首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel method was established for simultaneous quantitation of testosterone (T) and dihydrotestosterone (DHT) in murine tissue and serum samples. Endogenous T and DHT, together with the internal standards 17α-methyl-T and 17α-methyl-DHT, were extracted from tissues and then derivatized by reaction with 2-hydrazino-4-(trifluoromethyl)-pyrimidine (HTP). Analysis by liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) resulted in product ion spectra of HTP derivatives of both T and DHT that showed analyte-specific fragmentations; the latter fragmentations were characterized by the use of high-resolution Orbitrap MS/MS. These specific fragmentations enabled quantitation of T and DHT in the multiple-reaction monitoring (MRM) mode. The method was validated with charcoal-stripped serum as the matrix. The lower limit of quantitation (LLOQ) was 0.10 ng/ml for T and 0.50 ng/ml for DHT. The method was then used for determination of serum and tissue levels of T and DHT in transgenic mice carrying a hypomorphic NADPH-cytochrome P450 reductase gene (Cpr-low mice). Remarkably, ovarian T levels in Cpr-low mice were found to be 25-fold higher than those in wild-type mice, a finding that at least partly explains the female infertility seen in the Cpr-low mice. In conclusion, our method provides excellent sensitivity and selectivity for determination of endogenous levels of T and DHT in mouse tissues.  相似文献   

2.
A sensitive and specific high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS-MS) method has been developed at our center for the determination of glimepiride in human plasma. After the addition of the internal standard, plasma samples were extracted by liquid-liquid extraction technique using diethyl ether. The compounds were separated on a prepacked C18 column using a mixture of acetonitrile, methanol and ammonium acetate buffer as mobile phase. A Finnigan LCQDUO ion trap mass spectrometer connected to an Alliance Waters HPLC was used to develop and validate the method. The analytical method was validated according to the FDA bioanalytical method validation guidance. The results were within the accepted criteria as stated in the aforementioned guidance. The method was proved to be sensitive and specific by testing six different plasma batches. Linearity was established for the range of concentrations 5.0-500.0 ng/ml with a coefficient of determination (r2) of 0.9998. Accuracy for glimepiride ranged from 100.58 to 104.48% at low, mid and high levels. The intra-day precision was better than 12.24%. The lower limit of quantitation (LLOQ) was identifiable and reproducible at 5.0 ng/ml with a precision of 7.96%. The proposed method enables the unambiguous identification and quantitation of glimepiride for pharmacokinetic, bioavailability or bioequivalence studies.  相似文献   

3.
Medium-chain acyl-coenzyme A (CoA) esters are key metabolites in lipid metabolism. Liquid chromatography-electrospray ionization mass spectrometry analysis of medium-chain acyl-CoA esters is described. Eight medium-chain acyl-CoA esters were well separated on a C(8)-MS reversed-phase column using a linear gradient of ammonium acetate buffer (pH 5.3)-acetonitrile. The positive-ion mass spectra of all the saturated and unsaturated medium-chain acyl-CoA esters gave dominant [M+H](+) ions, whereas their negative-ion mass spectra showed abundant [M-H](-) and [M-2H](2-) ions. The positive-ion mode of operation was slightly less sensitive than the negative-ion detection mode. Five medium-chain acyl-CoA esters of C(6:0), C(8:0), C(8:1), C(10:0), and C(10:1) in liver, heart, kidney, and brain from the mouse were identified. The predominant acyl-CoA peaks were C(6:0), C(8:0), and C(10:0). Small amounts of medium-chain acyl-CoAs of C(8:1) and C(10:1) were detected only in heart and kidney. The analytical method is very useful for the analysis of medium-chain acyl-CoA esters in the tissues.  相似文献   

4.
A sensitive and specific high-performance liquid chromatography (HPLC)-electrospray ionization tandem mass spectrometry (MS-MS) was developed for the determination of bulleyaconitine A (BLA) in human plasma. BLA and internal standard (I.S.) ketoconazole were extracted from the plasma by a liquid-liquid extraction. The supernatant was evaporated to complete dryness and reconstituted with acetonitrile containing 0.1% acetic acid before injecting into an ODS MS column. The gradient mobile phase was composed of a mixture of acetonitrile (containing 0.1% acetic acid, v/v) and 0.1% acetic acid aqueous solution eluted at 0.3 ml/min. BLA and I.S. were determined by multiple reaction monitoring using precursor-->product ion combinations at m/z 644.6-->584.3 and 531.2-->81.6, respectively. Linearity was established for the concentration range of 0.12-6 ng/ml. The recoveries of BLA ranged from 96.93 to 113.9% and the R.S.D. was within 20%. The method is rapid and applicable to the pharmacokinetic studies of BLA in human.  相似文献   

5.
Previous studies have shown that plasma 1,5-anhydroglucitol (1,5-AG) is markedly reduced among diabetic patients and therefore serves as a sensitive marker for short-term glycemic control. The current study describes the development of the liquid chromatography negative ion electrospray tandem mass spectrometry (LC-MS/MS) method to measure 1,5-AG in human plasma. The samples were pre-treated with protein precipitation and an isotope-labeled internal standard was used. Chromatographic separation was achieved on amide column (150 mm x 2.0mm i.d., 5 microm) followed by detection with multiple reaction monitoring mode. Linearity, accuracy, precision, recovery, matrix effect, and stability were evaluated during method validation over the range of 1-50 microg/mL. The validated method has been clinically applied among 159 type 2 diabetic patients and 290 control subjects. A marked reduction in 1,5-AG levels among the diabetic patients and significant between-gender difference in nondiabetic subjects were observed.  相似文献   

6.
An analytical method based on liquid chromatography with positive ion electrospray ionization (ESI) coupled to tandem mass spectrometry detection was developed for the determination of Lisinopril in human plasma using Enalaprilat as internal standard. The analyte and internal standard were extracted from the plasma samples by solid-phase extraction using Waters HLB Oasis SPE cartridges and chromatographed on a C8 analytical column. The mobile phase consisted of acetonitrile/water (60:40, v/v) + 20 mM acetic acid + 4.3 mM of triethylamine. The method had a chromatographic total run-time of 6.5 min and was linear within the range 2.00-200 ng/ml. Detection was carried out on a Micromass triple quadrupole tandem mass spectrometer by multiple reaction monitoring (MRM). The precision (CV%) and accuracy, calculated from limit of quantification (LOQ) samples (n = 8), were 8.9 and 98.9%, respectively. The method herein described was employed in a bioequivalence study of two tablet formulations of Lisinopril 20mg.  相似文献   

7.
An analytical method based on liquid chromatography with positive ion electrospray ionization (ESI) coupled to tandem mass spectrometry detection was developed for the determination of lansoprazole in human plasma using omeprazole as the internal standard. The analyte and internal standard were extracted from the plasma samples by liquid-liquid extraction using diethyl-ether-dichloromethane (70:30; v/v) and chromatographed on a C(18) analytical column. The mobile phase consisted of acetonitrile-water (90:10; v/v)+10 mM formic acid. The method has a chromatographic total run time of 5 min and was linear within the range 2.5-2000 ng/ml. Detection was carried out on a Micromass triple quadrupole tandem mass spectrometer by Multiple Reaction Monitoring (MRM). The intra- and inter-run precision, calculated from quality control (QC) samples, was less than 3.4%. The accuracy as determined from QC samples was less than 9%. The method herein described was employed in a bioequivalence study of two capsule formulations of lansoprazole.  相似文献   

8.
A method based on liquid chromatography (LC) in combination with mass spectrometry (MS) for the analysis of alachlor (ALA) and its metabolites, 2-chloro-N-[2,6-diethylphenyl]acetamide (CDEPA) and 2,6-diethylaniline (DEA), in rat plasma and urine has been developed. 13C-labeled ALA was used as the internal standard for quantitation. The analyte in plasma or urine was isolated using a Waters Oasis HLB extraction plate. The mass spectrometer was operated in the ESI MS-SIM mode with a programming procedure. The retention times for ALA, CDEPA and DEA were 1.84, 3.11 and 4.12 min, respectively. The limits of quantification (LOQ) for ALA, CDEPA and DEA were 2.3, 0.8 and 0.8 ng per injection, respectively. The linear fit of analyte to mass response had an R2 of 0.99. Reproducibility of the sample handling and LC-MS analysis had a RSD of < or = 10%. The average recoveries for these analytes in rat plasma were better than 90%. Similar results were obtained with rat urine.  相似文献   

9.
A sensitive and specific liquid chromatography electrospray ionization mass spectrometry (LC-ESI-MS) method has been developed and validated for the identification and quantification of zolmitriptan in human plasma. After the addition of the internal standard (IS) and 1.0 M sodium hydroxide solution, plasma samples were extracted with methylene chloride:ethyl acetate mixture (20:80, v/v). The organic layer was evaporated under a stream of nitrogen at 40 degrees C. The residue was reconstituted with 100 microl mobile phase. The compounds were separated on a prepacked Lichrospher CN (5 microm, 150 mm x 2.0 mm) column using a mixture of methanol:water (10 mM NH(4)AC, pH 4.0) = 78:22 as mobile phase. Detection was performed on a single quadrupole mass spectrometer by selected ion monitoring (SIM) mode via electrospray ionization (ESI) source. The method was proved to be sensitive and specific by testing six different plasma batches. Linearity was established for the range of concentrations 0.30-16.0 ng/ml with a coefficient of determination (r) of 0.9998 and good back-calculated accuracy and precision. The intra- and inter-day precision (R.S.D.%) were lower than 15% and accuracy ranged from 85 to 115%. The lower limit of quantification was identifiable and reproducible at 0.30 ng/ml. The proposed method enables the unambiguous identification and quantification of zolmitriptan for pharmacokinetic, bioavailability or bioequivalence studies.  相似文献   

10.
A highly sensitive method for quantitation of tamsulosin in human plasma using 1-(2,6-dimethyl-3-hydroxylphenoxy)-2-(3,4-methoxyphenylethylamino)-propane hydrochloride as the internal standard (I.S.) was established using liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS). After alkalization with saturated sodium bicarbonate, plasma were extracted by ethyl acetate and separated by HPLC on a C18 reversed-phase column using a mobile phase of methanol-water-acetic acid-triethylamine (620:380:1.5:1.5, v/v). Analytes were quantitated using positive electrospray ionization in a quadrupole spectrometer. LC-ESI-MS was performed in the selected ion monitoring (SIM) mode using target ions at m/z 228 for tamsulosin and m/z 222 for the I.S. Calibration curves, which were linear over the range 0.2-30 ng/ml, were analyzed contemporaneously with each batch of samples, along with low (0.5 ng/ml), medium (3 ng/ml) and high (30 ng/ml) quality control samples. The intra- and inter-assay variability ranged from 2.14 to 8.87% for the low, medium and high quality control samples. The extraction recovery of tamsulosin from plasma was in the range of 84.2-94.5%. The method has been used successfully to study tamsulosin pharmacokinetics in adult humans.  相似文献   

11.
A method for the sensitive and specific determination of eight green tea catechins, consisting of catechin (C), epicatechin (EC), gallocatechin (GC), epigallocatechin (EGC), catechin-3-gallate (CG), epicatechin-3-gallate (ECG), gallocatechin-3-gallate (GCG) and epigallocatechin-3-gallate (EGCG), in human plasma was established. For optimization of conditions for LC-ESIMS, the separation of the eight catechins was achieved chromatographically using Inertsil ODS-2 column combined with a gradient elution system of 0.1M aqueous acetic acid and 0.1M acetic acid in acetonitrile. Detection using a mass spectrometer was performed with selected ion monitoring at m/z=289 for E and EC, 305 for GC and EGC, 441 for CG and ECG, and 457 for GCG and EGCG under negative ESI. A preparative procedure, consisting of the addition of perchloric acid and acetonitrile to the plasma for deproteinizing and the subsequent addition of potassium carbonate solution to remove excess acid, was developed. In six different plasma with the eight catechins spiked at two different concentrations, the average recoveries were in the range between 72.7 and 84.1%, which resulted from the matrix effect and preparative loss, with coefficients of variance being 8.2-19.8% among individuals. The levels of the catechins in prepared plasma solutions that were kept at 5 degrees C within 24h were stable, which allows us to simply analyze many prepared plasma solutions using an autosampler overnight. When using this method to analyze the eight catechins in human plasma after oral ingestion of a commercial green tea beverage, we detected all the catechins absorbed into human blood for the first time. This also suggested that extremely small amounts of the eight catechins orally ingested may be absorbed based on each absorptive property for the catechins. The method should enable pharmacokinetic studies of green tea catechins in humans.  相似文献   

12.
Paclitaxel is an anticancer agent extracted from the bark of the yew tree and is widely used in chemotherapy for solid tumors, including non-small cell lung cancer and ovarian carcinoma. Most assays to measure paclitaxel in plasma require a large amount of sample (0.4-1 ml) to achieve the necessary sensitivity, and are not suitable when only small sample sizes are available. To circumvent this latter limitation, we developed a sensitive liquid chromatography-mass spectrometry (LC-MS) method for the determination of paclitaxel in plasma based on the use of small sample volumes (50 microl plasma). A solid phase extraction procedure was employed that enabled the eluent to be directly injected onto a reversed phase chromatographic HPLC system using positive electrospray ionization followed by mass spectrometric detection. The extraction recoveries of paclitaxel were 98 and 83% from plasma and brain tissues, respectively. The mobile phase consisted of 50% acetonitrile in 0.1% formic acid that was pumped at 0.2 ml/min to yield a retention time for paclitaxel of 6.2 and 5.4 min for cephalomannine, the internal standard. The method has been validated at paclitaxel plasma concentrations from 0.036 to 9.9 microg/ml, and from 0.054 to 1.96 microg/ml in brain homogenates. A sensitive and specific assay for paclitaxel has been developed that has the advantages of using small sample sizes, and a single extraction step without solvent evaporation.  相似文献   

13.
Dextropropoxyphene and nordextropropoxyphene were extracted from urine samples with mixed mode solid-phase extraction cartridges. After elution and evaporation to dryness, the eluate was dissolved in mobile phase and each sample was injected in a LC-ESI-MS system. Quantification was carried out in the selected ion monitoring mode. This article shows the possibility to analyse drugs of abuse substances in urine with a single quadrupole mass spectrometer if only a thorough work-up procedure and a sufficient chromatographic separation is accomplished. In order to enhance the fragmentation of the analytes, in-source fragmentation was carried out. One fragment and the pseudomolecular ion per analyte together with chromatographic retention times were sufficient to verify that the sought compound was found in the samples. In- and between day variation was lower than 10% and the recovery was well above 90%. The analytes were quantified in the range 100-10000 ng/ml urine.  相似文献   

14.
A liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) assay for the determination of bencycloquidium bromide (BCQB) in rat plasma was firstly developed and validated. After addition of 1-ethyl-bencycloquidium bromide as an internal standard (I.S.), the plasma samples were deproteinized with methanol and the supernatant was assayed by LC-ESI-MS. Chromatographic separation was achieved with a Hanbon Lichrospher 5-C18 column. The mobile phase consisted of methanol-40 mM ammonium acetate buffer-formic acid (75:25:0.25, v/v/v) and delivered at the flow rate of 1.0 ml/min. LC-ESI-MS was carried out on a single quadrupole mass spectrometer using electrospray ionization (ESI) and positive selected-ion monitoring (SIM). Target ions were monitored at [M](+)m/z 330.2 for BCQB and [M] (+)m/z 344.2 for I.S. Calibration curve was linear over the range of 3-1500 ng/ml. The lower limit of quantification (LLOQ) was 3.0 ng/ml. The intra- and inter-run relative standard deviations (R.S.D.%) of the assay were less than 7.1 and 12.3%, respectively. The accuracy determined at the concentrations of 3.0, 100.0, 500.0 and 1500 ng/ml for BCQB were within +/-15.0%. The established method has been applied successfully to study the pharmacokinetics of BCQB in rats after intranasal administration.  相似文献   

15.
A sensitive and specific liquid chromatography electrospray ionization mass spectrometry (LC-ESI-MS) method has been developed and validated for the identification and quantification of lipoic acid (LA) in human plasma. LA and the internal standard, naproxen, were extracted from a 500 microl plasma sample by one-step deproteination using acetonitrile. Chromatographic separation was performed on a Zorbax SB-C(18) Column (100 mmx3.0mm i.d. with 3.5 microm particle size) with the mobile phase consisting of acetonitrile and 0.1% acetic acid (pH 4, adjusted with ammonia solution) (65:35, v/v), and the flow rate was set at 0.3 ml/min. Detection was performed on a single quadrupole mass spectrometer by selected ion monitoring (SIM) mode via electrospray ionization (ESI) source. The method was linear over the concentration range of 5-10,000 ng/ml for LA. The intra- and inter-day precisions were less than 7% and accuracy ranged from -7.87 to 9.74% at the LA concentrations tested. The present method provides a relatively simple and sensitive assay with short turn-around time. The method has been successfully applied to a clinical pharmacokinetic study of LA in 10 healthy subjects.  相似文献   

16.
An analytical method was developed for the determination of enantiomers of dencichine in plasma. Sample extraction from plasma was achieved by a solid-phase extraction (SPE) procedure using a C(18) cartridge, with carbocisteine as the internal standard. Plasma was deproteinized using inorganic acid and derivatizated before the SPE. Chiral separation of dencichine enantiomers was achieved by pre-column derivatization using o-phthaldialdehyde (OPA) and the chiral thiol N-isobutanoyl-L-cysteine (NIBC) to form diastereoisomeric isoindole derivatives that were separable by ODS column using a gradient solvent programme. The column eluent was monitored using mass spectrometry (MS). The conditions of MS detection were optimized, and selected ion monitoring was used to selectively detect D-dencichine and its arrangement isomer. High sensitivity and selectivity were obtained using this method. The limit of detection was determined to be 10 ng/ml for D-dencichine and 8 ng/ml for L-dencichine in plasma. The linearity was demonstrated over a wide range of concentrations, from 0.5 to 50 microg/ml for both enatiomers. The intra- and inter-day precision (C.V.), studied at four concentrations, was less than 7.0%. No interferences from endogenous amino acids and isomers of dencichine were found. The method was suitable for pharmacokinetic studies of dencichine enantiomers.  相似文献   

17.
A method has been developed to determine the substrate preference in phosphatidylserine decarboxylation (PSD), the process by which phosphatidylserine is converted to phosphatidylethanolamine (PE) in the mitochondria. The in vitro assay utilized liposomes containing deuterium-labeled PS molecular species incubated with liver and brain cortex mitochondria, and the conversion of PS to the corresponding PE species was monitored by electrospray ionization mass spectrometry in conjunction with reversed-phase liquid chromatography. Employing this approach we were able to establish for the first time that there exists a substrate preference in PSD in liver (18:0,18:1 > or = 18:0,22:6 > 18:0,20:4-PS) and brain cortex (18:0,22:6 > 18:0,18:1 > 18:0,20:4-PS). The observed PSD molecular species preference, however, did not reflect the mitochondrial PE profile, suggesting that selectivity in other processes such as de novo PE synthesis, intracellular transport of phospholipid molecules, or remodeling by deacylation-reacylation may be important contributors in maintaining a specific lipid profile in mitochondria.  相似文献   

18.
An LC-ESI-MS-MS method for the analysis of metabolites of four nitrofurans (furazolidone, furaltadone, nitrofurazone and nitrofurantoin) in raw milk has been developed. The samples were achieved by hydrolysis of the protein-bound drug metabolites, derivatization with 2-nitrobenzaldehyd (2-NBA) and clean-up extraction liquid-liquid with ethyl acetate. LC separation was achieved by using a Phenomenex Luna C-18 column. The mass spectrometer operated in multiple reaction monitoring mode (MRM) with positive electro-spray interface (ESI). The method validation was done according to the criteria laid down in Commission Decision No. 2002/657 EC. The validation includes the determination of linearity, repeatability, within-laboratory reproducibility, accuracy, decision limit (CCalpha) and detection capability (CCbeta). The calibration curves were linear, with typical (R(2)) values higher than 0.991. The coefficient of variation (CV, %) was lower than 9.3% and the accuracy (RE, %) ranged from -9.0% to 7.0%. CV within-laboratory reproducibility was lower than 13%. The limits of decision (CCalpha) and detection capability (CCbeta) were 0.12-0.29 microg/kg and 0.15-0.37 microg/kg, thus below the minimum required performance limit (MRPL) set at 1 microg/kg by the UE. This validated method was successfully applied for the determination of nitrofuran metabolites in a large number of milk samples.  相似文献   

19.
To determine the protein content of formula, gel electrophoresis was performed on the infant formula samples and the entire protein patterns were analyzed by nano-high performance liquid chromatography-electrospray tandem mass spectrometry (nano-HPLC/ESI/MS/MS). From the commercial infant formula profiled in this study, a total of 154 peptides, corresponding to 31 unique proteins were identified by nano-HPLC/ESI/MS/MS. Each of the identified peptides was reconfirmed by a strict integrated approach using tandem mass spectra. This protein profiling method using gel electrophoresis coupled with nano-HPLC/ESI/MS/MS and manual evaluation is a sensitive and accurate method for protein identification as well as a powerful tool for monitoring various types of food products.  相似文献   

20.
A simple, sensitive, and specific liquid chromatography-electrospray tandem mass spectrometry (LC-MS/MS) method for the determination of bile acids in human bile has been developed. The bile acids were extracted with a C(18) (octadecyl) reversed-phase column and identified and quantified by simultaneous monitoring of their parent and daughter ions, using the multiple reaction monitoring mode. Identification and quantification of conjugated bile acids in bile was achieved in 5 min. The detection limit was 1 ng, and the determination was linear for concentrations up to 100 ng. The percent recovery of standards made of single conjugated (glycine and taurine) bile acid or of mixture of glycine- or taurine-conjugated cholic acid, chenodeoxycholic acid, deoxycholic acid, ursodeoxycholic acid, and lithocholic acid averaged 71.73% to 95.92%. The percent recovery of the same standard bile acids was also determined by gas chromatography-mass spectrometry (GC-MS), using the selected ion monitoring mode, and averaged 66% to 96%. A biliary bile acid profile of human gallbladder bile was obtained by LC-MS/MS and GC-MS.The results showed a good correlation between the two techniques and no significant differences between the two methods were observed. The LC-MS/MS method was also used for the analysis of serum, urine, and fecal bile acids. In conclusion, LC-MS/MS is a simple, sensitive, and rapid technique for the analysis of conjugated bile acids in bile and other biological samples. - Perwaiz, S., B. Tuchweber, D. Mignault, T. Gilat, and I. M. Yousef. Determination of bile acids in biological fluids by liquid chromatography-electrospray tandem mass spectrometry. J. Lipid Res. 2001. 42: 114;-119.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号