首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Little is known about the mechanisms of intracellular targeting of viral nucleic acids within infected cells. We used in situ hybridization to visualize the distribution of tobacco mosaic virus (TMV) viral RNA (vRNA) in infected tobacco protoplasts. Immunostaining of the ER lumenal binding protein (BiP) concurrent with in situ hybridization revealed that vRNA colocalized with the ER, including perinuclear ER. At midstages of infection, vRNA accumulated in large irregular bodies associated with cytoplasmic filaments while at late stages, vRNA was dispersed throughout the cytoplasm and was associated with hair-like protrusions from the plasma membrane containing ER. TMV movement protein (MP) and replicase colocalized with vRNA, suggesting that viral replication and translation occur in the same subcellular sites. Immunostaining with tubulin provided evidence of colocalization of vRNA with microtubules, while disruption of the cytoskeleton with pharmacological agents produced severe changes in vRNA localization. Mutants of TMV lacking functional MP accumulated vRNA, but the distribution of vRNA was different from that observed in wild-type infection. MP was not required for association of vRNA with perinuclear ER, but was required for the formation of the large irregular bodies and association of vRNA with the hair-like protrusions.  相似文献   

2.
The movement protein (MP) of Tobacco mosaic virus mediates the cell-to-cell transport of viral RNA through plasmodesmata, cytoplasmic cell wall channels for direct cell-to-cell communication between adjacent cells. Previous in vivo studies demonstrated that the RNA transport function of the protein correlates with its association with microtubules, although the exact role of microtubules in the movement process remains unknown. Since the binding of MP to microtubules is conserved in transfected mammalian cells, we took advantage of available mammalian cell biology reagents and tools to further address the interaction in flat-growing and transparent COS-7 cells. We demonstrate that neither actin, nor endoplasmic reticulum (ER), nor dynein motor complexes are involved in the apparent alignment of MP with microtubules. Together with results of in vitro coprecipitation experiments, these findings indicate that MP binds microtubules directly. Unlike microtubules associated with neuronal MAP2c, MP-associated microtubules are resistant to disruption by microtubule-disrupting agents or cold, suggesting that MP is a specialized microtubule binding protein that forms unusually stable complexes with microtubules. MP-associated microtubules accumulate ER membranes, which is consistent with a proposed role for MP in the recruitment of membranes in infected plant cells and may suggest that microtubules are involved in this process. The ability of MP to interfere with centrosomal gamma-tubulin is independent of microtubule association with MP, does not involve the removal of other tested centrosomal markers, and correlates with inhibition of centrosomal microtubule nucleation activity. These observations suggest that the function of MP in viral movement may involve interaction with the microtubule-nucleating machinery.  相似文献   

3.
The p30 movement protein (MP) is essential for cell-to-cell spread of tobacco mosaic virus in planta. We used anion-exchange chromatography and preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) to obtain highly purified 30-kDa MP, which migrated as a single band in native PAGE. Analytical ultracentrifugation suggested that the protein was monodisperse and dimeric in the nonionic detergent n-octyl-beta-D-glucopyranoside. Circular dichroism (CD) spectroscopy showed that the detergent-solubilized protein contained significant alpha-helical secondary structure. Proteolysis of the C-tail generated a trypsin-resistant core that was a mixture of primarily monomers and some dimers. We propose that MP dimers are stabilized by electrostatic interactions in the C terminus as well as hydrophobic interactions between putative transmembrane alpha-helical coiled coils.  相似文献   

4.
Cell-to-cell spread of tobacco mosaic virus (TMV) through plant intercellular connections, the plasmodesmata, is mediated by a specialized viral movement protein (MP). In vivo studies using transgenic tobacco plants showed that MP is phosphorylated at its C-terminus at amino acid residues Ser258, Thr261 and Ser265. When MP phosphorylation was mimicked by negatively charged amino acid substitutions, MP lost its ability to gate plasmodesmata. This effect on MP-plasmodesmata interactions was specific because other activities of MP, such as RNA binding and interaction with pectin methylesterases, were not affected. Furthermore, TMV encoding the MP mutant mimicking phosphorylation was unable to spread from cell to cell in inoculated tobacco plants. The regulatory effect of MP phosphorylation on plasmodesmal permeability was host dependent, occurring in tobacco but not in a more promiscuous Nicotiana benthamiana host. Thus, phosphorylation may represent a regulatory mechanism for controlling the TMV MP-plasmodesmata interactions in a host-dependent fashion.  相似文献   

5.
Virus-encoded movement protein (MP) mediates cell-to-cell spread of tobacco mosaic virus (TMV) through plant intercellular connections, the plasmodesmata. The molecular pathway by which TMV MP interacts with the host cell is largely unknown. To understand this process better, a cell wall-associated protein that specifically binds the viral MP was purified from tobacco leaf cell walls and identified as pectin methylesterase (PME). In addition to TMV MP, PME is recognized by MPs of turnip vein clearing virus (TVCV) and cauliflower mosaic virus (CaMV). The use of amino acid deletion mutants of TMV MP showed that its domain was necessary and sufficient for association with PME. Deletion of the PME-binding region resulted in inactivation of TMV cell-to-cell movement.  相似文献   

6.
In addition to its influence on plasmodesmal function, tobacco mosaic virus movement protein (TMV‐MP) causes an alteration in carbon metabolism in source leaves and in resource partitioning among the various plant organs. The present study was aimed at characterizing the influence of cucumber mosaic virus (CMV)‐MP on carbohydrate metabolism and transport in both tobacco and melon plants. Transgenic tobacco plants expressing the CMV‐MP had reduced levels of soluble sugars and starch in their source leaves and a significantly reduced root‐to‐shoot ratio in comparison with control plants. A novel virus‐vector system was employed to express the CMV‐coat protein (CP), the CMV‐MP or the TMV‐MP in melon plants. This set of experiments indicated that the viral MPs cause a significant elevation in the proportion of sucrose in the phloem sap collected from petioles of source leaves, whereas this sugar was at very low levels or even absent from the sap of control melon plants. The mode by which the CMV‐MP exerts its effect on phloem‐sap sugar composition is discussed in terms of possible alterations in the mechanism of phloem loading.  相似文献   

7.
Attenuated strains of tobacco mosaic virus (TMV) have been used to protect crops against virulent strains. The synthesis of viral proteins and RNAs was investigated in protoplasts that had been infected separately with three tomato strains of TMV, virulent type L, and attenuated strains L11 and L11A. It was revealed that the mutations, which are responsible for the viral attenuation and have been mapped in the p126 (p184) gene, caused a reduction of the synthesis of the viral-coded p30 protein with a cell-to-cell movement function and its mRNA, but it had no significant effect on the synthesis of other viral proteins and RNAs in virus-infected protoplasts. Thus, it was shown that the attenuated strains can multiply as efficiently as the virulent strain in initially inoculated cells, but they can not spread efficiently outside the infected cells. In addition, it is suggested that a non-structural protein, p126 or p184, of TMV is involved in the synthesis of viral subgenomic p30 mRNA.  相似文献   

8.
Summary. The intercellular communication by plasmodesmata (PD) is important for the growth and development of plants, and the transport of macromolecules through PD is likely to be regulated by developmental signals. While PD in the apical meristem transport macromolecules such as mRNAs, the branched PD in the mature leaf do not transport large macromolecules freely. The changes in PD during development might be important for sink-to-source changes in leaves, but the molecular mechanism is still unknown. Movement proteins (MPs) of the tobacco mosaic virus localize in the branched PD and increase the size exclusion limit, allowing transport of viral RNA. We developed a method for differential extraction of MP from isolated cell walls of transgenic tobacco leaves expressing MP or MP tagged with green-fluorescent protein. Lithium chloride at a concentration of 8 M removed filamentous structures in branched PD, the possible attachment site of MP. As some endogenous proteins were coeluted with MP by the treatment, this extraction method might be a powerful tool for investigating MP-interacting proteins in branched PD. Correspondence and reprints: Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan.  相似文献   

9.
10.
The targeting of the movement protein (MP) of Tobacco mosaic virus to plasmodesmata involves the actin/endoplasmic reticulum network and does not require an intact microtubule cytoskeleton. Nevertheless, the ability of MP to facilitate the cell-to-cell spread of infection is tightly correlated with interactions of the protein with microtubules, indicating that the microtubule system is involved in the transport of viral RNA. While the MP acts like a microtubule-associated protein able to stabilize microtubules during late infection stages, the protein was also shown to cause the inactivation of the centrosome upon expression in mammalian cells, thus suggesting that MP may interact with factors involved in microtubule attachment, nucleation, or polymerization. To further investigate the interactions of MP with the microtubule system in planta, we expressed the MP in the presence of green fluorescent protein (GFP)-fused microtubule end-binding protein 1a (EB1a) of Arabidopsis (Arabidopsis thaliana; AtEB1a:GFP). The two proteins colocalize and interact in vivo as well as in vitro and exhibit mutual functional interference. These findings suggest that MP interacts with EB1 and that this interaction may play a role in the associations of MP with the microtubule system during infection.  相似文献   

11.
Summary A coat-protein-free mutant of tobacco mosaic virus as well as mutants with a non-functional coat protein were found to interfere with the establishment and spread of challenging strains of TMV. The results do not support an earlier concept, according to which the genome of a related challenging virus could be captured by the coat protein of the virus introduced in advance. The presence of a viral coat protein is obviously not essential and a competition among the viral genomes for some specific site seems to be a more likely mechanism of cross protection.A part of the data was presented at the 5th International Congress for Virology, Strassburg, August 2–7, 1981  相似文献   

12.
The movement protein (MP) and coat protein (CP) encoded by Alfalfa mosaic virus (AMV) RNA 3 are both required for virus transport. RNA 3 vectors that expressed nonfused green fluorescent protein (GFP), MP:GPF fusions, or GFP:CP fusions were used to study the functioning of mutant MP and CP in protoplasts and plants. C-terminal deletions of up to 21 amino acids did not interfere with the function of the CP in cell-to-cell movement, although some of these mutations interfered with virion assembly. Deletion of the N-terminal 11 or C-terminal 45 amino acids did not interfere with the ability of MP to assemble into tubular structures on the protoplast surface. Additionally, N- or C-terminal deletions disrupted tubule formation. A GFP:CP fusion was targeted specifically into tubules consisting of a wild-type MP. All MP deletion mutants that showed cell-to-cell and systemic movement in plants were able to form tubular structures on the surface of protoplasts. Brome mosaic virus (BMV) MP did not support AMV transport. When the C-terminal 48 amino acids were replaced by the C-terminal 44 amino acids of the AMV MP, however, the BMV/AMV chimeric protein permitted wild-type levels of AMV transport. Apparently, the C terminus of the AMV MP, although dispensable for cell-to-cell movement, confers specificity to the transport process.  相似文献   

13.
Interaction of tomato mosaic virus movement protein with tobacco RIO kinase   总被引:4,自引:0,他引:4  
Tomato mosaic virus (ToMV) has a regulatory gene encoding a movement protein (MP) that is involved in the cell-to-cell movement of viral RNA through plasmodesmata. To identify the host cell factors interacting with ToMV MP, we used a recombinant MP probe to isolate cDNA clones from a phage expression library of Nicotiana tabacum by a far-Western screening method. One of the cDNA clones encoded an MP-interacting protein, MIP-T7, homologous to the yeast novel protein kinase, Rio1p. We isolated a full-length cDNA by RT-PCR. The putative gene product was designated NtRIO, and shared 33 and 73% amino acid identity with yeast and Arabidopsis RIO kinases, respectively. In vitro analyses using recombinant proteins showed that NtRIO also interacted with a different MP derived from Cucumber mosaic virus. NtRIO had autophosphorylation activity and phosphorylated ToMV MP. Addition of recombinant tobacco casein kinase 2 resulted in a marked increase in the phosphorylation of NtRIO. The interaction between NtRIO and ToMV MP was inhibited by phosphorylation of NtRIO.  相似文献   

14.
David Zimmern  P.J.G. Butler 《Cell》1977,11(3):455-462
Upon mixing purified TMV RNA with limited amounts of viral coat protein in the form of the disk aggregate, a unique region of the whole RNA becomes protected from nuclease digestion. The protected RNA consists of fragments up to 500 nucleotides long in varying yields, which are found in nucleoprotein particles having a protein-nucleic acid ratio similar to the mature virus. The protected RNA, when reextracted, is able to rebind to coat protein disks rapidly, quantitatively and with high affinity, becoming once more RNAase-resistant in the process. Small aggregates of TMV protein (A protein) are inactive in formation of the nuclease-resistant complexes. On the basis of this evidence, we identify the isolated RNA fragments as portions of TMV RNA containing the origin or initiation site for in vitro reassembly, which have been protected from digestion by incorporation into assembly nucleation complexes.The yield, but not the length distribution, of the protected RNA pieces is found to double upon increasing the protein added from 1–2 disk-equivalents of protein per RNA molecule. This implies that the formation of the nucleation complexes may involve a highly cooperative initial addition of protein.  相似文献   

15.
Summary Cell-to-cell communication in plants occurs through plasmodesmata, cytoplasmic channels that traverse the cell wall between neighboring cells. Plasmodesmata are also exploited by many viruses as an avenue for spread of viral progeny. In the case of tobacco mosaic virus (TMV), a virally-encoded movement protein (MP) enables the virus to move through plasmodesmata during infection. We have used thin section electron microscopy and immunocytochemistry to examine the structure of plasmodesmata in transgenic tobacco plants expressing the TMV MP. We observed a change in structure of the plasmodesmata as the leaves age, both in control and MP expressing [MP(+)] plants. In addition, the plasmodesmata of older cells of MP(+) plants accumulate a fibrous material in the central cavity. The presence of the fibers is correlated with the ability to label plasmodesmata with anti-MP antibodies. The developmental stage of leaf tissue at which this material is observed is the stage at which an increase in the size exclusion limit of the plasmodesmata can be measured in MP(+) plants. Using cell fractionation and aqueous phase partitioning studies, we identified the plasma membrane and cell wall as the compartments with which the MP stably associates. The nature of the interaction between the MP and the plasma membrane was studied using sodium carbonate and Triton X-100 washes. The MP behaves as an integral membrane protein. Identifying the mechanism by which the MP associates with plasma membrane and plasmodesmata will lead to a better understanding of how the MP alters the function of the plasmodesmata.Abbreviations MP movement protein - TMV tobacco mosaic virus  相似文献   

16.
Changes in the number of protoplasts, viability, protein and chlorophyll contents and ribonucleases activity were studied in tobacco mesophyll protoplastsin vitro inoculated with tobacco mosaic virus (TMV). The number of protoplasts slowly increased during the cultivation period and the viability decreased from 95 to 67% in the control noninoculated protoplasts, and to 55% in the infected protoplasts. 30 h after inoculation the protein and chlorophyll contents strongly decreased to 25–30% and 17–19%, respectively, in comparison with contents 3 h after inoculation. The chlorophylla/b ratio decreased from 2.11 and 2.02 to 0.79 and 0.60 in healthy and infected protoplasts, respectively. The activities of ribonucleases in protoplasts quickly decreased during experiment but they were higher in infected than in noninfected protoplasts (between 20 to 30 h after inoculation they were 132 to 146% higher than that in healthy controls). These activities corresponded to the multiplication curve of TMV.  相似文献   

17.
The movement protein of tobacco mosaic virus, MP30, mediates viral cell-to-cell transport via plasmodesmata. The complex MP30 intra- and intercellular distribution pattern includes localization to the endoplasmic reticulum, cytoplasmic bodies, microtubules, and plasmodesmata and likely requires interaction with plant endogenous factors. We have identified and analyzed an MP30-interacting protein, MPB2C, from the host plant Nicotiana tabacum. MPB2C constitutes a previously uncharacterized microtubule-associated protein that binds to and colocalizes with MP30 at microtubules. In vivo studies indicate that MPB2C mediates accumulation of MP30 at microtubules and interferes with MP30 cell-to-cell movement. In contrast, intercellular transport of a functionally enhanced MP30 mutant, which does not accumulate and colocalize with MP30 at microtubules, is not impaired by MPB2C. Together, these data support the concept that MPB2C is not required for MP30 cell-to-cell movement but may act as a negative effector of MP30 cell-to-cell transport activity.  相似文献   

18.
Summary Hydrolytic activities of leaf extracts from normal and transgenic plants, with (+ MP) and without (-MP) the movement protein of tobacco mosaic virus, were examined. In the + MP transgenic plants, as compared with non-transgenic and — MP plants, higher hydrolytic activities were found on the following substrates: bis-(nitrophenyl)-phosphate (BPNPP, phosphodiesterase), p-nitrophenyl-(phenyl)-phosphate (PNPPP, nucleotidephosphodiesterase) and thymidine-3-monophosphate p-nitrophenyl ester (T3MPP; 3nucleotide phosphodiesterase.) The + MP plant lines, as compared with other transgenic plants, exhibited higher nucleotide-phosphodiesterase activity in the soluble as well as in the membrane fraction. Substrate concentration kinetic studies revealed the presence of a nucleotide-phospho-diesterase with a high substrate affinity in the +MP extracts in addition to the enzyme with a relatively low substrate affinity present also in the — MP transgenic plants. This high affinity enzyme could be removed from the soluble fraction by precipitation with anti-MP serum, indicating its possible association with the movement protein.  相似文献   

19.
20.
Eukaryotic cells restrain the activity of foreign genetic elements, including viruses, through RNA silencing. Although viruses encode suppressors of silencing to support their propagation, viruses may also exploit silencing to regulate host gene expression or to control the level of their accumulation and thus to reduce damage to the host. RNA silencing in plants propagates from cell to cell and systemically via a sequence-specific signal. Since the signal spreads between cells through plasmodesmata like the viruses themselves, virus-encoded plasmodesmata-manipulating movement proteins (MP) may have a central role in compatible virus:host interactions by suppressing or enhancing the spread of the signal. Here, we have addressed the propagation of GFP silencing in the presence and absence of MP and MP mutants. We show that the protein enhances the spread of silencing. Small RNA analysis indicates that MP does not enhance the silencing pathway but rather enhances the transport of the signal through plasmodesmata. The ability to enhance the spread of silencing is maintained by certain MP mutants that can move between cells but which have defects in subcellular localization and do not support the spread of viral RNA. Using MP expressing and non-expressing virus mutants with a disabled silencing suppressing function, we provide evidence indicating that viral MP contributes to anti-viral silencing during infection. Our results suggest a role of MP in controlling virus propagation in the infected host by supporting the spread of silencing signal. This activity of MP involves only a subset of its properties implicated in the spread of viral RNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号