首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A ((1S,2R)-2-hydroxy-2,3-dihydro-1H-inden-1-yl) succinamide derivative (here referred to as Compound 12) shows significant activity toward many matrix metalloproteinases (MMPs), including MMP-2, MMP-8, MMP-9, and MMP-13. Modeling studies had predicted that this compound would not bind to ADAMTS-5 (a disintegrin and metalloproteinase with thrombospondin motifs-5) due to its shallow S1' pocket. However, inhibition analysis revealed it to be a nanomolar inhibitor of both ADAMTS-4 and -5. The observed inconsistency was explained by analysis of crystallographic structures, which showed that Compound 12 in complex with the catalytic domain of ADAMTS-5 (cataTS5) exhibits an unusual conformation in the S1' pocket of the protein. This first demonstration that cataTS5 can undergo an induced conformational change in its active site pocket by a molecule like Compound 12 should enable the design of new aggrecanase inhibitors with better potency and selectivity profiles.  相似文献   

2.
Matrix metalloproteinases (MMP) are well-known biological targets implicated in tumour progression, homeostatic regulation, innate immunity, impaired delivery of pro-apoptotic ligands, and the release and cleavage of cell-surface receptors. Hence, the development of potent and selective inhibitors targeting these enzymes continues to be eagerly sought. In this paper, a number of alloxan-based compounds, initially conceived to bias other therapeutically relevant enzymes, were rationally modified and successfully repurposed to inhibit MMP-2 (also named gelatinase A) in the nanomolar range. Importantly, the alloxan core makes its debut as zinc binding group since it ensures a stable tetrahedral coordination of the catalytic zinc ion in concert with the three histidines of the HExxHxxGxxH metzincin signature motif, further stabilized by a hydrogen bond with the glutamate residue belonging to the same motif. The molecular decoration of the alloxan core with a biphenyl privileged structure allowed to sample the deep S(1)' specificity pocket of MMP-2 and to relate the high affinity towards this enzyme with the chance of forming a hydrogen bond network with the backbone of Leu116 and Asn147 and the side chains of Tyr144, Thr145 and Arg149 at the bottom of the pocket. The effect of even slight structural changes in determining the interaction at the S(1)' subsite of MMP-2 as well as the nature and strength of the binding is elucidated via molecular dynamics simulations and free energy calculations. Among the herein presented compounds, the highest affinity (pIC(50) = 7.06) is found for BAM, a compound exhibiting also selectivity (>20) towards MMP-2, as compared to MMP-9, the other member of the gelatinases.  相似文献   

3.
The excessive activity of matrix metalloproteinases (MMPs) contributes to pathological processes such as arthritis, tumor growth and metastasis if not balanced by the tissue inhibitors of metalloproteinases (TIMPs). In arthritis, the destruction of fibrillar (type II) collagen is one of the hallmarks, with MMP-1 (collagenase-1) and MMP-13 (collagenase-3) being identified as key players in arthritic cartilage. MMP-13, furthermore, has been found in highly metastatic tumors. We have solved the 2.0 A crystal structure of the complex between the catalytic domain of human MMP-13 (cdMMP-13) and bovine TIMP-2. The overall structure resembles our previously determined MT1-MMP/TIMP-2 complex, in that the wedge-shaped TIMP-2 inserts with its edge into the entire MMP-13 active site cleft. However, the inhibitor is, according to a relative rotation of approximately 20 degrees, oriented differently relative to the proteinase. Upon TIMP binding, the catalytic zinc, the zinc-ligating side chains, the enclosing MMP loop and the S1' wall-forming segment move significantly and in concert relative to the rest of the cognate MMP, and the active site cleft constricts slightly, probably allowing a more favourable interaction between the Cys1(TIMP) alpha-amino group of the inhibitor and the catalytic zinc ion of the enzyme. Thus, this structure supports the view that the central N-terminal TIMP segment essentially defines the relative positioning of the TIMP, while the flanking edge loops determine the relative orientation, depending on the individual target MMP.  相似文献   

4.
Own results of long-term studies of expression of matrix metalloproteinases (MMPs) and their endogenous regulators examined in fibroblasts transformed by oncogene E7 HPV16 (TF), immortalized fibroblasts (IF), cell lines associated with HPV16 and HPV18, and tumor tissue samples from patients with squamous cervical carcinoma (SCC) associated with HPV16 have been summarized. Transfection of fibroblasts with the E7 HPV16 oncogen was accompanied by induction of collagenase (MMP-1, MMP-14) and gelatinase (MMP-9) gene expression and the increase in catalytic activity of these MMP, while gelatinase MMP-2 expression remained unchanged. MMP expression correlated with the tumorigenic of transformed clones. Expression of MMP-9 was found only in TF. In TF expression mRNA TIMP-1 decreased, while expression of the genatinase inhibitor, TIMP-2, increased. Collagenase activity and expression of the MMP-14 (collagenase) mRNA increased, while gelatinase activity remained unchanged. The destructive potential of TF is associated with induction of collagenases, gelatinase MMP-9 and decreased levels of MMP inhibitors. MMP-9 may serve as a TF marker. Invasive potential of cell lines associated with HPV18 (HeLa and S4-1) was more pronounced than that of cell lines associated with HPV16 (SiHa and Caski). In most cell lines mRNA levels of collagenases MMP-1 and MMP-14 and the activator (uPA) increased, while gelatinase MMP-2 mRNA and tissue inhibitors mRNAs changed insignificantly. MMP-2 activity significantly increased in Caski and HeLa cell lines, while MMP-9 expression in these cell lines was not detected. The comparative study of expression MMP of and their endogenous regulators performed using SCC tumor samples associated with HPV16 has shown that the invasive and metastatic potentials of tumor tissue in SCC is obviously associated with increased expression of collagenases MMP-1, MMP-14 and gelatinase MMP-9, as well as decreased expression of inhibitors (TIMP-1 and TIMP-2), and to a lesser extent with increased expression of MMP-2. MMP-1 and MMP-9 can serve as markers of invasive and metastatic potential of the SCC tumor. The morphologically normal tissue adjacent to the tumor tissue is characterized by significant expression of MMP-1, MMP-2, and MMP-9. This also contributes to the increased destructive potential of the tumor.  相似文献   

5.
Phosphonamide-based inhibitors having trifluoromethyl moiety showed highly selective inhibition against MMP-1. A possible mechanism of the selectivity of MMP-1 inhibitors through the switchover of the binding pocket was speculated by computational calculations. As a consequence of the unexpected selectivity, the specific interaction of CF3 group of the inhibitor and Arg214 in the S1' pocket of MMP-1 conducted a low binding energy.  相似文献   

6.
Side-chain flexibility of ligand-binding sites needs to be considered in the rational design of novel inhibitors. We have developed a method to generate conformational ensembles that efficiently sample local side-chain flexibility from a single crystal structure. The rotamer-based approach is tested here for the S1' pocket of human collagenase-1 (MMP-1), which is known to undergo conformational changes in multiple side-chains upon binding of certain inhibitors. First, a raw ensemble consisting of a large number of conformers of the S1' pocket was generated using an exhaustive search of rotamer combinations on a template crystal structure. A combination of principal component analysis and fuzzy clustering was then employed to successfully identify a core ensemble consisting of a low number of representatives from the raw ensemble. The core ensemble contained geometrically diverse conformers of stable nature, as indicated in several cases by a relative energy lower than that of the minimised template crystal structure. Through comparisons with X-ray crystallography and NMR structural data we show that the core ensemble occupied a conformational space similar to that observed under experimental conditions. The synthetic inhibitor RS-104966 is known to induce a conformational change in the side-chains of the S1' pocket of MMP-1 and could not be docked in the template crystal structure. However, the experimental binding mode was reproduced successfully using members of the core ensemble as the docking target, establishing the usefulness of the method in drug design.  相似文献   

7.
The tissue inhibitors of metalloproteinases (TIMPs) are endogenous inhibitors of the matrix metalloproteinases (MMPs). Since unregulated MMP activities are linked to arthritis, cancer, and atherosclerosis, TIMP variants that are selective inhibitors of disease-related MMPs have potential therapeutic value. The structures of TIMP/MMP complexes reveal that most interactions with the MMP involve the N-terminal pentapeptide of TIMP and the C-D beta-strand connector which occupy the primed and unprimed regions of the active site. The loop between beta-strands A and B forms a secondary interaction site for some MMPs, ranging from multiple contacts in the TIMP-2/membrane type-1 (MT1)-MMP complex to none in the TIMP-1/MMP-1 complex. TIMP-1 and its inhibitory domain, N-TIMP-1, are weak inhibitors of MT1-MMP; inhibition is not improved by grafting the longer AB loop from TIMP-2 into N-TIMP-1, but this change impairs binding to MMP-3 and MMP-7. Mutational studies with N-TIMP-1 suggest that its weak inhibition of MT1-MMP, as compared to other N-TIMPs, arises from multiple (>3) sequence differences in the interaction site. Substitutions for Thr2 of N-TIMP-1 strongly influence MMP selectivity; Arg and Gly, that generally reduce MMP affinity, have less effect on binding to MMP-9. When the Arg mutation is added to the N-TIMP-1(AB2) mutant, it produces a gelatinase-specific inhibitor with Ki values of 2.8 and 0.4 nM for MMP-2 and -9, respectively. Interestingly, the Gly mutant has a Ki of 2.1 nM for MMP-9 and >40 muM for MMP-2, indicating that engineered TIMPs can discriminate between MMPs in the same subfamily.  相似文献   

8.
Through the use of empirical and computational methods, phosphinate-based inhibitors of MMP-1 and MMP-13 that bind into the S2 pocket of these enzymes were designed. The synthesis and testing of 2 suggested that binding was occurring as hypothesized. Structure determination of a co-crystal of 2 bound to the catalytic domain of MMP-1 confirmed the binding mode. Substituents binding into S2, S1', S2' and S3', were optimized yielding compounds with low double-digit nM IC50's against these enzymes.  相似文献   

9.
Matrix metalloproteinases (MMPs) play critical roles in a multiple number of autoimmunity diseases progression and metastasis of solid tumor. Gelatinases including MMP-2 and MMP-9 are extremely overexpressed in multiple pathological processes. MMP-9 and MMP-2 breakdown the extracellular matrix component gelatin very efficaciously. Therefore, designing and expansion of MMPs inhibitors can be an engrossing plan for therapeutic intermediacy. Anyway, a wide range of MMPs inhibitors face failure in several clinical trials. Due to sequence and structural conservation across the various MMPs, achieving specific and selective inhibitors is very demanding. In the current study, a phage-displayed peptide library was screened using active human recombinant MMP-9 protein and evaluated by enzyme-linked immunosorbent assay. Here, we isolate novel peptide sequence from phage display peptide libraries that can be a specific gelatinase inhibitor. Interestingly, in silico molecular docking showed strong interactions between the peptide three-dimensional models and some important residues of the MMP-9 and MMP-2 proteins at the fibronectin domain. A consensus peptide sequence was then synthesized (named as RSH-12) to evaluate its inhibitory potency by in vitro assays. Zymography assay was employed to evaluate the effect of RSH-12 on gelatinolysis activity of MMP-2 and MMP-9 secretion from the HT1080 cells using different concentrations of RSH-12 and inhibiting MMP-9- and MMP-2-driven gelatin proteolysis, measured by fluorescein isothiocyanate-gelatin degradation assay and HT1080 cell invasion assay on Matrigel (gelatinous protein mixture). The negative control peptide (CP) with the irrelevant sequence and no MMP inhibition properties and the positive control compound (GM6001) as a potent inhibitor of MMPs were used to assess the selectivity and specificity of gelatinases inhibition by RSH-12. Therefore, RSH-12 decreased the gelatin degradation by specifically preventing gelatin binding to MMP-9 and MMP-2. Selective gelatinase inhibitors may prove the usefulness of the new peptide discovered in tumor targeting and anticancer and anti-inflammation therapies.  相似文献   

10.
The zinc-dependent gelatinases belong to the family of matrix metalloproteinases (MMPs), enzymes that have been shown to play a key role in angiogenesis and tumor metastasis. These enzymes are capable of hydrolyzing extracellular matrix (ECM) components under physiological conditions. Specific and selective inhibitors aimed at blocking their activity are highly sought for use as potential therapeutic agents. We report herein on a novel mode of inhibition of gelatinase A (MMP-2) by the recently characterized inhibitors 4-(4-phenoxphenylsulfonyl)butane-1,2-dithiol (inhibitor 1) and 5-(4-phenoxphenylsulfonyl) pentane-1,2-dithiol (inhibitor 2). These synthetic inhibitors are selective for MMP-2 and MMP-9. We show that the dithiolate moiety of these inhibitors chelates the catalytic zinc ion of MMP-2 via two sulfur atoms. This mode of binding results in alternation of the coordination number of the metal ion and the induction of conformational changes at the microenvironment of the catalytic zinc ion; a set of events that is likely to be at the root of the potent slow binding inhibition behavior exhibited by these inhibitors. This study demonstrates a distinct approach for the understanding of the structural mechanism governing the molecular interactions between potent inhibitors and catalytic sites of MMPs, which may aid in the design of effective inhibitors.  相似文献   

11.
The X-ray crystal structures of the catalytic domain of human collagenase-3 (MMP-13) and collagenase-1 (MMP-1) with bound inhibitors provides a basis for understanding the selectivity profile of a novel series of matrix metalloprotease (MMP) inhibitors. Differences in the relative size and shape of the MMP S1' pockets suggest that this pocket is a critical determinant of MMP inhibitor selectivity. The collagenase-3 S1' pocket is long and open, easily accommodating large P1' groups, such as diphenylether. In contrast, the collagenase-1 S1' pocket must undergo a conformational change to accommodate comparable P1' groups. The selectivity of the diphenylether series of inhibitors for collagenase-3 is largely determined by their affinity for the preformed S1' pocket of collagenase-3, as compared to the induced fit in collagenase-1.  相似文献   

12.
A new series of beta-N-biaryl ether sulfonamide hydroxamates as novel gelatinase inhibitors is described. These compounds exhibit good potency for MMP-2 and MMP-9 without inhibiting MMP-1. The structure-activity relationships (SAR) reveal the biaryl ether type P1' moiety together with methanesulfonamide is the optimal combination that provides inhibitory activity of MMP-9 in the single-digit nanomolar range.  相似文献   

13.
The macrophage elastase enzyme (MMP-12) expressed mainly in alveolar macrophages has been identified in the mouse lung as the main destructive agent associated with cigarette smoking, which gives rise to emphysema, both directly via elastin degradation and indirectly by disturbing the proteinase/antiproteinase balance via inactivation of the alpha1-proteinase inhibitor (alpha1-PI), the antagonist of the leukocyte elastase. The catalytic domain of human recombinant MMP-12 has been crystallized in complex with the broad-specificity inhibitor batimastat (BB-94). The crystal structure analysis of this complex, determined using X-ray data to 1.1 A and refined to an R-value of 0.165, reveals an overall fold similar to that of other MMPs. However, the S-shaped double loop connecting strands III and IV is fixed closer to the beta-sheet and projects its His172 side-chain further into the rather hydrophobic active-site cleft, defining the S3 and the S1-pockets and separating them from each other to a larger extent than is observed in other MMPs. The S2-site is planar, while the characteristic S1'-subsite is a continuous tube rather than a pocket, in which the MMP-12-specific Thr215 replaces a Val residue otherwise highly conserved in almost all other MMPs. This alteration might allow MMP-12 to accept P1' Arg residues, making it unique among MMPs. The active-site cleft of MMP-12 is well equipped to bind and efficiently cleave the AlaMetPhe-LeuGluAla sequence in the reactive-site loop of alpha1-PI, as occurs experimentally. Similarities in contouring and particularly a common surface hydrophobicity both inside and distant from the active-site cleft explain why MMP-12 shares many substrates with matrilysin (MMP-7). The MMP-12 structure is an excellent template for the structure-based design of specific inhibitors for emphysema therapy and for the construction of mutants to clarify the role of this MMP.  相似文献   

14.
Due to their involvement in many pathological conditions, matrix metalloproteinases (MMPs), are very attractive therapeutic targets. Our study focuses on one of them, MMP-2, which is involved in tumor progression and metastasis. Recently, the solution structure of the catalytic domain of MMP-2 complexed with a hydroxamic acid inhibitor (SC-74020) was published by Feng et al. Using the Hanessian group published binding affinity data and the structure published by Feng as a basis, we have built a binding affinity model by targeting the S(2)' pocket of the enzyme with a set of nine alpha-N-sulfonylamino hydroxamic acid derivatives. Two binding geometries of each ligand have been generated corresponding to two binding modes denoted A and B, respectively, of which the first one is targeting the S(2)' pocket and the second one the S(1) pocket. For the binding affinity model developed for mode A the computed activities show a rmsd of 0.583 kcal/mol as compared with the experimental data, and a correlation coefficient r(2) of 0.779, while in the case of the binding mode B a rmsd of 0.834 kcal/mol and correlation coefficient r(2) of 0.500, respectively, were obtained. In conclusion, our data suggest a higher probability for the Phe(76) gated S(2)' open form pocket to accommodate the substituent alpha versus the wide solvent exposed S(1) subsite, probability which some research groups could have overlooked due to extensive use in their calculations of non revealing S(2)' pocket open state crystallographic structures instead of NMR ones.  相似文献   

15.
The design, synthesis and structure-activity relationship (SAR) of a series of nonpeptidic 2-arylsulfonyl-1,2,3,4-tetrahydro-isoquinoline-3-carboxylates and-hydroxamates as inhibitors of the matrix metalloproteinase human neutrophil collagenase (MMP-8) is described here. Based on available X-ray structures of MMP-8/inhibitor complexes, our structure-based design strategy was directed to complement major protein-ligand interaction regions mainly in the S1' hydrophobic specificity pocket close to the catalytic zinc ion. Here, the rigid 1,2,3,4-tetrahydroisoquinoline scaffold (Tic) provides ideal geometry to combine hydroxamates and carboxylates as typical zinc complexing functionalities, with a broad variety of S1' directed mono- and biaryl substituents consisting of aromatic rings perfectly accommodated within this more hydrophobic region of the MMP-8 inhibitor binding site. The effect of different S1' directed substituents, zinc-complexing groups, chirality and variations of the tetrahydroisoquinoline ring-system is investigated by systematic studies. X-ray structure analyses in combination with 3D-QSAR studies provided an additional understanding of key determinants for MMP-8 affinity in this series. The hypothetical binding mode for a typical molecule as basis for our inhibitor design was found in good agreement with a 1.7 A X-ray structure of this candidate in complex with the catalytic domain of human MMP-8. After analysis of all systematic variations, 3D-QSAR and X-ray structure analysis, novel S1' directed substituents were designed and synthesized and biologically evaluated. This finally results in inhibitors, which do not only show high biological affinity for MMP-8, but also exhibit good oral bioavailability in several animal species.  相似文献   

16.
MMP-2 is a member of the matrix metalloproteinase family that has been implicated in tumor cell metastasis and angiogenesis. Here, we describe the solution structure of a catalytic domain of MMP-2 complexed with a hydroxamic acid inhibitor (SC-74020), determined by three-dimensional heteronuclear NMR spectroscopy. The catalytic domain, designated MMP-2C, has a short peptide linker replacing the internal fibronectin-domain insertion and is enzymatically active. Distance geometry-simulated annealing calculations yielded 14 converged structures with atomic root-mean-square deviations (r.m.s.d.) of 1.02 and 1.62 A from the mean coordinate positions for the backbone and for all heavy atoms, respectively, when 11 residues at the N-terminus are excluded. The structure has the same global fold as observed for other MMP catalytic domains and is similar to previously solved crystal structures of MMP-2. Differences observed between the solution and the crystal structures, near the bottom of the S1' specificity loop, appear to be induced by the large inhibitor present in the solution structure. The MMP-2C solution structure is compared with MMP-8 crystal structure bound to the same inhibitor to highlight the differences especially in the S1' specificity loop. The finding provides a structural explanation for the selectivity between MMP-2 and MMP-8 that is achieved by large inhibitors.  相似文献   

17.
The turnover of native collagen has been ascribed to different members of the matrix metalloproteinase (MMP) family. Here, the mechanisms by which neutrophil collagenase (MMP-8), gelatinase A (MMP-2), and the ectodomain of MT1-MMP (ectMMP-14) degrade fibrillar collagen were examined. In particular, the hydrolysis of type I collagen at 37 degrees C was investigated to identify functional differences in the processing of the two alpha-chain types of fibrillar collagen. Thermodynamic and kinetic parameters were used for a quantitative comparison of the binding, unwinding, and hydrolysis of triple helical collagen. We demonstrate that the MMP family has developed at least two distinct mechanisms for collagen unwinding and cleavage. MMP-8 and ectMMP-14 display a similar mechanism (although with different catalytic parameters), which is characterized by binding (likely through the hemopexin-like domain) and cleavage of alpha-1 and/or alpha-2 chains without distinguishing between them and keeping the gross conformation of the triple helix (at least during the first cleavage step). On the other hand, MMP-2 binds preferentially the alpha-1 chains (likely through the fibronectin-like domain, which is not present in MMP-8 and ectMMP-14), grossly altering the whole triple helical arrangement of the collagen molecule and cleaving preferentially the alpha-2 chain. These distinctive mechanisms underly a drastically different mode of interaction with triple helical fibrillar collagen I, according to which the MMP domain is involved in binding. These findings can be related to the different role exerted by these MMPs on collagen homeostasis in the extracellular matrix.  相似文献   

18.
Gelatinase B/matrix metalloproteinase-9 (MMP-9) is a multidomain enzyme functioning in acute and chronic inflammatory and neoplastic diseases. It belongs to a family of more than 20 related zinc proteinases. Therefore, the discovery and the definition of the action mechanism of selective MMP inhibitors form the basis for future therapeutics. The monoclonal antibody REGA-3G12 is a most selective inhibitor of human gelatinase B. REGA-3G12 was found to recognize the aminoterminal part and not the carboxyterminal O-glycosylated and hemopexin protein domains. A variant of gelatinase B, lacking the two carboxyterminal domains, was expressed in insect cells and fragmented with purified proteinases. The fragments were probed by one- and two-dimensional Western blot and immunoprecipitation experiments with REGA-3G12 to map the interactions between the antibody and the enzyme. The interaction unit was identified by Edman degradation analysis as the glycosylated segment from Trp(116) to Lys(214) of gelatinase B. The sequence of this segment was analysed by hydrophobicity/hydrophilicity, accessibility and flexibility profiling. Four hydrophilic peptides were chemically synthesized and used in binding and competition assays. The peptide Gly(171)-Leu(187) in molar excess inhibited partially the binding of MMP-9 to REGA-3G12 and thus refines the structure of the conformational binding site. These results define part of the catalytic domain of gelatinase B/MMP-9, and not the zinc-binding or fibronectin domains, as target for the development of selective inhibitors.  相似文献   

19.
Human aldose reductase (ALR2) has evolved as a promising therapeutic target for the treatment of diabetic long-term complications. The binding site of this enzyme possesses two main subpockets: the catalytic anion-binding site and the hydrophobic specificity pocket. The latter can be observed in the open or closed state, depending on the bound ligand. Thus, it exhibits a pronounced capability for induced-fit adaptations, whereas the catalytic pocket exhibits rigid properties throughout all known crystal structures. Here, we determined two ALR2 crystal structures at 1.55 and 1.65 A resolution, each complexed with an inhibitor of the recently described naphtho[1,2-d]isothiazole acetic acid series. In contrast to the original design hypothesis based on the binding mode of tolrestat (1), both inhibitors leave the specificity pocket in the closed state. Unexpectedly, the more potent ligand (2) extends the catalytic pocket by opening a novel subpocket. Access to this novel subpocket is mainly attributed to the rotation of an indole moiety of Trp 20 by about 35 degrees . The newly formed subpocket provides accommodation of the naphthyl portion of the ligand. The second inhibitor, 3, differs from 2 only by an extended glycolic ester functionality added to one of its carboxylic groups. However, despite this slight structural modification, the binding mode of 3 differs dramatically from that of the first inhibitor, but provokes less pronounced induced-fit adaptations of the binding cavity. Thus, a novel binding site conformation has been identified in a region where previous complex structures suggested only low adaptability of the binding pocket. Furthermore, the two ligand complexes represent an impressive example of how the slight change of a chemically extended side-chain at a given ligand scaffold can result in a dramatically altered binding mode. In addition, our study emphasizes the importance of crystal structure analysis for the translation of affinity data into structure-activity relationships.  相似文献   

20.
Cancer metastasis is a stage of the disease where therapy is mostly ineffective; hence, the need to find reliable markers of its onset. The metalloproteinase-9 (MMP-9, gelatinase B) in its 82 kDa active form, is a good candidate, but here we show that the correspondent little known 65 kDa active MMP-9 isoform, often misrepresented with the other gelatinase MMP-2, is a more suitable marker. Sera from patients with lung and breast cancer were analyzed by bidimensional zymography to detect the activity of MMP-9 and MMP-2. Enzyme identity was confirmed by comparison with MMP-9 standards and by western blotting. The 65 kDa isoform of MMP-9 is a suitable biomarker to monitor tumor progression from tissue neoplasms to metastatic stage, as its activity begins to appear when disease severity increases and becomes very high in metastasis. Moreover, the 65 kDa MMP-9, which derives from the 82 kDa MMP-9, no longer responds to natural MMP-9 inhibitors. As its activity cannot be controlled, its appearance may warn that the pathological process is becoming irreversible. Identification and inhibition of the enzymes converting the inhibitor-sensitive 82 kDa MMP-9 into the corresponding “wild” 65 kDa MMP-9 may allow to develop therapies capable of blocking metastases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号