首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MOTIVATION: A consensus sequence for a family of related sequences is, as the name suggests, a sequence that captures the features common to most members of the family. Consensus sequences are important in various DNA sequencing applications and are a convenient way to characterize a family of molecules. RESULTS: This paper describes a new algorithm for finding a consensus sequence, using the popular optimization method known as simulated annealing. Unlike the conventional approach of finding a consensus sequence by first forming a multiple sequence alignment, this algorithm searches for a sequence that minimises the sum of pairwise distances to each of the input sequences. The resulting consensus sequence can then be used to induce a multiple sequence alignment. The time required by the algorithm scales linearly with the number of input sequences and quadratically with the length of the consensus sequence. We present results demonstrating the high quality of the consensus sequences and alignments produced by the new algorithm. For comparison, we also present similar results obtained using ClustalW. The new algorithm outperforms ClustalW in many cases.  相似文献   

2.
MOTIVATION: Multiple sequence alignment is an important tool in computational biology. In order to solve the task of computing multiple alignments in affordable time, the most commonly used multiple alignment methods have to use heuristics. Nevertheless, the computation of optimal multiple alignments is important in its own right, and it provides a means of evaluating heuristic approaches or serves as a subprocedure of heuristic alignment methods. RESULTS: We present an algorithm that uses the divide-and-conquer alignment approach together with recent results on search space reduction to speed up the computation of multiple sequence alignments. The method is adaptive in that depending on the time one wants to spend on the alignment, a better, up to optimal alignment can be obtained. To speed up the computation in the optimal alignment step, we apply the alpha(*) algorithm which leads to a procedure provably more efficient than previous exact algorithms. We also describe our implementation of the algorithm and present results showing the effectiveness and limitations of the procedure.  相似文献   

3.
MOTIVATION: We introduce a novel approach to multiple alignment that is based on an algorithm for rapidly checking whether single matches are consistent with a partial multiple alignment. This leads to a sequence annealing algorithm, which is an incremental method for building multiple sequence alignments one match at a time. Our approach improves significantly on the standard progressive alignment approach to multiple alignment. RESULTS: The sequence annealing algorithm performs well on benchmark test sets of protein sequences. It is not only sensitive, but also specific, drastically reducing the number of incorrectly aligned residues in comparison to other programs. The method allows for adjustment of the sensitivity/specificity tradeoff and can be used to reliably identify homologous regions among protein sequences. AVAILABILITY: An implementation of the sequence annealing algorithm is available at http://bio.math.berkeley.edu/amap/  相似文献   

4.
MOTIVATION: As more non-coding RNAs are discovered, the importance of methods for RNA analysis increases. Since the structure of ncRNA is intimately tied to the function of the molecule, programs for RNA structure prediction are necessary tools in this growing field of research. Furthermore, it is known that RNA structure is often evolutionarily more conserved than sequence. However, few existing methods are capable of simultaneously considering multiple sequence alignment and structure prediction. RESULT: We present a novel solution to the problem of simultaneous structure prediction and multiple alignment of RNA sequences. Using Markov chain Monte Carlo in a simulated annealing framework, the algorithm MASTR (Multiple Alignment of STructural RNAs) iteratively improves both sequence alignment and structure prediction for a set of RNA sequences. This is done by minimizing a combined cost function that considers sequence conservation, covariation and basepairing probabilities. The results show that the method is very competitive to similar programs available today, both in terms of accuracy and computational efficiency. AVAILABILITY: Source code available from http://mastr.binf.ku.dk/  相似文献   

5.
A hidden Markov model for progressive multiple alignment   总被引:4,自引:0,他引:4  
MOTIVATION: Progressive algorithms are widely used heuristics for the production of alignments among multiple nucleic-acid or protein sequences. Probabilistic approaches providing measures of global and/or local reliability of individual solutions would constitute valuable developments. RESULTS: We present here a new method for multiple sequence alignment that combines an HMM approach, a progressive alignment algorithm, and a probabilistic evolution model describing the character substitution process. Our method works by iterating pairwise alignments according to a guide tree and defining each ancestral sequence from the pairwise alignment of its child nodes, thus, progressively constructing a multiple alignment. Our method allows for the computation of each column minimum posterior probability and we show that this value correlates with the correctness of the result, hence, providing an efficient mean by which unreliably aligned columns can be filtered out from a multiple alignment.  相似文献   

6.
MOTIVATION: The pairwise alignment of biological sequences obtained from an algorithm will in general contain both correct and incorrect parts. Hence, to allow for a valid interpretation of the alignment, the local trustworthiness of the alignment has to be quantified. RESULTS: We present a novel approach that attributes a reliability index to every pair of residues, including gapped regions, in the optimal alignment of two protein sequences. The method is based on a fuzzy recast of the dynamic programming algorithm for sequence alignment in terms of mean field annealing. An extensive evaluation with structural reference alignments not only shows that the probability for a pair of residues to be correctly aligned grows consistently with increasing reliability index, but moreover demonstrates that the value of the reliability index can directly be translated into an estimate of the probability for a correct alignment.  相似文献   

7.
When we apply ecological models in environmental management, we must assess the accuracy of parameter estimation and its impact on model predictions. Parameters estimated by conventional techniques tend to be nonrobust and require excessive computational resources. However, optimization algorithms are highly robust and generally exhibit convergence of parameter estimation by inversion with nonlinear models. They can simultaneously generate a large number of parameter estimates using an entire data set. In this study, we tested four inversion algorithms (simulated annealing, shuffled complex evolution, particle swarm optimization, and the genetic algorithm) to optimize parameters in photosynthetic models depending on different temperatures. We investigated if parameter boundary values and control variables influenced the accuracy and efficiency of the various algorithms and models. We obtained optimal solutions with all of the inversion algorithms tested if the parameter bounds and control variables were constrained properly. However, the efficiency of processing time use varied with the control variables obtained. In addition, we investigated if temperature dependence formalization impacted optimally the parameter estimation process. We found that the model with a peaked temperature response provided the best fit to the data.  相似文献   

8.
Cheon S  Liang F 《Bio Systems》2011,105(3):243-249
Recently, the stochastic approximation Monte Carlo algorithm has been proposed by Liang et al. (2007) as a general-purpose stochastic optimization and simulation algorithm. An annealing version of this algorithm was developed for real small protein folding problems. The numerical results indicate that it outperforms simulated annealing and conventional Monte Carlo algorithms as a stochastic optimization algorithm. We also propose one method for the use of secondary structures in protein folding. The predicted protein structures are rather close to the true structures.  相似文献   

9.
A protein is defined as an indexed string of elements at each level in the hierarchy of protein structure: sequence, secondary structure, super-secondary structure, etc. The elements, for example, residues or secondary structure segments such as helices or beta-strands, are associated with a series of properties and can be involved in a number of relationships with other elements. Element-by-element dissimilarity matrices are then computed and used in the alignment procedure based on the sequence alignment algorithm of Needleman & Wunsch, expanded by the simulated annealing technique to take into account relationships as well as properties. The utility of this method for exploring the variability of various aspects of protein structure and for comparing distantly related proteins is demonstrated by multiple alignment of serine proteinases, aspartic proteinase lobes and globins.  相似文献   

10.
MOTIVATION: Recently, the concept of the constrained sequence alignment was proposed to incorporate the knowledge of biologists about structures/functionalities/consensuses of their datasets into sequence alignment such that the user-specified residues/nucleotides are aligned together in the computed alignment. The currently developed programs use the so-called progressive approach to efficiently obtain a constrained alignment of several sequences. However, the kernels of these programs, the dynamic programming algorithms for computing an optimal constrained alignment between two sequences, run in (gamman2) memory, where gamma is the number of the constraints and n is the maximum of the lengths of sequences. As a result, such a high memory requirement limits the overall programs to align short sequences only. RESULTS: We adopt the divide-and-conquer approach to design a memory-efficient algorithm for computing an optimal constrained alignment between two sequences, which greatly reduces the memory requirement of the dynamic programming approaches at the expense of a small constant factor in CPU time. This new algorithm consumes only O(alphan) space, where alpha is the sum of the lengths of constraints and usually alpha < n in practical applications. Based on this algorithm, we have developed a memory-efficient tool for multiple sequence alignment with constraints. AVAILABILITY: http://genome.life.nctu.edu.tw/MUSICME.  相似文献   

11.
The objective of this study was to evaluate the performance of different multivariate optimization algorithms by solving a "tracking" problem using a forward dynamic model of pedaling. The tracking problem was defined as solving for the muscle controls (muscle stimulation onset, offset, and magnitude) that minimized the error between experimentally collected kinetic and kinematic data and the simulation results of pedaling at 90 rpm and 250 W. Three different algorithms were evaluated: a downhill simplex method, a gradient-based sequential quadratic programming algorithm, and a simulated annealing global optimization routine. The results showed that the simulated annealing algorithm performed for superior to the conventional routines by converging more rapidly and avoiding local minima.  相似文献   

12.
An Eulerian path approach to global multiple alignment for DNA sequences.   总被引:3,自引:0,他引:3  
With the rapid increase in the dataset of genome sequences, the multiple sequence alignment problem is increasingly important and frequently involves the alignment of a large number of sequences. Many heuristic algorithms have been proposed to improve the speed of computation and the quality of alignment. We introduce a novel approach that is fundamentally different from all currently available methods. Our motivation comes from the Eulerian method for fragment assembly in DNA sequencing that transforms all DNA fragments into a de Bruijn graph and then reduces sequence assembly to a Eulerian path problem. The paper focuses on global multiple alignment of DNA sequences, where entire sequences are aligned into one configuration. Our main result is an algorithm with almost linear computational speed with respect to the total size (number of letters) of sequences to be aligned. Five hundred simulated sequences (averaging 500 bases per sequence and as low as 70% pairwise identity) have been aligned within three minutes on a personal computer, and the quality of alignment is satisfactory. As a result, accurate and simultaneous alignment of thousands of long sequences within a reasonable amount of time becomes possible. Data from an Arabidopsis sequencing project is used to demonstrate the performance.  相似文献   

13.
Multiple alignments among genomes are becoming increasingly prevalent. This trend motivates the development of tools for efficient homology search between a query sequence and a database of multiple alignments. In this paper, we present an algorithm that uses the information implicit in a multiple alignment to dynamically build an index that is weighted most heavily towards the promising regions of the multiple alignment. We have implemented Typhon, a local alignment tool that incorporates our indexing algorithm, which our test results show to be more sensitive than algorithms that index only a sequence. This suggests that when applied on a whole-genome scale, Typhon should provide improved homology searches in time comparable to existing algorithms.  相似文献   

14.
15.
Although the reconstruction of phylogenetic trees and the computation of multiple sequence alignments are highly interdependent, these two areas of research lead quite separate lives, the former often making use of stochastic modeling, whereas the latter normally does not. Despite the fact that reasonable insertion and deletion models for sequence pairs were already introduced more than 10 years ago, they have only recently been applied to multiple alignment and only in their simplest version. In this paper we present and discuss a strategy based on simulated annealing, which makes use of these models to infer a phylogenetic tree for a set of DNA or protein sequences together with the sequences'indel history, i.e., their multiple alignment augmented with information about the positioning of insertion and deletion events in the tree. Our method is also the first application of the TKF2 model in the context of multiple sequence alignment. We validate the method via simulations and illustrate it using a data set of primate mtDNA.  相似文献   

16.
Sequence analysis is the basis of bioinformatics, while sequence alignment is a fundamental task for sequence analysis. The widely used alignment algorithm, Dynamic Programming, though generating optimal alignment, takes too much time due to its high computation complexity O(N(2)). In order to reduce computation complexity without sacrificing too much accuracy, we have developed a new approach to align two homologous sequences. The new approach presented here, adopting our novel algorithm which combines the methods of probabilistic and combinatorial analysis, reduces the computation complexity to as low as O(N). The computation speed by our program is at least 15 times faster than traditional pairwise alignment algorithms without a loss of much accuracy. We hence named the algorithm Super Pairwise Alignment (SPA). The pairwise alignment execution program based on SPA and the detailed results of the aligned sequences discussed in this article are available upon request.  相似文献   

17.
We present a stochastic sequence evolution model to obtain alignments and estimate mutation rates between two homologous sequences. The model allows two possible evolutionary behaviors along a DNA sequence in order to determine conserved regions and take its heterogeneity into account. In our model, the sequence is divided into slow and fast evolution regions. The boundaries between these sections are not known. It is our aim to detect them. The evolution model is based on a fragment insertion and deletion process working on fast regions only and on a substitution process working on fast and slow regions with different rates. This model induces a pair hidden Markov structure at the level of alignments, thus making efficient statistical alignment algorithms possible. We propose two complementary estimation methods, namely, a Gibbs sampler for Bayesian estimation and a stochastic version of the EM algorithm for maximum likelihood estimation. Both algorithms involve the sampling of alignments. We propose a partial alignment sampler, which is computationally less expensive than the typical whole alignment sampler. We show the convergence of the two estimation algorithms when used with this partial sampler. Our algorithms provide consistent estimates for the mutation rates and plausible alignments and sequence segmentations on both simulated and real data.  相似文献   

18.
Nicholas HB  Ropelewski AJ  Deerfield DW 《BioTechniques》2002,32(3):572-4, 576, 578 passim
We present an overview of multiple sequence alignments to outline the practical consequences for the choices among different techniques and parameters. We begin with a discussion of the scoring methods for quantifying the quality of a multiple sequence alignment, followed by a discussion of the algorithms implemented within a variety of multiple sequence alignment programs. We also discuss additional alignment details such as gap penalty and distance metrics. The paper concludes with a discussion on how to improve alignment quality and the limitations of the techniques described in this paper  相似文献   

19.

Background  

We propose a multiple sequence alignment (MSA) algorithm and compare the alignment-quality and execution-time of the proposed algorithm with that of existing algorithms. The proposed progressive alignment algorithm uses a grammar-based distance metric to determine the order in which biological sequences are to be pairwise aligned. The progressive alignment occurs via pairwise aligning new sequences with an ensemble of the sequences previously aligned.  相似文献   

20.
Multiple sequence alignment using partial order graphs   总被引:14,自引:0,他引:14  
MOTIVATION: Progressive Multiple Sequence Alignment (MSA) methods depend on reducing an MSA to a linear profile for each alignment step. However, this leads to loss of information needed for accurate alignment, and gap scoring artifacts. RESULTS: We present a graph representation of an MSA that can itself be aligned directly by pairwise dynamic programming, eliminating the need to reduce the MSA to a profile. This enables our algorithm (Partial Order Alignment (POA)) to guarantee that the optimal alignment of each new sequence versus each sequence in the MSA will be considered. Moreover, this algorithm introduces a new edit operator, homologous recombination, important for multidomain sequences. The algorithm has improved speed (linear time complexity) over existing MSA algorithms, enabling construction of massive and complex alignments (e.g. an alignment of 5000 sequences in 4 h on a Pentium II). We demonstrate the utility of this algorithm on a family of multidomain SH2 proteins, and on EST assemblies containing alternative splicing and polymorphism. AVAILABILITY: The partial order alignment program POA is available at http://www.bioinformatics.ucla.edu/poa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号