enzyme catalyzes a fundamental reaction in both procaryotic and eucaryotic cells.  相似文献   

8.
9.
Riboflavin kinases catalyze synthesis of FMN from riboflavin and ATP. These enzymes have to date been cloned from bacteria, yeast, and mammals, but not from plants. Bioinformatic approaches suggested that diverse plant species, including many angiosperms, two gymnosperms, a moss (Physcomitrella patens), and a unicellular green alga (Chlamydomonas reinhardtii), encode proteins that are homologous to riboflavin kinases of yeast and mammals, but contain an N-terminal domain that belongs to the haloacid dehalogenase superfamily of enzymes. The Arabidopsis homolog of these proteins was cloned by RT-PCR, and was shown to have riboflavin kinase and FMN hydrolase activities by characterizing the recombinant enzyme produced in Escherichia coli. Both activities of the purified recombinant Arabidopsis enzyme (AtFMN/FHy) increased when the enzyme assays contained 0.02% Tween 20. The FMN hydrolase activity of AtFMN/FHy greatly decreased when EDTA replaced Mg(2+) in the assays, as expected for a member of the Mg(2+)-dependent haloacid dehalogenase family. The functional overexpression of the individual domains in E. coli establishes that the riboflavin kinase and FMN hydrolase activities reside, respectively, in the C-terminal (AtFMN) and N-terminal (AtFHy) domains of AtFMN/FHy. Biochemical characterization of AtFMN/FHy, AtFMN, and AtFHy shows that the riboflavin kinase and FMN hydrolase domains of AtFMN/FHy can be physically separated, with little change in their kinetic properties.  相似文献   

10.
Sheng Y  Khanam N  Tsaksis Y  Shi XM  Lu QS  Bognar AL 《Biochemistry》2008,47(8):2388-2396
The folylpolyglutamate synthetase (FPGS) enzyme of Escherichia coli differs from that of Lactobacillus casei in having dihydrofolate synthetase activity, which catalyzes the production of dihydrofolate from dihydropteroate. The present study undertook mutagenesis to identify structural elements that are directly responsible for the functional differences between the two enzymes. The amino terminal domain (residues 1-287) of the E. coli FPGS was found to bind tetrahydrofolate and dihydropteroate with the same affinity as the intact enzyme. The domain-swap chimera proteins between the E. coli and the L. casei enzymes possess both folate or pteroate binding properties and enzymatic activities of their amino terminal portion, suggesting that the N-terminal domain determines the folate substrate specificity. Recent structural studies have identified two unique folate binding sites, the omega loop in L. casei FPGS and the dihydropteroate binding loop in the E. coli enzyme. Mutants with swapped omega loops retained the activities and folate or pteroate binding properties of the rest of the enzyme. Mutating L. casei FPGS to contain an E. coli FPGS dihydropteroate binding loop did not alter its substrate specificity to using dihydropteroate as a substrate. The mutant D154A, a residue specific for the dihydropteroate binding site in E. coli FPGS, and D151A, the corresponding mutant in the L. casei enzyme, were both defective in using tetrahydrofolate as their substrate, suggesting that the binding site corresponding to the E. coli pteroate binding site is also the tetrahydrofolate binding site for both enzymes. Tetrahydrofolate diglutamate was a slightly less effective substrate than the monoglutamate with the wild-type enzyme but was a 40-fold more effective substrate with the D151A mutant. This suggests that the 5,10-methylenetetrahydrofolate binding site identified in the L. casei ternary structure may bind diglutamate and polyglutamate folate derivatives.  相似文献   

11.
The RecB subunit of the Escherichia coli RecBCD enzyme has both helicase and nuclease activities. The helicase function was localized to an N-terminal domain, whereas the nuclease activity was found in a C-terminal domain. Recent analysis has uncovered a group of proteins that have weak amino acid sequence similarity to the RecB nuclease domain and that are proposed to constitute a family of related proteins (Aravind, L., Walker, D. R., and Koonin, E. V. (1999) Nucleic Acids Res. 27, 1223-1242). One is the E. coli RecE protein (exonuclease VIII), an ATP-independent exonuclease that degrades the 5'-terminated strand of double-stranded DNA. We have made mutations in several residues of RecE that align with the critical residues of RecB, and we find that the mutations reduce or abolish the nuclease activity of RecE but do not affect the enzyme binding to linear double-stranded DNA. Proteolysis experiments with subtilisin show that a stable 34-kilodalton C-terminal domain that contains these critical residues has nuclease activity, whereas no stable proteolytic fragments accumulate from the N-terminal portion of RecE. These results show that RecE has a nuclease domain and active site that are similar to RecB, despite the very weak sequence similarity between the two proteins. These similarities support the hypothesis that the nuclease domains of the two proteins are evolutionarily related.  相似文献   

12.
Plant l-asparaginases and their bacterial homologs, such as EcAIII found in Escherichia coli, form a subgroup of the N-terminal nucleophile (Ntn)-hydrolase family. In common with all Ntn-hydrolases, they are expressed as inactive precursors that undergo activation in an autocatalytic manner. The maturation process involves intramolecular hydrolysis of a single peptide bond, leading to the formation of two subunits (alpha and beta) folded as one structural domain, with the nucleophilic Thr residue located at the freed N terminus of subunit beta. The mechanism of the autocleavage reaction remains obscure. We have determined the crystal structure of an active site mutant of EcAIII, with the catalytic Thr residue substituted by Ala (T179A). The modification has led to a correctly folded but unprocessed molecule, revealing the geometry and molecular environment of the scissile peptide bond. The autocatalytic reaction is analyzed from the point of view of the Thr(179) side chain rotation, identification of a potential general base residue, and the architecture of the oxyanion hole.  相似文献   

13.
Sulfurtransferases/rhodaneses are a group of enzymes widely distributed in plants, animals, and bacteria that catalyze the transfer of sulfur from a donor molecule to a thiophilic acceptor substrate. Sulfurtransferases (STs) consist of two globular domains of nearly identical size and conformation connected by a short linker sequence. In plant STs this linker sequence is exceptionally longer than in sequences from other species. The Arabidopsis ST1 protein (AJ131404) contains five cysteine residues: one residue is universally conserved in all STs and considered to be catalytically essential; a second one, closely located in the primary sequence, is conserved only in sequences from eukaryotic species. Of the remaining three cysteine residues two are conserved in the so far known plant STs and one is unique to the Arabidopsis ST1. The aim of our study was to investigate the role of the two-domain structure, of the unique plant linker sequence and of each cysteine residue. The N- and C-terminal domains of the Arabidopsis ST1, the full-length protein with a shortened linker sequence and several point-mutated proteins were overexpressed in E. coli, purified and used for enzyme activity measurements. The C-terminal domain itself displayed ST activity which could be increased by adding the separately prepared N-terminal domain. The activity of an ST1 derivative with a shortened linker sequence was reduced by more than 60% of the wild-type activity, probably because of a drastically reduced protein stability. The replacement of each cysteine residue resulted in mutant forms which differed significantly in their stability, in the specific ST activities, and in their kinetic parameters which were determined for 3-mercaptopyruvate as well as thiosulfate as sulfur substrates: mutation of the putative active site cysteine (C332) essentially abolished activity; for C339 a crucial role at least for the turnover of thiosulfate could be identified.  相似文献   

14.
The biochemical properties of the D-glutamate-adding enzymes (MurD) from Escherichia coli, Haemophilus influenzae, Enterococcus faecalis, and Staphylococcus aureus were investigated to detect any differences in the activity of this enzyme between gram-positive and gram-negative bacteria. The genes (murD) that encode these enzymes were cloned into pMAL-c2 fusion vector and overexpressed as maltose-binding protein-MurD fusion proteins. Each fusion protein was purified to homogeneity by affinity to amylose resin. Proteolytic treatments of the fusion proteins with factor Xa regenerated the individual MurD proteins. It was found that these fusion proteins retain D-glutamate-adding activity and have Km and Vmax values similar to those of the regenerated MurDs, except for the H. influenzae enzyme. Substrate inhibition by UDP-N-acetylmuramyl-L-alanine, the acceptor substrate, was observed at concentrations greater than 15 and 30 microM for E. coli and H. influenzae MurD, respectively. Such substrate inhibition was not observed with the E. faecalis and S. aureus enzymes, up to a substrate concentration of 1 to 2 mM. In addition, the two MurDs of gram-negative origin were shown to require monocations such as NH4+ and/or K+, but not Na+, for optimal activity, while anions such as Cl- and SO4(2-) had no effect on the enzyme activities. The activities of the two MurDs of gram-positive origin, on the other hand, were not affected by any of the ions tested. All four enzymes required Mg2+ for the ligase activity and exhibited optimal activities around pH 8. These differences observed between the gram-positive and gram-negative MurDs indicated that the two gram-negative bacteria may apply a more stringent regulation of cell wall biosynthesis at the early stage of peptidoglycan biosynthesis pathway than do the two gram-positive bacteria. Therefore, the MurD-catalyzed reaction may constitute a fine-tuning step necessary for the gram-negative bacteria to optimally maintain its relatively thin yet essential cell wall structure during all stages of growth.  相似文献   

15.
The peptide-N4-(N-acetyl-beta-D-glucosaminyl) asparagine amidase F (PNGase F) gene from Flavobacterium meningosepticum was cloned into a high copy number Escherichia coli plasmid. Levels of PNGase F activity produced in cultures of the recombinant strain were up to 100-fold higher than those obtained in cultures of F. meningosepticum. The complete PNGase F gene sequence was determined. Comparison of the predicted amino acid sequence of pre-PNGase F to the N-terminal sequence of the native mature enzyme indicates that the protein is synthesized with a 40-amino acid signal sequence that is removed during secretion in F. meningosepticum. The recombinant PNGase F produced in E. coli is a mixture of products comprised predominantly of two proteins with molecular masses of 36.3 and 36.6 kDa. These proteins have a higher apparent molecular mass than the 34.7-kDa native enzyme. N-terminal amino acid sequencing demonstrated that these higher molecular mass products result from cleavage of the pre-PNGase F in E. coli upstream of the native N terminus. The PNGase F gene was engineered to encode a preenzyme that was processed in E. coli to give an N terminus identical to that of the native enzyme. Purified preparations of this form of recombinant PNGase F were shown to be suitable for glycoprotein analyses since they possess no detectable endo-beta-N-acetylglucosaminidase F, exoglycosidase, or protease activity.  相似文献   

16.
Shimazaki Y  Sugawara Y  Manabe T 《Proteomics》2004,4(5):1406-1411
After cytosol proteins in the mouse liver were separated by nondenaturing two-dimensional electrophoresis (2-DE), activities of several enzymes, such as fructose bisphosphatase, sorbitol dehydrogenase and malate dehydrogenase, transferase and sorbitol dehydrogenase, or several dehydrogenases, were analyzed on the same 2-D gel. Further, peptidase (or protease) activity can be examined by matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS) when peptides such as angiotensin and adenocorticotropic hormone are incubated in the presence of the cytosol protein separated by nondenaturing 2-DE. Sequence structures of proteins on the 2-D gel were analyzed by peptide mass fingerprinting using MALDI-TOF-MS or by peptide sequencing using electrospray ionization-tandem mass spectrometry (ESI-MS/MS). The combination of activity and sequence structure accurately verified the position and activity range of the separated enzymes on the nondenaturing 2-D gel. From these results, we created a nondenaturing 2-D enzyme profile involving activities and sequence structure of cytosol proteins from mouse liver. This profile can be used for checking whether activities of enzymes were specifically or nonspecifically inhibited by inhibitors.  相似文献   

17.
BACKGROUND: Formation of isoaspartyl residues is one of several processes that damage proteins as they age. Protein L-isoaspartate (D-aspartate) O-methyltransferase (PIMT) is a conserved and nearly ubiquitous enzyme that catalyzes the repair of proteins damaged by isoaspartyl formation. RESULTS: We have determined the first structure of a PIMT from crystals of the T. maritima enzyme complexed to S-adenosyl-L-homocysteine (AdoHcy) and refined it to 1.8 A resolution. Although PIMT forms one structural unit, the protein can be divided functionally into three subdomains. The central subdomain closely resembles other S-adenosyl-L-methionine-dependent methyltransferases but bears a striking alteration of topological connectivity, which is not shared by any other member of this family. Rather than arranged as a mixed beta sheet with topology 6 upward arrow7 downward arrow5 upward arrow4 upward arrow1 upward arrow2 upward arrow3 upward arrow, the central sheet of PIMT is reorganized to 7 upward arrow6 downward arrow5 upward arrow4 upward arrow1 upward arrow2 upward arrow3 upward arrow. AdoHcy is largely buried between the N-terminal and central subdomains by a conserved and largely hydrophobic loop on one rim of the binding cleft, and a conserved Ser/Thr-rich beta strand on the other. The Ser/Thr-rich strand may provide hydrogen bonds for specific interactions with isoaspartyl substrates. The side chain of Ile-206, a conserved residue, crosses the cleft, restricting access to the donor methyl group to a deep well, the putative isoaspartyl methyl acceptor site. CONCLUSIONS: The structure of PIMT reveals a unique modification of the methyltransferase fold along with a site for specific recognition of isoaspartyl substrates. The sequence conservation among PIMTs suggests that the current structure should prove a reliable model for understanding the repair of isoaspartyl damage in all organisms.  相似文献   

18.
A marine Antarctic psychrotolerant bacterium (strain ANT/505), isolated from sea ice-covered surface water from the Southern Ocean, showed pectinolytic activity on citrus pectin agar. The sequencing of the 16S rRNA of isolate ANT/505 indicates a taxonomic affiliation to Pseudoalteromonas haloplanktis. The supernatant of this strain showed three different pectinolytic activities after growth on citrus pectin. By activity screening of a genomic DNA library of isolate ANT/505 in Escherichia coli, two different pectinolytic clones could be isolated. Subcloning and sequencing revealed two open reading frames (ORF) of 1,671 and 1,968 nt, corresponding to proteins of 68 and 75 kDa, respectively. The deduced amino acid sequence of the two ORFs showed homology to pectate lyases from Erwinia chrysanthemi and Aspergillus nidulans. The pectate lyases contain signal peptides of 17 and 26 amino acids that were correctly processed after overexpression in E. coli BL21. Both enzymes were purified by anionic exchange chromatography. Maximal enzymatic activities for both pectate lyases were observed at 30 degrees C and a pH range of 9 to 10. The Km values of both lyases for pectate and citrus pectin were 1 g l(-1) and 5 g l(-1), respectively. Calcium was required for activity on pectic substrates, whereas the addition of 1 mM ethylenediaminetetraacetic acid (EDTA) resulted in complete inhibition of the enzymes. These two enzymes represent the first pectate lyases isolated and characterized from a cold-adapted marine bacterium.  相似文献   

19.
This study investigated the enzymatic function of two putative plant GPXs, GPXle1 from Lycopersicon esculentum and GPXha2 from Helianthus annuus, which show sequence identities with the mammalian phospholipid hydroperoxide glutathione peroxidase (PHGPX). Both purified recombinant proteins expressed in Escherichia coli show PHGPX activity by reducing alkyl, fatty acid and phospholipid hydroperoxides but not hydrogen peroxide in the presence of glutathione. Interestingly, both recombinant GPXle1 and GPXha2 proteins also reduce alkyl, fatty acid and phospholipid hydroperoxides as well as hydrogen peroxide using thioredoxin as reducing substrate. Moreover, thioredoxin peroxidase (TPX) activities were found to be higher than PHGPX activities in terms of efficiency and substrate affinities, as revealed by their respective Vmax and Km values. We therefore conclude that these two plant GPX-like proteins are antioxidant enzymes showing PHGPX and TPX activities.  相似文献   

20.
In Clostridium acetobutylicum, conversion of butyraldehyde to butanol is enzymatically achieved by butanol dehydrogenase (BDH). A C. acetobutylicum gene that encodes this protein was identified by using an oligonucleotide designed on the basis of the N-terminal amino acid sequence of purified C. acetobutylicum NADH-dependent BDH. Enzyme assays of cell extracts of Escherichia coli harboring the clostridial gene demonstrated 15-fold-higher NADH-dependent BDH activity than untransformed E. coli, as well as an additional NADPH-dependent BDH activity. Kinetic, sequence, and isoelectric focusing analyses suggest that the cloned clostridial DNA contains two or more distinct C. acetobutylicum enzymes with BDH activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号