首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Mutations in ZIC3 result in X-linked heterotaxy in humans, a syndrome consisting of left-right (L-R) patterning defects, midline abnormalities, and cardiac malformations. Similarly, loss of function of Zic3 in mouse results in abnormal L-R patterning and cardiac development. However, Zic3 null mice also exhibit defects in gastrulation, neural tube closure, and axial patterning, suggesting the hypothesis that Zic3 is necessary for proper convergent extension (C-E) morphogenesis. To further investigate the role of Zic3 in early embryonic development, we utilized two model systems, Xenopus laevis and zebrafish, and performed loss of function analysis using antisense morpholino-mediated gene knockdown. Both Xenopus and zebrafish demonstrated significant impairment of C-E in Zic3 morphants. L-R patterning was also disrupted, indicating that the role of Zic3 in L-R axis development is conserved across species. Correlation of L-R patterning and C-E defects in Xenopus suggests that early C-E defects may underlie L-R patterning defects at later stages, since Zic3 morphants with moderate to severe C-E defects exhibited an increase in laterality defects. Taken together, these results demonstrate a functional conservation of Zic3 in L-R patterning and uncover a previously unrecognized role for Zic3 in C-E morphogenesis during early vertebrate development.  相似文献   

3.
4.
The role of Lefty2 in left-right patterning was investigated by analysis of mutant mice that lack asymmetric expression of lefty2. These animals exhibited various situs defects including left isomerism. The asymmetric expression of nodal was prolonged and the expression of Pitx2 was upregulated in the mutant embryos. The absence of Lefty2 conferred on Nodal the ability to diffuse over a long distance. Thus, Nodal-responsive genes, including Pitx2, that are normally expressed on the left side were expressed bilaterally in the mutant embryos, even though nodal expression was confined to the left side. These results suggest that Nodal is a long-range signaling molecule but that its range of action is normally limited by the feedback inhibitor Lefty2.  相似文献   

5.
Generation of conditional Cited2 null alleles   总被引:1,自引:0,他引:1  
  相似文献   

6.
7.
The significant morbidity and mortality associated with laterality disease almost always are attributed to complex congenital heart defects (CHDs), reflecting the extreme susceptibility of the developing heart to disturbances in the left-right (LR) body plan. To determine how LR positional information becomes ;translated' into anatomical asymmetry, left versus right side cardiomyocyte cell lineages were traced in normal and laterality defective embryos of the frog, Xenopus laevis. In normal embryos, myocytes in some regions of the heart were derived consistently from a unilateral lineage, whereas other regions were derived consistently from both left and right side lineages. However, in heterotaxic embryos experimentally induced by ectopic activation or attenuation of ALK4 signaling, hearts contained variable LR cell composition, not only compared with controls but also compared with hearts from other heterotaxic embryos. In most cases, LR cell lineage defects were associated with abnormal cardiac morphology and were preceded by abnormal Pitx2c expression in the lateral plate mesoderm. In situs inversus embryos there was a mirror image reversal in Pitx2c expression and LR lineage composition. Surprisingly, most of the embryos that failed to develop heterotaxy or situs inversus in response to misregulated ALK4 signaling nevertheless had altered Pitx2c expression, abnormal cardiomyocyte LR lineage composition and abnormal heart structure, demonstrating that cardiac laterality defects can occur even in instances of otherwise normal body situs. These results indicate that: (1) different regions of the heart contain distinct LR myocyte compositions; (2) LR cardiomyocyte lineages and Pitx2c expression are altered in laterality defective embryos; and (3) abnormal LR cardiac lineage composition frequently is associated with cardiac malformations. We propose that proper LR cell composition is necessary for normal morphogenesis, and that misallocated LR cell lineages may be causatively linked with CHDs that are present in heterotaxic individuals, as well as some 'isolated' CHDs that are found in individuals lacking overt features of laterality disease.  相似文献   

8.
9.
In vertebrates, left-right (LR) axis specification is determined by a ciliated structure in the posterior region of the embryo. Fluid flow in this ciliated structure is responsible for the induction of unilateral left-sided Nodal activity in the lateral plate mesoderm, which in turn regulates organ laterality. Bmp signalling activity has been implied in repressing Nodal expression on the right side, however its mechanism of action has been controversial. In a forward genetic screen for mutations that affect LR patterning, we identified the zebrafish linkspoot (lin) mutant, characterized by cardiac laterality and mild dorsoventral patterning defects. Mapping of the lin mutation revealed an inactivating missense mutation in the Bmp receptor 1aa (bmpr1aa) gene. Embryos with a mutation in lin/bmpr1aa and a novel mutation in its paralogue, bmpr1ab, displayed a variety of dorsoventral and LR patterning defects with increasing severity corresponding with a decrease in bmpr1a dosage. In Bmpr1a-deficient embryos we observed bilateral expression of the Nodal-related gene, spaw, coupled with reduced expression of the Nodal-antagonist lefty1 in the midline. Using genetic models to induce or repress Bmp activity in combination with Nodal inhibition or activation, we found that Bmp and Nodal regulate lefty1 expression in the midline independently of each other. Furthermore, we observed that the regulation of lefty1 by Bmp signalling is required for its observed downregulation of Nodal activity in the LPM providing a novel explanation for this phenomenon. From these results we propose a two-step model in which Bmp regulates LR patterning. Prior to the onset of nodal flow and Nodal activation, Bmp is required to induce lefty1 expression in the midline. When nodal flow has been established and Nodal activity is apparent, both Nodal and Bmp independently are required for lefty1 expression to assure unilateral Nodal activation and correct LR patterning.  相似文献   

10.
11.
Here we report that mouse embryos homozygous for a gene trap insertion in the fibulin-1 (Fbln1) gene are deficient in Fbln1 and exhibit cardiac ventricular wall thinning and ventricular septal defects with double outlet right ventricle or overriding aorta. Fbln1 nulls also display anomalies of aortic arch arteries, hypoplasia of the thymus and thyroid, underdeveloped skull bones, malformations of cranial nerves and hemorrhagic blood vessels in the head and neck. The spectrum of malformations is consistent with Fbln1 influencing neural crest cell (NCC)-dependent development of these tissues. This is supported by evidence that Fbln1 expression is associated with streams of cranial NCCs migrating adjacent to rhombomeres 2-7 and that Fbln1-deficient embryos display patterning anomalies of NCCs forming cranial nerves IX and X, which derive from rhombomeres 6 and 7. Additionally, Fbln1-deficient embryos show increased apoptosis in areas populated by NCCs derived from rhombomeres 4, 6 and 7. Based on these findings, it is concluded that Fbln1 is required for the directed migration and survival of cranial NCCs contributing to the development of pharyngeal glands, craniofacial skeleton, cranial nerves, aortic arch arteries, cardiac outflow tract and cephalic blood vessels.  相似文献   

12.
The role of Axin2 in calvarial morphogenesis and craniosynostosis   总被引:8,自引:0,他引:8  
Axin1 and its homolog Axin2/conductin/Axil are negative regulators of the canonical Wnt pathway that suppress signal transduction by promoting degradation of beta-catenin. Mice with deletion of Axin1 exhibit defects in axis determination and brain patterning during early embryonic development. We show that Axin2 is expressed in the osteogenic fronts and periosteum of developing sutures during skull morphogenesis. Targeted disruption of Axin2 in mice induces malformations of skull structures, a phenotype resembling craniosynostosis in humans. In the mutants, premature fusion of cranial sutures occurs at early postnatal stages. To elucidate the mechanism of craniosynostosis, we studied intramembranous ossification in Axin2-null mice. The calvarial osteoblast development is significantly affected by the Axin2 mutation. The Axin2 mutant displays enhanced expansion of osteoprogenitors, accelerated ossification, stimulated expression of osteogenic markers and increases in mineralization. Inactivation of Axin2 promotes osteoblast proliferation and differentiation in vivo and in vitro. Furthermore, as the mammalian skull is formed from cranial skeletogenic mesenchyme, which is derived from mesoderm and neural crest, our data argue for a region-specific effect of Axin2 on neural crest dependent skeletogenesis. The craniofacial anomalies caused by the Axin2 mutation are mediated through activation of beta-catenin signaling, suggesting a novel role for the Wnt pathway in skull morphogenesis.  相似文献   

13.
The study of left-right axis malformations in man and mouse has greatly advanced understanding of the mechanisms regulating vertebrate left-right axis formation. Recently, the roles of the TGF-beta family, Sonic hedgehog and fibroblast growth factor signaling, homeobox genes, and cilia in left-right axis determination have been more clearly defined. The identification of genes and environmental factors affecting left-right axis formation has important implications for understanding human laterality defects.  相似文献   

14.
Cellular and molecular left-right differences that are present in the mesodermal heart fields suggest that the heart is lateralized from its inception. Left-right asymmetry persists as the heart fields coalesce to form the primary heart tube, and overt, morphological asymmetry first becomes evident when the heart tube undergoes looping morphogenesis. Thereafter, chamber formation, differentiation of the inflow and outflow tracts, and position of the heart relative to the midline are additional features of heart development that exhibit left-right differences. Observations made in human clinical studies and in animal models of laterality disease suggest that all of these features of cardiac development are influenced by the embryonic left-right body axis. When errors in left-right axis determination happen, they almost always are associated with complex congenital heart malformations. The purpose of this review is to highlight what is presently known about cardiac development and upstream processes of left-right axis determination, and to consider how perturbation of the left-right body plan might ultimately result in particular types of congenital heart defects.  相似文献   

15.
The hedgehog (Hh) pathway is conserved from Drosophila to humans and plays a key role in embryonic development. In addition, activation of the pathway in somatic cells contributes to cancer development in several tissues. Suppressor of fused is a negative regulator of Hh signaling. Targeted disruption of the murine suppressor of fused gene (Sufu) led to a phenotype that included neural tube defects and lethality at mid-gestation (9.0-10.5 dpc). This phenotype resembled that caused by loss of patched (Ptch1), another negative regulator of the Hh pathway. Consistent with this finding, Ptch1 and Sufu mutants displayed excess Hh signaling and resultant altered dorsoventral patterning of the neural tube. Sufu mutants also had abnormal cardiac looping, indicating a defect in the determination of left-right asymmetry. Marked expansion of nodal expression in 7.5 dpc embryos and variable degrees of node dysmorphology in 7.75 dpc embryos suggested that the pathogenesis of the cardiac developmental abnormalities was related to node development. Other mutants of the Hh pathway, such as Shh, Smo and Shh/Ihh compound mutants, also have laterality defects. In contrast to Ptch1 heterozygous mice, Sufu heterozygotes had no developmental defects and no apparent tumor predisposition. The resemblance of Sufu homozygotes to Ptch1 homozygotes is consistent with mouse Sufu being a conserved negative modulator of Hh signaling.  相似文献   

16.
17.
Several syndromes characterized by defects in cardiovascular and craniofacial development are associated with a hemizygous deletion of chromosome 22q11 in humans and involve defects in pharyngeal arch and neural crest cell development. Recent efforts have focused on identifying 22q11 deletion syndrome modifying loci. In this study, we show that mouse embryos deficient for Gbx2 display aberrant neural crest cell patterning and defects in pharyngeal arch-derived structures. Gbx2(-/-) embryos exhibit cardiovascular defects associated with aberrant development of the fourth pharyngeal arch arteries including interrupted aortic arch type B, right aortic arch, and retroesophageal right subclavian artery. Other developmental abnormalities include overriding aorta, ventricular septal defects, cranial nerve, and craniofacial skeletal patterning defects. Recently, Fgf8 has been proposed as a candidate modifier for 22q11 deletion syndromes. Here, we demonstrate that Fgf8 and Gbx2 expression overlaps in regions of the developing pharyngeal arches and that they interact genetically during pharyngeal arch and cardiovascular development.  相似文献   

18.
Normal left-right asymmetry is highly conserved among vertebrates. Errors in the proper patterning of this axis are believed to lead to congenital anomalies of the heart and abdominal viscera, often with profound clinical consequences. We review briefly the nature of potential signals and signaling sources that lead to the break in left-right symmetry. The evidence suggests that left-right reversal, or homogenization, of these signals may lead to different consequences, and we explain some malpositions and malalignments of the atria, ventricles, and/or outflow tract that are seen in a variety of congenital cardiac diseases. We speculate that there are units of organ assembly responsive to laterality signals, and these units may be driven independently. One crucial source of signals appears to be the notochord and floorplate. In order to examine the clinical relationship of these midline structures to putative disorders of laterality, we review all patients with disturbances of normal laterality seen at the Massachusetts General Hospital over the past 20 years. We find a significant association between laterality defects and anomalies of the spine and other midline structures. Dev. Genet. 22:278–287, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

19.
Somitogenesis requires bilateral rhythmic segmentation of paraxial mesoderm along the antero-posterior axis. The location of somite segmentation depends on opposing signalling gradients of retinoic acid (generated by retinaldehyde dehydrogenase-2; Raldh2) anteriorly and fibroblast growth factor (FGF; generated by Fgf8) posteriorly. Retinoic-acid-deficient embryos exhibit somite left-right asymmetry, but it remains unclear how retinoic acid mediates left-right patterning. Here, we demonstrate that retinoic-acid signalling is uniform across the left-right axis and occurs in node ectoderm but not node mesoderm. In Raldh2(-/-) mouse embryos, ectodermal Fgf8 expression encroaches anteriorly into node ectoderm and neural plate, but its expression in presomitic mesoderm is initially unchanged. The late stages of somitogenesis were rescued in Raldh2(-/-) mouse embryos when the maternal diet was supplemented with retinoic acid until only the 6-somite stage, demonstrating that retinoic acid is only needed during node stages. A retinoic-acid-reporter transgene marking the action of maternal retinoic acid in rescued Raldh2(-/-) embryos revealed that the targets of retinoic-acid signalling during somitogenesis are the node ectoderm and the posterior neural plate, not the presomitic mesoderm. Our findings suggest that antagonism of Fgf8 expression by retinoic acid occurs in the ectoderm and that failure of this mechanism generates excessive FGF8 signalling to adjacent mesoderm, resulting initially in smaller somites and then left-right asymmetry.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号