首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Possible bioactive conformations of alpha-melanotropin   总被引:1,自引:0,他引:1  
Rat brain microtubules were prepared at the adult stage and from immature (i.e., 4-day-old) animals. At an early stage of development, the composition of microtubule-associated proteins is qualitatively different from that found at the adult stage [(1982) Eur. J. Biochem. 129, 465-471]. The influence of calmodulin on the time course of assembly of second cycle microtubules was compared at both stages of brain development (i.e., microtubules originating from 4-day-old and adult animals). In the presence of Ca2+ the inhibition of microtubule assembly was more pronounced at a young stage of brain development than at the adult stage. Cross-linking studies with 125I-labeled calmodulin further established that the two major microtubule-associated proteins, MAP2 and TAU were able to bind to calmodulin at both stages of brain development but with different intensities. The labeling with 125I-labeled calmodulin was Ca2+-dependent, specific, displaced by unlabeled calmodulin and trifluoperazine.  相似文献   

2.
Microtubule proteins were purified from chick brains at various developmental stages from the 12-day embryo to adult. Three species of microtubule-associated protein-1 (MAP-1) and 5-7 molecular components of tau proteins were observed by SDS-polyacrylamide gel electrophoresis. The molecular compositions were observed to change during development of the chick brain.  相似文献   

3.
《FEBS letters》1987,212(1):145-148
SDS gel electrophoresis of microtubule proteins obtained from bovine brain by polymerization cycles revealed a new protein of 18 kDa. This protein was copolymerized with tubulin and its stoichiometry to tubulin remained constant for at least 5 cycles of assembly. Moreover, this protein remained bound to microtubules stabilized with 10 μM taxol and pelleted through a 4 M glycerol cushion. The same 18 kDa protein was found in a purified preparation of the high molecular mass microtubule-associated protein 1 (MAP-1). The 18 kDa protein copurified with the MAP-1 heavy chains during column chromatography on phosphocellulose, DEAE-cellulose, hydroxyapatite and Bio-Gel A-15m. Incubation of the MAP-1 preparation with a mouse monoclonal antibody to the light chain 1 (LC-1) of MAP-1 and with a second precipitating antibody (a rabbit antibody to mouse IgG) immunoprecipitated from the solution all the known components of MAP-1 (heavy chains, LC-1, LC-2), as well as the 18 kDa protein. Immunoblotting showed, however, that this antibody does not interact directly with the 18 kDa protein. These results indicate that the 18 kDa protein forms a complex with all other components of MAP-1. This polypeptide, therefore, is a new light chain (LC-3) of M AP-1.  相似文献   

4.
One of the major groups of microtubule-associated proteins (MAPs) found associated with the microtubules isolated from HeLa cells has a molecular weight of just over 200,000. Previous work has demonstrated that these heLa MAPs are similar in several properties to MAP-2, one of the major MAPs of mammalian neural microtubules, although the two types of proteins are immunologically distinct. The 200,000 mol wt HeLa MAPs have now been found to remain soluble after incubation in a boiling water bath and to retain the ability to promote tubulin polymerization after this treatment, two unusual properties also shown by neural MAP- 2. This property of heat stability has allowed the development of a simplified procedure for purification of the 200,000 HeLa MAPs and has provided a means for detection of these proteins, even in crude cell extracts. These studies have also led to the detection of a protein in crude extracts of HeLa cells and in cycled HeLa microtubules which has been identified as MAP-2 on the basis of (a) comigration with calf brain MAP-2 on SDS PAGE, (b) presence in purified microtubules, (c) heat stability, and (d) reaction with two types of antibodies prepared against neural high molecular weight-MAPs, one of these a monoclonal antibody against hog brain MAP-2, although present in HeLa cells, is at all stages of microtubule purification a relatively minor component in comparison to the 200,000 HeLa MAP's.  相似文献   

5.
Immunoblotting analysis was used to identify the microtubule-associated proteins (MAPs) present in cultures of mouse brain neurons. Polyclonal antibodies were raised against the two main adult brain MAPs, i.e., MAP2 (300 kDa) and tau (60-70 kDa). Whatever the stage of the culture, which was performed in a defined medium (3 or 6 days), the anti-MAP2 serum detected several high-molecular-weight components (including MAP2) and an entity with 62-65 kDa. Anti-tau revealed essentially a major peak of 48 kDa (young tau) but also slightly cross-reacted with the 62-65 kDa entity. During the culture period (0-6 days) the cells developed progressively a dense neuritic network; the concentration of the different MAPs increased in parallel but at different rates depending on the different species. The increase in concentration of the high-molecular-weight components occurred before that of 48-kDa tau. This suggests that high-molecular-weight MAPs and 48-kDa tau might be involved respectively in the initiation and elongation of neurites. In contrast, and since the main developmental changes in tau composition seen in vivo did not occur during the time course of the culture, this transition might be related to later events of neuronal differentiation.  相似文献   

6.
We have developed an affinity chromatography method for the isolation of microtubule-associated proteins (MAPs) from soluble cytoplasmic extracts of rat pancreas. Among the ten proteins which copurify with pancreas tubulin on a colchicine derivatives-affinity chromatography, three polypeptides of respectively 58, 55 and 48 kDa strongly bind to the microtubule affinity column. To begin to characterize these proteins, we have generated polyclonal antibodies against tau polypeptides from brains of immature chicken or rat. As judged by immunoblots, the three polypeptides seem to be immunologically related to the tau proteins previously localized in brain.  相似文献   

7.
A monoclonal antibody to neuronal microtubule-associated protein MAP-2 was produced. Immunoblotting of lysates of cultured cells revealed that the antibody, called MA-01, bound to a protein of Mr 210 kDa. Double immunofluorescence microscopy showed that the antibody stained microtubules. No fibrillar structures were observed in cells treated with Colcemid, but the antibody stained vinblastine paracrystals. In cytochalasin B-treated Leydig cells, MA-01 antibody stained star-like structures that codistributed with actin patches and with a star-like arrangement of vimentin. These observations indicate that the protein immunologically related to MAP-2 in Leydig cells could be involved in the interaction of microtubules with intermediate filaments or microfilaments.  相似文献   

8.
Bovine brain microtubule protein, containing both tubulin and microtubule-associated proteins, undergoes ADP-ribosylation in the presence of [14C]NAD+ and a turkey erythrocyte mono-ADP-ribosyltransferase in vitro. The modification reaction could be demonstrated in crude brain tissue extracts where selective ADP-ribosylation of both the alpha and beta chains of tubulin and of the high molecular weight microtubule-associated protein MAP-2 occurred. In experiments with purified microtubule protein, tubulin dimer, the high molecular weight microtubule-associated protein MAP-2, and another high molecular weight mirotubule-associated protein which may be a MAP-1 species were heavily labeled. Tubulin and MAP-2 incorporated [14C]ADP-ribose to an average extent of approximately 2.4 and 30 mol of ADP-ribose/mol of protein, respectively. Assembly of microtubule protein into microtubules in vitro was inhibited by ADP-ribosylation, and incubation of assembled steady-state microtubules with ADP-ribosyltransferase and NAD+ resulted in rapid depolymerization of the microtubules. Thus, the eukaryotic enzyme can ADP-ribosylate tubulin and microtubule-associated proteins to much greater extents than previously observed with cholera and pertussis toxins, and the modification can significantly modulate microtubule assembly and disassembly.  相似文献   

9.
Primary cultures of mouse brain astrocytes have been used to identify the microtubule-associated proteins (MAPs) present in this cell type at different stages of in vitro differentiation. The MAPs of the astrocyte have been identified by polyacrylamide gel electrophoresis and immunological detection. Two antisera were raised against two brain MAPs, tau and MAP-2. These antisera were also used to label the microtubular network in the intact astrocytes at different stages of the culture. The mature astrocyte contains a variety of MAP-like proteins. Anti-MAP-2 serum detected several proteins of high molecular weight (380,000, 260,000, 205,000 and 165,000 mol wt) and one microheterogeneous peak of 83,000 mol wt. Anti-tau also detected high molecular weight components (380,000 to approximately 200,000 mol wt) but not the 165,000-mol-wt peak; in addition two microheterogeneous peaks of 83,000 and 62,000 mol wt were detected by the anti-tau serum. The 62,000-mol-wt peak was therefore detected only by the anti-tau serum whereas the 83,000-mol-wt component cross-reacted with both antisera. At early stages of the culture the immature cell contained about two times less immunoreactive material than at mature stages. Qualitative changes of the high molecular weight components were also observed. In the intact cell both antisera revealed a dense fibrous network. At early stages of the culture the astroblasts were stained by the antisera but the reaction was very diffuse in the cytoplasm; few fibrous cells were intensively stained. Morphological differentiation, which began after serum deprivation and which was accelerated by forskolin (a drug that induces cyclic AMP accumulation), led to high labeling of both the cell body and the cellular processes. In the presence of colchicine the staining regressed, the processes shortened, and the cell returned to a less-apparently differentiated state.  相似文献   

10.
The changes in the levels of microtubule-associated proteins (MAPs) during advanced embryonic stages, neonatal and adult organisms reflect the importance of these cytoskeletal proteins in relation to the morphogenesis of the central nervous system. MAP-1B is found in prenatal brains and it appears to have the highests levels in neonatal rat brains, being a developmentally-regulated protein. In this research, a fast procedure to isolate MAP-1B, as well as MAP-2 and MAP-3 from neonatal rat brains was designed, based on the differential capacity of poly L-aspartic acid to release MAPs during temperature-dependent cycles of microtubule assembly in the absence of taxol. The high molecular weight MAP-1B was recovered in the warm supernatants after microtubular protein polymerization in the presence of low concentrations of polyaspartic acid. Instead, MAP-2 and a 180 kDa protein with characteristics of MAP-3 remained associated to the polymer after the assembly. Further purification of MAP-1B was attained after phosphocellulose chromatography. Isolation of MAP-2 isoforms together with MAP-3 was achieved on the basis of their selective interactions with calmodulin-agarose affinity columns. In addition, MAP-2 and MAP-3 were also purified on the basis of their capacities to interact with the tubulin peptide -II (422–434) derivatized on an Affigel matrix. However, MAP-1B did not interact with the -II tubulin fragment, but it showed interaction with the Affigel-conjugated -I (431–444) tubulin peptide. The different MAPs componentes were characterized by western blots using specific monoclonal antibodies. A salient feature of neonatal rat brain MAP-3 was its interactions with site-directed antibodies that recognize binding epitopes on the repetitive sequences of tau and MAP-2. However, these site-specific antibodies did not interact with MAP-1B from the neonatal rat brain tissue.Abbreviations PAA poly (L-aspartic acid) - HMW-MAPs high molecular weight microtubule associated proteins  相似文献   

11.
Abstract: The expression of high-molecular-weight (HMW) microtubule-associated protein-2 (MAP-2) expressing exon 8 (MAP-2+8) was examined by immunoblotting during rat brain development and in sections of human CNS. In rat brain, HMW MAP-2+8 expression was detected at embryonic day 21 and increased during postnatal development. In adult rats, HMW MAP-2+8 comigrated with MAP-2a. In human adult brain, HMW MAP-2+8 was expressed in select neuronal populations, including pyramidal neurons of layers III and V of the neocortex and parahippocampal cortex, pyramidal neurons in the endplate, CA2 and subiculum of the hippocampus, and the medium-sized neurons of the basal ganglia. In the cerebellum, a subpopulation of Golgi neurons in the internal granular cell layer and most Purkinje cells were also stained. In the spinal cord staining was observed in large neurons of the anterior horn. Staining was present in cell bodies and dendrites but not in axons. At the ultra-structural level, HMW MAP-2+8 immunoreactivity was observed on mitochondrial membranes and in postsynaptic densities (PSDs) of some asymmetric synapses in the midfrontal cortex and spinal cord. Immunoblots of proteins isolated from enriched mitochondrial and PSD fractions from adult human frontal lobe and rat brains confirmed the presence of HMW MAP-2+8. The presence of HMW MAP-2+8 in dendrites and in close proximity to PSDs supports a role in structural and functional attributes of select excitatory CNS synapses.  相似文献   

12.
The phosphorylation of rat brain microtubule protein on intracranial injection of labeled phosphate has been analyzed. The major microtubule protein components phosphorylated in vivo in rat brain are the high-molecular-weight microtubule-associated proteins (MAPs) MAP-1A, MAP-1B, and MAP-2. A slight phospholabeling of beta-tubulin, which corresponds to the phosphorylation of a minor neuronal beta-tubulin isotype, is also observed. Whereas MAP-1B, MAP-2, and beta-tubulin are phosphorylated in the brain of 5-day-old rat pups, when most neurons of the CNS are extending processes, MAP-1A phosphorylation is observed only after neuronal maturation takes place. The phosphorylation of MAP-1A, MAP-1B, and beta-tubulin may be due mainly to casein kinase II or a related enzyme, whereas MAP-2 appears to be modified by other enzymes such as the cyclic AMP-dependent protein kinase (protein kinase A) and the calcium/phospholipid-dependent protein kinase (protein kinase C). Microtubule protein phosphorylation has also been studied in neuronal cultures. In differentiated neuroblastoma cells, only MAP-1B and beta-tubulin are phosphorylated in a manner coupled to neurite outgrowth. In primary cultures of fetal rat brain neurons, the pattern of microtubule protein phosphorylation resembles that found in vivo in rat pup brain. As phosphorylated MAP-1A and MAP-1B are present mainly on assembled microtubules, whereas the phosphorylation of MAP-2 decreases its interaction with microtubules, a role can be suggested for the phosphorylation of these proteins in the regulation of microtubule assembly and disassembly during neuronal development.  相似文献   

13.
Microtubule protein purified from brain tissue by cycles of in vitro assembly-disassembly contains ATPase activity that has been postulated to be associated with microtubule-associated proteins (MAPs) and therefore significant for studies of microtubule-dependent motility. In this paper we demonstrate that greater than 90% of the ATPase activity is particulate in nature and may be derived from contaminating membrane vesicles. We also show that the MAPs (MAP-1, MAP-2, and tau factors) and other high molecular weight polypeptides do not contain significant amounts of ATPase activity. These findings do not support the concept of "brain dynein" or of MAPs with ATPase activity.  相似文献   

14.
1. The presence of microtubule-associated protein MAP-1B in all mammalian tissues tested, as well as in brain, has been demonstrated by immunoblotting using a monospecific polyclonal antibody. 2. The expression of brain MAP-1B is developmentally controlled, as it is less abundant in adult than in newborn rat brain, where it is a major microtubule assembly promoting factor. 3. The level of MAP-1B in tissues other than brain is lower than it is in brain; but the relative ratios of MAP-1B to tubulin are very similar in all tissues, thus differing from the observed for MAP-2 or tau. 4. The amount of MAP-1B in non-nervous tissues seems not to be under developmental control. 5. These results are consistent with a role for MAP-1B in the assembly of microtubules in most cells.  相似文献   

15.
Nectin-like molecule 1 (NECL1)/CADM3/IGSF4B/TSLL1/SynCAM3, from now on referred to as NECL1, is a neural tissue-specific immunoglobulin-like cell-cell adhesion molecule which has Ca(2+)-independent homo- or heterophilic cell-cell adhesion activity and plays an important role in the formation of synapses, axon bundles and myelinated axons. Here we first detected the expression of NECL1 in human fetal and adult brains, and mouse brains at different developmental stages. The results indicated that two bands with molecular weights of about 62 kDa and 48 kDa were found in human fetal brain, while only one band with a molecular weight of about 48 kDa was found in human adult brain; two bands with molecular weights of about 62 kDa and 48 kDa whose expression level gradually increased were also found from mouse E16 to P14, while only one band with a molecular weight of about 48 kDa was found from P14. Bioinformatics analysis showed there were two putative N-glycosylation sites within human NECL1 at positions N25LS and N290KS and within mouse Necl1 at positions N23LS and N288KS, respectively. There was no O-glycosylation site in either human NECL1 or mouse Necl1. Based on the results of N-Glycosidase F treatment with human fetal brain tissue and lysates from transient transfection with human wild-type or glycosylation site mutant NECL1 in 293ET cells, we demonstrated that human NECL1 is an N-linked glycoprotein with a single glycosylation site at position N290KS. Cell aggregation assay further showed there was an increased adhesion activity after the glycosylation site mutation of NECL1 molecule.  相似文献   

16.
17.
The endogenous substrate for protein carboxymethyltransferase in brain was examined. Several polypeptides were methylated when brain slices were incubated with L-methionine or when subcellular fractions of brain, such as the cytosolic fraction, were incubated with S-adenosyl L-methionine. Two methyl-accepting proteins in the cytoplasm were identified as tubulin and high molecular weight microtubule-associated proteins (300 kDa), which are components of microtubules. Tubulin behaved as a 43 kDa protein in acidic polyacrylamide gel electrophoresis, but as a 55 kDa protein in SDS-polyacrylamide gel electrophoresis. The methyl moiety transferred to these proteins from L-methionine was labile at alkaline pH. The high molecular weight microtubule-associated proteins showed higher methyl-accepting activity than tubulin or ovalbumin, which was used as a standard substrate: about 20 mmol of high molecular weight microtubule-associated proteins, 2 mmol of tubulin and 10 mmol of ovalbumin were methylated per mol of each protein in 30 min under the experimental conditions used.  相似文献   

18.
MAP2a, an Alternatively Spliced Variant of Microtubule-Associated Protein 2   总被引:2,自引:0,他引:2  
Abstract: MAP2, a dendritically localized microtubule-associated protein (MAP), consists of a pair of high molecular mass (280 kDa) polypeptides, MAP2a and MAP2b, and several low molecular mass (70 kDa) proteins called MAP2c. Although MAP2b and MAP2c have been shown to arise via alternative splicing, it was not clear whether MAP2a is also created by alternative splicing or by posttranslational modification. Using epitope peptide mapping, we have demonstrated that an element specific to MAP2a is situated at its N-terminal end. A cDNA clone from an adult rat brain library was found to contain an additional 246 nucleotides situated at the 5' end of the 9-kb MAP2 mRNA. Antibodies generated against the encoded protein sequence recognize specifically MAP2a in rat brain homogenates. Moreover, although MAP2a, like MAP2b, is found in dendrites and cell bodies, its temporal appearance and cell type-specific distribution in rat brain differs from MAP2b.  相似文献   

19.
A neuroblastoma protein related to the brain microtubule-associated protein, MAP-1B, as determined by immunoprecipitation and coassembly with brain microtubules, becomes phosphorylated when N2A mouse neuroblastoma cells are induced to generate microtubule-containing neurites. To characterize the protein kinases that may be involved in this in vivo phosphorylation of MAP-1B, we have studied its in vitro phosphorylation. In brain microtubule protein, MAP-1B appears to be phosphorylated in vitro by an endogenous casein kinase II-like activity which also phosphorylates the related protein MAP-1A but scarcely phosphorylates MAP-2. A similar kinase activity has been detected in cell-free extracts of differentiating N2A cells. Using brain MAP preparations devoid of endogenous kinase activities and different purified protein kinases, we have found that MAP-1B is barely phosphorylated by cAMP-dependent protein kinase, Ca/calmodulin-dependent protein kinase, or Ca/phospholipid-dependent protein kinase whereas MAP-1B is one of the preferred substrates, together with MAP-1A, for casein kinase II. Brain MAP-1B phosphorylated in vitro by casein kinase II efficiently coassembles with microtubule proteins in the same way as in vivo phosphorylated MAP-1B from neuroblastoma cells. Furthermore, the phosphopeptide patterns of brain MAP-1B phosphorylated in vitro by either purified casein kinase II or an extract obtained from differentiating neuroblastoma cells are identical to each other and similar to that of in vivo phosphorylated neuroblastoma MAP-1B. Thus, we suggest that the observed phosphorylation of a protein identified as MAP-1B during neurite outgrowth is mainly due to the activation of a casein kinase II-related activity in differentiating neuroblastoma cells. This kinase activity, previously implicated in beta-tubulin phosphorylation (Serrano, L., J. Díaz-Nido, F. Wandosell, and J. Avila, 1987. J. Cell Biol. 105: 1731-1739), may consequently have an important role in posttranslational modifications of microtubule proteins required for neuronal differentiation.  相似文献   

20.
The in vitro degradation of microtubule-associated protein 2 (MAP-2) and spectrin by the calcium-dependent neutral protease calpain was studied. Five major results are reported. First, MAP-2 isolated from twice-cycled microtubules (2 X MT MAP-2) was extremely sensitive to calpain-induced hydrolysis. Even at an enzyme-to-substrate ratio (wt/wt) of 1:200, 2 X MT MAP-2 was significantly degraded by calpain. Second, MAP-2 purified from the total brain heat-stable fraction (total MAP-2) was significantly more resistant to calpain-induced hydrolysis compared with 2 X MT MAP-2. Third, MAP-2a and MAP-2b were proteolyzed similarly by calpain, although some relative resistance of MAP-2b was observed. Fourth, the presence of calmodulin significantly increased the extent of calpain-induced hydrolysis of the alpha-subunit of spectrin. Fifth, the two neuronal isoforms of brain spectrin (240/235 and 240/235E, referred to as alpha/beta N and alpha/beta E, respectively) showed different sensitivities to calpain. alpha N-spectrin was significantly more sensitive to calpain-induced degradation compared to alpha E-spectrin. Among other things, these results suggest a role for the calpain-induced degradation of MAP-2, as well as spectrin, in such physiological processes as alterations in synaptic efficacy, dendritic remodeling, and in pathological processes associated with neurodegeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号